
 BASIC Language User Essay

 The Blue Book About GW-BASIC
 And QuickBASIC

 Thomas C. McIntire, 1991

 PDF Conversion by Thomas Antoni, 2004
 www.QBasic.de

The Blue Book About GW-BASIC and QuickBASIC - 1 -

BLUE - BASIC Language User Essay
The Blue Book About GW-BASIC And QuickBASIC

by: Thomas C. McIntire

(C)Copyright: Thomas C. McIntire, 1991
PDF Conversion: Thomas Antoni, 2004 – www.QBasic.de

Chapter TABLE OF CONTENTS Page

FOREWORD our mutual aims 2

1. INTRODUCTION . why BASIC, which BASIC 4

2. PROGRAMS parsing, key words, and tokens 11

3. VARIABLES where, how stored and searched for 25

4. STRINGS free space use and (mis-) management 40

5. NUMBERS arithmetic accuracy, or nearly so 53

6. DEVICES avoiding I/O headaches 74

7. GRAPHICS bits, pixels, and pretty pictures 94

8. FILES bridging the gaps between DOS and BASIC 115

9. STRANGE BASIC bugs, maybe 138

10. STYLE pretty programs vs. dense code 151

11. DESIGN deciding where to put the pieces........ 172

12. METHODS coding faster, and coding better 195

13. TECHNIQUES .. ISAM, MRI, file integrity, menus 211

14. TRICKS ready to use canned code 234

15. TOOLS Lxref, Lhits, Vfind, Vlist, Vxref 261

The Blue Book About GW-BASIC and QuickBASIC - 2 -

FOREWORD

This book is dedicated to the proposition that all programmers
are not created equal. Which has nothing to do with political
rights. It does have to do with what is right, when you write
a program that ought to run, but barely manages to limp along.

Most manuals make it easy to learn the syntax of a language.
Some occasionally offer suggestions that such and such is a
preferred method. My library has none that explain fully the
advantages to be derived, or the consequences to be suffered,
for accepting or rejecting their infrequent advice.

One argument can be made for brevity because the author does
not want to insult your intelligence. Another can contend
that saying too much will intimidate beginners. The more
likely truth is that such decisions are based on economic
issues. Manuals are expensive to write and publish. And in
this industry, a comprehensive manual risks becoming outdated
before the ink is even dry.

Both of us have an IQ a notch or two above the average bear.
This book was not written for the bears. It is for those who
can make rational choices about how to code when armed with
an awareness of probable cause and effect. My ambition is to
provide the missing ammunition.

Neither do I want to offend or intimidate. Some will already
know a lot of this. Some, undoubtedly, will know it better.
Most will agree with me, however, that all programmers are not
created equal. How can we be when so much of what is needed
can only be learned by trial and error. What I have learned I
have now written down.

Hopefully the experienced will be rewarded with a gem or two.
For all, recognize that this is not a manual. It is written
on the assumption that you have been there and are looking for
more. Because this is not a manual it is also not terse. If
it seems a little windy, bear with me. The breeze is supposed
to be less harmful to your health than staying up all night with
a sick program.

It has been said that there are old programmers, and there are
bold programmers, but there are no old, bold programmers. On
the eve of my retirement I am old enough that I can afford to
be bold enough to not worry about critical reviews.

The Blue Book About GW-BASIC and QuickBASIC - 3 -

Old enough to remember when we programmed by poking wires in
little holes in big plastic boards. Bold enough to admit that
no matter how hard I work, I still do not know it all. Older
for sure. Wiser enough to no longer be adamant when a bug
surfaces in one of my best jobs: Nothing can be more humbling
than a bug-free program that crashes.

If any one thing between these covers can prevent bent bytes,
improve execution times, or enhance your productivity, this
essay will have been worthwhile. For both of us.
 TM

- v -

The Blue Book About GW-BASIC and QuickBASIC - 4 -

Chapter 1 = INTRODUCTION

This book is not a work of fiction. No names have been changed
to protect the innocent. They need no protection. Some of the
others deserve recognition.

This book is an essay. It is loaded with opinions. Mine. At
least my recommendations can be traced to their source. Some
systems manuals offer an occasional recommendation. Few name
the sage, however, or even, from whence those gems were mined.

My background is pure grass roots: Programmer. By trade and
occupation. My first program, that worked, and was useful, was
in 1962. What we did then was not called programming as that
term is used today. In fact, the machine was not even called a
computer. It was a Tabulating Machine, or, Tab Card Processor.
What we did in those shops was called Automatic Data Processing.

As ADP gave way to EDP--Electronic Data Processing--we quit
programming with little short wires and started "writing" our
programs on forms. Then we sat at a keypunch and converted
what we had written into little holes in cards.

As the machines evolved, so did the languages. Yes, I have
programmed in many languages. Because whatever was supplied by
the hardware manufacturer is what we had to use; the list of
choices usually ranged from none to one. The make and model of
a computer dictated what its language looked like: SPS (IBM),
SAAL (Univac), and BAP (Honeywell) were some of those early
assemblers.

As time went on, with occasional changes in employers, I also
learned "high level languages", like FORTRAN, COBOL, RPG, APL,
PL/1, LISP, NEAT, and even, BASIC. I had to learn them. It
was how I earned a living.

Today I no longer have to hustle for a living and can afford to
pick and choose. Almost. Prospective clients wanting custom
programs still manage to limit my choices, however, because of
money. Which, on reflection, has always been the big issue.

Given: A Rio Grande clone. Usually purchased from a computer
store or some Post Office Box. The hardware configuration is
whatever it is; seldom is it what would have been prescribed by
a professional systems analyst.

The Blue Book About GW-BASIC and QuickBASIC - 5 -

Client: Wants to do business data processing, but does not
want to make the intellectual investment necessary to select,
install, and operate, a ready-to-wear package off the sales
rack. He would rather spend money than brainpower hours to
get what he wants. Not "too much" money, however.

And that is where the rub comes in. For me. Time and labor.
The person that just blew a grand or two on a "computer" is
rarely prepared for estimates for custom programming that use
formulas like $50 an hour times 1,000 man-hours. In fact,
many turn pink if you quote a buck an hour.

So, the thousand-hour factor is the one that has to relent.
As much as I enjoy plying my trade I am reluctant to drop
below a buck an hour. That is about where I began, a long
time ago. So, today, I program mostly in BASIC.

BASIC is not a personal preference. I use it because:

 + More end-product usable code in the least amount of time.

 + Today's code is apt to be usable on next year's machines.

 + When I die my client can likely find a cheap surrogate.

This is not the forum to recant my reasoning on these points.
If you are inclined to argue, drop by sometime. We can sit
on the front porch and drink a beer, and enjoy that debate.

This is where, however, I need to present my evidence about
which BASIC, and when to use the alternatives.

On the Big Blue machines, and those from the stores where they
demand your name and address for a cash purchase of a flashlight
battery: There is usually a BASIC and a BASICA; both are COM
files on the system diskette. And a big chunk of the BASIC
interpreter is in the boot-ROM itself. All of which I refuse
to use. My clients still have to purchase a GWBASIC.EXE
interpreter, if the computer vendor did not throw it in for
free.

This advice is based on dollar pragmatics and has nothing to
do with vendor favoritism. All of these interpreters have a
common lineage; they are not 100 percent alike in how they

The Blue Book About GW-BASIC and QuickBASIC - 6 -

behave, unfortunately.

My ability to produce "custom" programs, cheaply, depends on
being able to make maximum reuse of already written programs
and pieces of programs. It simply costs too much to try to
stay abreast of all the quirks that exist among the so called
compatible machines. It costs too much as it is, to contend
with the prickly differences that come as pop-up surprises in
successive releases of DOS, and any one language.

So, GeeWhiz it is, because it does work on more different
machines, more consistently, than any other one.

There are four aspects to this need for consistency:

 Obviously new programs can be created out of chunks of old
 code, quickly, if that code can be reused as is.

 My disks are loaded with a lot of homemade tools that make
 my work easier and more profitable. The time it takes to
 overhaul them when "something" changes costs twice. Time
 spent doing that is time not spent producing my wares.

 It takes time to master a language. Any language. We earn
 our keep by working with what we know. When changes occur
 we have to update our knowledge base. This is especially
 costly for undocumented gotchas: Those changes we find out
 about the hard way, when something no longer works the way
 it used to.

 My clients criticize me (rightly so) if what I do for them
 puts them in a corner when it comes time to upgrade, expand
 their gear, or add new applications.

Another language product that is highly useful is QuickBASIC.
This is used mostly in-house, seldom for full-scale, turnkey
applications that are to be used at sites where they know my
name and phone number.

Compiled programs do run faster than interpreted ones. In the
lab we do a lot of batch processing, which takes time, and time
saved means increased productivity.

Most accounting applications, today, have to be "interactive".
Execution speed is important only to the extent that user

The Blue Book About GW-BASIC and QuickBASIC - 7 -

productivity is not adversely affected. (Read: If you can run
faster than the operator, that is fast enough.) A recurring
theme in this book is about how to achieve optimum performance
from the interpreter.

Only the inept or uncaring write programs that run slower than
need be, especially when alternative techniques cannot be fully
rationalized by arguments about maintainability, or similarly
subjective issues.

Brain strain is not an acceptable excuse to a professional. It
takes intellectual effort to acquire knowledge. No argument.
It seldom requires any extra labor to apply that knowledge,
however. No confidence should be allowed for programs written
by people too lazy to master their trade: Slow running code is
often a reliable indicator of professional incompetence. This
is equally true of all software, no matter what language it is
written in. (It is true that programmer ineptitude is more
conspicuous in interpreted BASIC programs. Sometimes.)

When speed freaks argue that they use compilers simply because
interpreted programs are too slow, we can immediately assume
that they are on somebody else's payroll. How long it takes to
crank out an end product concerns them little. They get paid
to come in every day and crank. Those of us whose income is in
direct proportion to our productivity tend to see things from a
rather different perspective.

When interviewing job applicants--I have hired, and fired,
quite a few over the years--if they say execution speed is a
primary factor in choosing a language, they do not get hired.

One more observation is offered about speed: An interpreted
program running on an 8088 at 10 MHz may very well out perform a
compiled one running on an old 4.77 machine. It is impressive
even to me, to see two year old GW-BASIC programs running on a
PS/2, racing along at 33 MHz.

After an emotional argument about performance, even if we give
ground a little, we still must be adamant. QuickBASIC is not
unlike a lot of other "modern" language products:

 It has not yet matured. The differences between releases are
 enough to make a wild man mad. In fact, we have gone back to
 using release 2. Later releases fixed some earlier bugs, but

The Blue Book About GW-BASIC and QuickBASIC - 8 -

 also created more headaches in trying to write BASIC programs
 that will run in both interpreted and compiled modes.

 All compiler writers are too dictatorial. Rather than just
 checking for syntax errors and translating our instructions,
 they try to force us to conform to their concepts of "good
 programming practices". They who have never had to write a
 payroll application, and support it year after year, are ill
 equipped to dictate programming doctrine. What we have to
 do, and how we do it, often differs from what is preached in
 the halls of academia.

 The manuals are too thin. In addition to specifying what a
 program will do, software contracts have to specify what size
 box it will fit in, and what its performance thresholds are.
 Before the job begins. To have to do probe coding to find
 this out, in a compiled-language environment is too costly.

The QuickBASIC compiler is highly useful, even for programs
that are not going to be delivered in compiled form. It is a
super tool for finding coding errors that the interpreter may
never bump into. The measly hundred or so for this tool can
easily be offset by what a single on-site service call would
cost, to correct a mistake that escaped your diligence.

The compiler manual is needed for reference, even for those
writing only in GW-BASIC. Just as it is for us die-hards that
cannot afford to cut the cord and go out into the world with
nothing more in our pockets than QuickBASIC.

By reading both manuals, GW-BASIC and QuickBASIC, we can get
two different author's definitions of things that were meant to
be alike. The fingerprints of multiple authors can be seen in
both books; there is some evidence however, they never read what
each other had written.

The syntax of these two different BASIC languages is similar.
So far. The key words that are common to both are spelled the
same, and punctuation rules are alike. The grammar differs
some: The compiler knows some key words that are totally
incomprehensible to the interpreter, and vice versa. These
variations are not too difficult to live with. Most of the
differences in vocabulary cause no problems because, what is
different is not useful in the "other environment", anyway.

Semantics is a harder nut to crack for bilingual programs. A

The Blue Book About GW-BASIC and QuickBASIC - 9 -

given line of code may run in either environment, but behave
differently, because the two different language translators do
not derive the same meaning from a given word or phrase.

Until release 4.5 of the compiler, internal processes produced
similar answers. Presumably this is because compiled object
code is still "interpreted" by a vast number of "modules" taken
from the GW-BASIC interpreter. Run-time differences between
these two pieces of software crop up because they interface to
DOS differently, i.e., most of their differences relate to I/O
operations and memory utilization.

The newer compilers are revolutionizing the language. Adding
new gadgets did not hurt us old timers, much, until recently.
Lately, we cannot even count on our programs to count the same.
The adoption of IEEE numeric formats as the norm for BASIC is
one more very good reason for staying with GW-BASIC, and for
never becoming a wholehearted convert to QuickBASIC.

When they pull stunts like that, and "suggest" that we should
back up and overhaul not only our old programs, but their data
files as well, we are forced to revise our thinking about words
like confidence and loyalty. Imagine a quarter of a million
lines of code, running at a hundred or so installations, that
maintain millions of records for all of those clients.

QuickBASIC proponents would like for us to believe that it is
an enhanced or "extended" form of the language; those of us
using the interpreter are laboring with a mere subset of the
ultimate. If you swallow this without batting an eye, chuck
this book and go read "Mein Kampf".

There is a risk of further divergence in these two languages.
One indication that the "master plan" is aiming for a final
decree of divorce can be seen in the respective manuals. The
older, potty-trained versions of the GW-BASIC manual (1986)
mentioned some of the differences in the two languages, albeit,
somewhat sporadically. My newest manual, only a few months
old, doesn't even bother to acknowledge its rival sibling.

The QuickBASIC manual continues to remark upon some of the more
obvious differences in the two languages. Presumably to help
us "up grade" from the interpreter. Which can be further read
to mean they would like to coerce us in that direction.

The Blue Book About GW-BASIC and QuickBASIC - 10 -

Meanwhile, we can pray they have more social conscience than
Adolph had. None of us are likely to begrudge them their
profits, or that they are compelled to offer new products to
keep their fiscal towers from toppling. At the same time, we
hope they will not ignore what happened to the Avanti and the
Edsel. The masses may be ignorant, but some of us peasants are
not as gullible as those on high might think.

So much for the Whom, Which, When and, Why: From here on it is
all about how. How the interpreter works, mostly. And that is
based on how I perceive it, looking from the outside in, as a
user of GW-BASIC. My sporadic notes about some differences
between the interpreter and QuickBASIC have no ulterior motive;
those that are mentioned are those that caused me grief because
they are not documented anywhere else, as far as I know.

When QuickBASIC is mentioned hereafter, it refers to release 2.
Nobody could document all of the differences that have occurred
since. It often takes me a year or two find most of the bugs in
each release. New releases are being issued so rapidly today,
there is not enough time to even read the manuals for any one,
before it is time to start all over.

What follows is not a tutorial on how to program. In BASIC or
any other language. Teaching is properly the province of those
who know how to teach.

What follows is simply a memory dump. Of my memory. Of my
experience, and how I make use of what I have learned. And
some of my code. If you already have a better wheel, good.
If not, some of what works for me could save you having to
reinvent solutions to programming problems that have existed
for years.

Expert? Hardly. Read me as a coworker, passing along to my
fellows what I know (or think I know) before I am too old to
remember it all. When I am guilty of a mistake, or awkward
phrasing, remember that I am simply a simple programmer. (I
nearly drowned the last time I tried to walk on water.)

The Blue Book About GW-BASIC and QuickBASIC - 11 -

Chapter 2 = PROGRAMS

A program is stored, physically, as a file. Logically it is
organized as what is traditionally called a sequential file.
That is, a file of records (lines) of varying lengths, one
record following another, sequenced in 1-2-3 order.

If you save a program as an ASCII file (SAVE "program",A) it
is in fact output according to the conventions that have by
now become known as "...a standard sequential file."

Each line of your program is a variable-length record. The
last two bytes of each record are a CR/LF pair (a carriage
return and a line feed). The end of the file is marked by
a single-byte (control-Z code) immediately following the
last record. All bytes, in all records, are standard ASCII
character codes. (Save those above CHR$(127), which are not
truly ASCII.)

As Mr. Holmes would say: "Elementary, my dear Watson". This
much is learned easily from the manuals. And at some point,
most novice programmers write experimental programs to "read"
program files. Some progress rapidly to the next step and
write programs that "write" programs.

Program generators, as a concept, is as old as is the business
of programming itself. The first time any programmer with
very much experience has to write a couple of hundred lines
that look-a-lot-alike, he is very likely to write a "tool" to
generate those lines automatically.

By the time most students have gotten this far they also begin
to wish they had more tools. And veterans of other programming
languages are very quick to notice the conspicuous absence of
tools in this environment. At least part of that void can be
filled by Chapter 15 which contains handy routines from my own
toolbox.

This chapter seeks to fill another void. When your world
dictates the need for custom-made tools, that have to work on
programs as they are in memory, or as they are in files that
were saved as "binary", what is in those bytes must be known.
That nitty-gritty detail is provided here, but not just for
the benefit of tool writers.

Suffer my favorite contention repeated often elsewhere: To be

The Blue Book About GW-BASIC and QuickBASIC - 12 -

able to write programs that run as efficiently as possible
requires an understanding of how the interpreter works. This
narrative can be read to further that insight, savoring the
general concepts, skipping quickly over the gristle.

A brief preamble is necessary before wading in. The more
explicit a technical note is, the more apt it is to be wrong.
Not because of errors (which are certainly possible), but more
likely because we are not viewing exactly the same thing. The
world is constantly changing around us, and that cliche is so
very applicable to the world of programming. On the off chance
you encounter a bent byte in what follows, perceive it as a
mere pebble in a swift stream: Wade on.

A program is stored, physically, as a file. Logically it is
organized as what is traditionally called a sequential file.
That is, a file of records (lines) of varying lengths, one
record following another, sequenced in 1-2-3 order. This
repetition is still basically true, but from here on, when
you save a program without the A-for-ASCII option, it is a
whole new ball game.

A program file is, essentially, what is sometimes called a
mirror-image memory dump to disk. That is why LOAD and SAVE
type activity is fast: Reading and writing are done on the
basis of physical blocks, not at the logical line, or record
level. While in memory (and therefore while on disk) a program
is still internally organized as discrete lines, arranged in
line-number order, just as you see them with LIST or LLIST.

Granted, this much can be learned by a careful reading of most
manuals. Some mention that the lines are stored in a compact,
compressed, or "tokenized" form. Which is about as far as any
of them go. Unquestionably, the interpreter program is a very
sophisticated, highly complicated, special piece of software.
But, it is still a program. It "processes" your program. It
starts where you do, on the first line, examining each of your
statements, doing what you tell it to do, one step at a time.

This grossly understated, oversimplified definition of the
interpreter is the fundamental perspective from which to read
what follows. The purpose at hand is to view what is in the
program lines themselves. Seeing that, we can often surmise
what the interpreter has to do. How it actually does it can
remain obscure.

The Blue Book About GW-BASIC and QuickBASIC - 13 -

All lines begin with the first four bytes having the same
order and purpose, and end with a byte equal to CHR$(0).
The first two bytes are an address pair. They contain the
actual address of the start of the next line. Starting with
the next two bytes, the pair that contains your line number,
everything within a line is in exactly the same order as it
is when it is viewed as an ASCII-text line. Therein ends
its similarity. The bits in the bytes themselves are
formulated to suit the interpreter.

Some bytes still coincide with the ASCII character set, and
their interpretation remains unchanged. Because any given
byte may range the full 8-bit spectrum of 0-255, in decimal
numbers, most of them are bound to look like printable
characters. But a byte that looks like a CHR$(65) may not
be for the letter "A", at all. It may be a code, or part of
a code, or a number, or part of a number, or....

The bytes within a line are parsed as 1-byte codes, or as
words (groups of bytes). A word may be as small as 1 byte.
Some are 2, some 4, and naturally, some are 8. Grab on now
to that thread that is woven throughout machine language
programming: 8-bit bytes used as 1, 2, 4, or 8-byte words.

Nearly all of the so-called "key words" in BASIC are stored
as tokens (codes). When you type a line of a program using
the BASIC editor, the text of what you type is translated.
The key word BEEP is stored as a single byte, for example; it
looks like a CHR$(197). When you see BEEP, a token that is
equal to the number 197, in decimal, has been translated back
into the four upper case ASCII letters that spell BEEP.

 Time out. From here on assume all my numbers are decimal.
 To keep using phrases to ensure that 197 is understood to
 mean a byte equivalent to CHR$(197) is redundant. It slows
 down your reading, and my writing. Now to resume....

Many key word tokens are, effectively, two-byte codes. The
first byte serves as an indicator that the token in the next
byte is from an alternate translation table. The token for
SWAP is 164 and the token for LOC is also 164. So, a token
byte of 164 is either for SWAP or LOC, depending on which
table is used for translation, i.e., on whether or not the
token is preceded by a 255-table indicator byte.

The Blue Book About GW-BASIC and QuickBASIC - 14 -

In all, there are four key word tables. The single byte
129-token translates to END. A 255-byte followed by 129 is
translated as LEFT$, a 254 then a 129 is for FILES, and 253
followed by 129 means CVI.

Because the first byte dictates how the token that follows it
should be translated, we can get an immediate insight into how
the interpreter actually works. It processes a line from left
to right, one byte at a time. On the basis of what a byte has
in it, it can proceed at the rate of one at a time or, gobble
up 2, 4, or 8 bytes for its next trick.

When a program is "running", when the interpreter bumps into
a 253-byte, for example, it knows that the next byte is a
token, and it will be a function call to do CVI, CVS, CVD,
MKI$, MKS$, MKD$, or EXTERR (because only 7 unique tokens are
expected to follow a byte that contains 253).

Notice how "a byte" indicates what should be expected next.
To be able to parse a line--to separate it into lexical units
words)--merely requires an algorithm that mimics the logic of
how the interpreter does it. And that is not very complicated
at all.

Constructing a tool that will translate the number 145 into
the word PRINT, for example, requires no great effort. What
it takes in the way of routines to carry out a command such
as PRINT can take many hundreds of program lines. Without
seeing those lines, or even knowing machine languages, we can
appreciate the long hours and hard work that went into the
writing of the interpreter itself. By stepping along a line,
a byte at a time, just as that program does it, we can grasp
the basic principles by which it works, however. Like this:

Begin at the beginning. The first line of your program. The
first two bytes are an address-pair. To get their decimal
value, if need be, multiply the second byte by 256 and add to
that, the value of the first byte. And take a note. This
same arithmetic feat can be used to convert all 2-byte words
that represent addresses or line numbers. (Which are stored
in the way machine language works, i.e., backwards compared
to how we would do it in our head.)

Add 2 to your byte pointer. The next pair of bytes is also
a 2-byte word. Do the arithmetic. 'Lo and behold, the result

The Blue Book About GW-BASIC and QuickBASIC - 15 -

is equal to the line number you used when this program line
was created. Now increment your byte pointer by one and get
ready for some real fun.

If the next byte is 32, 44, or 58, it is a space, a comma, or
a colon, same as in ASCII. Bump on. If the next byte is zero,
you have reached the end of the line. If it is greater than
128, it is a key word token. If none of these tests are true,
you are now looking at something that you made up--a literal,
a constant, or a variable name--or, your pointer is in the
wrong place. Or you are trying to read somebody else's mail.

By this time, if you are actually writing a programming tool,
what you want to see most are the tables at the end of this
chapter. But don't start coding yet. It would be useful to
know how the information in these tables was compiled. (In
case your version of the interpreter differs from mine.) And,
there are some tidbits that need to be known that are not
obvious when looking at charts alone.

Speaking of charts: In days of yore the manuals always had a
chart that listed all of the "reserved words". Which was handy
to review, to keep from inadvertently creating a conflict when
coining variable-names. My newest (seldom-used) manual has no
such chart. It does say, "All GW-BASIC commands, statements,
functions, and variables are individually described in the
GW-BASIC User's Reference." Poppycock. Attempt LCOPY = 1 and
you will get a syntax error. LCOPY 0, on the other hand, gives
no error, but neither does it do anything.

 LCOPY is a truant command. It worked in only one release--I
 forget which one, 2-dot-something--but it now simply works
 like a no-op. Perhaps that is why the books no longer list
 all of the reserved words; they would have to say, exactly,
 on what day of the week it could safely be consulted.

To find out, exactly, what token is used to represent a given
key word, type it as the first word in a BASIC program. SAVE
it, then use DEBUG--or some other tool--to see just what the
interpreter converted that word to. By the way, the very first
byte of a "saved" program file is a file-type indicator. (It
may be 255, which indicates a "normal" BASIC program; 254 says
it was saved with the "protect" option.) Remember also, to
jump over the first four bytes at the beginning of each line
before you start looking for a key word token.

The Blue Book About GW-BASIC and QuickBASIC - 16 -

 PS: A first byte of 254 or 255 does not always mean that
 what follows is a BASIC program; it is simply what the
 interpreter looks for to "know" if the file you are loading
 is a BASIC "tokenized" program.

If you don't know all of the key words built into your version
of the interpreter, there is a way to find out. But it is not
particularly easy. Unfortunately, they are not all shown in
all manuals, and some, although in a manual may not be in your
software. Back to DEBUG. Dump the interpreter itself. Look
for what resembles BASIC "reserved words". They are not stored
as pure ASCII; the first letter of a word and the last letter,
or both, may look like mumbo jumbo, but the letters in the
middle of the longer ones like RANDOMIZE are still recognizable
as ASCII upper case letters.

More than just accurate tables of key words and their tokens
are needed. Here are some other interesting things to expect
when parsing BASIC lines. And some more insight into how the
interpreter works when it is executing a program.

Numeric literals are stored in a line in exactly the same
format as they would be as if you had assigned them to the
least precise variable that would be required to hold them.
For example: -32000 is stored in two bytes (exactly the same
as in an integer variable). This in-line literal is preceded
by a code-28 that indicates that what follows is a 2-byte word,
and that it should be translated as an integer. See now why
it happens that, although you typed A=99999, later you will
see A=99999! when you do a LIST. (Integers do not get a free
appendage but all larger numbers do, or they play back as if
you had typed them using pseudo-scientific notation.)

This same concept is true for all in-line values. They are
stored in ready-to-use format. No conversion is necessary.
The interpreter can grab a 1, 2, 4, or 8-byte word and use it
instantly, just as it is. It's better to do the conversion
while you are typing. You won't even know when it is done.
(Not many typists can outrun a modern micro.) See also why a
MERGE can take awhile: There's a whole lot of converting
going on during the load process.

There is one type of conversion that does take place during
execution of a program. If you are poking around in program
memory while a program is in progress, watch for this one.

The Blue Book About GW-BASIC and QuickBASIC - 17 -

GOTO, for example, is followed by a line number. Line numbers
are stored in 2-byte words. They are normally preceded by a
code-14 byte. When the interpreter bumps into the 14, it runs
through your program to find the line that has the matching
line number. Now the tricky part: The three bytes after the
GOTO get changed. The code will be changed from 14 to 13,
and the real address of the target line will overwrite the two
line-number bytes. Once found not forgotten is the moral.

Converting translated addresses back into line numbers can be
done very quickly, by the way. If you bump into a code-13,
use the address following it to get the unchanged pair of
bytes from the beginning (+2) of the target line, and change
the lead byte from 13 back to 14.

Most of the time your variables look just like you typed them.
As ASCII upper case letters, numbers, and appendages. One
exception is the case of a user-defined function name. The
FN itself is converted to a 1-byte token (209), but the rest
of your name remains unchanged.

Confusion--and not a little aggravation--can arise when you
are parsing for variables only. Not all key words are
tokenized. There are only a few that are not, but because
they are stored internally as ASCII letters, they have to be
parsed as if they are variables. Then you can decide whether
you invented the name or BASIC did. The ones that are, and
those that are not key words tend to be different sometimes.
(If you call your machine Junior, watch out for PALETTE. The
seniors use a token, but some PC Jr's do not.)

Another perversity: B and BF can certainly be variable names.
But they may also be "un-tokenized key words". If they follow
the second comma in a graphics LINE statement, they are merely
switches to condition how that statement is executed. To find
all variables, only, accurately, your algorithm will have to
become context-sensitive when it encounters the 176-token for
LINE. A 133-token soon after means you found LINE INPUT and
any subsequent B or BF are variables. Otherwise, the letters
B or BF--following a comma-count of two--can be skipped.

DATA statements are always whole lines. If the first token
following a line number is 132, the next byte should be 32 (a
space character) and the rest of the line is pure ASCII up to
the final byte (which is always zero). Notice too, numeric

The Blue Book About GW-BASIC and QuickBASIC - 18 -

DATA elements are not converted to internal format until the
moment that you do a READ. Another performance hint, albeit
a rather small one. (Reading strings of literals from DATA
statements is not an efficient way to program.)

Remark statements are interesting, and a little odd. A token
of 143 translates as REM, but only if the next byte is not 217.
The two in a row--143 and 217--translate as an apostrophe, the
shorthand symbol for a remark. (And this pair is followed by
an arbitrarily imbedded code-58--a colon--for some obscure
reason.) Beyond that, whatever you typed is stored just as is,
as ASCII characters. Notice also that the shortest remark is at
least two bytes. If you use REM it is stored as 143 followed by
the syntactically required space character (32). Two bytes. If
you use the apostrophe, it is stored as 143, then 217, then 58,
but no space character is required. Three bytes. So, REM is
less costly than the apostrophe (but is less pleasing visually).

Another performance note: Both DATA statements and remarks
are, effectively, do-nothing bytes when they are encountered
by the interpreter while it is executing a program. To get
from the token to the start of the next line, the interpreter
has to bump along, one byte at a time while looking for the zero
at the end. (It forgot, apparently, what address is in the
pair of bytes at the beginning of this line.) So, use remarks
freely, but put them only after statements that have an emphatic
conclusion. After NEXT instead of after FOR, for example. And
never intersperse DATA statements in a stream of executable
lines unless you like programs that run slower than they need to.

Although the token for ELSE (161) comes from the single-byte
tokens table, it is always preceded by a 58, which is normally
seen as a statement separator. So, when you bump into a 58,
look at the next byte before assuming that what is coming up
is the next statement on a multistatement line. (Normally
ELSE should only come after THEN, as we all well know.)

Quotation marks are also a little odd. They are stored as 34,
same as in ASCII, but they are supposed to be used in pairs.
If, for example, PRINT "hello" is encountered, the first quote
turns-off the tokenizing. The next one turns it back on. So,
everything that you bracket with quotes gets stored just as you
typed it. And if you failed to type a second one, everything
from the first quote through the end of the line is treated as
one continuous string of text. Which explains why you see some
funny stuff, sometimes. (A missing quote can be the cause of

The Blue Book About GW-BASIC and QuickBASIC - 19 -

some not so funny bugs.)

Parentheses, on the other hand, must be used in matching pairs,
and they are stored as codes 40 and 41, respectively. Or you
will trigger an error trap. The LEFT$ token, for example, will
(should) always be followed immediately by a code-40 byte.

Another aside: See from the above why an error trap can
sometimes be confusing. You confused it. Parentheses and
other "syntax characters" are fundamental to the business of
parsing a line. Some codes indicate that the byte pointer
should jump forward a specific number of bytes. If the code
found at that point is not what is normally expected, it can be
assumed that whoever typed that line was not playing by the
rules. The best "error" that can be given is based on what
the pointer is now seeing. Bytes bumped over are history.

And some bytes ought to be history. Bytes that really are
bumps are not unlike the speed bumps in parking lots. They
slow down your program. Not always much, maybe, but if you
like programs that run in the fast lane, omit anything that is
"optional". Many times the third argument in MID$ expressions
can be omitted. The pound-sign can almost always be omitted.
It is a must before the file number in INPUT, and PRINT, and
WRITE statements. But the rules are inconsistent when a file
number is used between parentheses. Like in VARPTR(#1) the
rule is different than for LOF(1). Which is not the only
inconsistency about parentheses.

For some odd reason the left parenthesis is not stored in a
line in two cases. The key words TAB and SPC have their
trailing appendage imbedded in the translation tables. Their
tokens will not be followed by a code of 40. And these two
are perverse in another way: They can be used only in some
form of a PRINT statement. Presumably these genetic traits
have something to do with their heritage.

A number of family characteristics are noticeable in the key
word translation tables. Most of those in the first family
are commands (as opposed to functions). Most of these kids
are not expected to have parenthetical expressions tagging
along behind them. The tokens in this family range from 129
to 244, with a few gaps. Some of the gaps are caused by
infant mortality--key words that used to be in BASIC but are
no longer with us. And some are recent adoptions, words like
COLOR, that have been added as the language has grown up over

The Blue Book About GW-BASIC and QuickBASIC - 20 -

the years.

The second family is a little more purebred. This is the gang
guarded by a 255-byte. All of these key words are always
followed by a left-parenthesis, except the word PEN. (A misfit
cousin, no doubt. Depending on how it is used, PEN may or may
not have a code 40-byte tagging along behind it.) The 37 kids
in this clan are numbered from 129 to 165, and none are missing.
Which implies, in the absence of family planning, up to ninety
more (166-255) could come along in some future generation of
the language.

The next family down the line, guarded by a 254-byte, looks
like an orphanage. This group of 27 tokens range from 129 to
155, with no gaps. Most of this bunch are relative newcomers;
especially those that provide an interface to the operating
system. Still, the older ones near the top of the list have
been around since the juvenile versions of "disk BASIC".

For a long time there were only six members in the fourth
family, the one guarded by a 253-byte. These three sets of
twins were originally conceived to be useful for working with
so-called fielded-variables. (They are not restricted to that
playground, however.) Then along came EXTERR. Wrong bus,
maybe? Notice the empty seats.

Had this chapter begun with WHILE, we are now nearly ready
for WEND, and a fall-through to those tail-end tables.
Remember those two bytes at the beginning of each line that
address the start of the next logical line? That address is
accurate only while a program is memory resident. When you
SAVE a program, those addresses get saved, right along with
everything else. When you LOAD, however, just where the file
is placed into memory at that time may be different than it
was the last time it was used. During a LOAD (or a RUN,
or a CHAIN) the interpreter must recalculate all of those
addresses.

Notice that the address values are proportionally correct in
program files stored on disk. A single addition or subtraction
factor can be applied to them all, to maintain their chain-to
relationship. Equally, the difference in the address headers
of two successive lines can be used as a byte-count of the
length of a line.

If you are reading a program as it sits in a file, the line

The Blue Book About GW-BASIC and QuickBASIC - 21 -

addresses shown are those that were, once upon a time. If you
are peeking at a program in memory, you are seeing things as
they are now. Either way, now we know how to see a program
just as the interpreter sees it. Even if that vision is still
a little fuzzy, this overlook will, hopefully, broaden the
horizon.

The Blue Book About GW-BASIC and QuickBASIC - 22 -

 | Internal Code Assignments |
| 0 End of a program line |
| 1-10 Not used (should not be encountered) |
| 11 Translate next 2 bytes as Octal, like &O1024 |
| 12 Translate next 2 bytes as Hexadecimal, like &H7D0B |
| 13 Next 2 bytes are the address of another line |
| 14 Translate next 2 bytes as a line number |
| 15 Translate next byte as a numeric literal (0-255) |
| 16 Not used (should not be encountered) |
| 17-26 Translate this byte as a decimal digit (0-9) |
| 27 Marks end of file (preceded by a zero-byte) |
| 28 Translate next 2 bytes as an integer |
| 29 Translate next 4 bytes as a single precision number |
| 30 Not used (should not be encountered) |
| 31 Translate next 8 bytes as a double precision number |
| 32-127 Translate as standard ASCII text characters unless |
| 58 is followed by 161; translate this pair as ELSE |
| 128 Not used (should not be encountered) |
| 129-252 Translate as a key word from table 1 |
| 253 Translate next byte as a key word from table 4 |
| 254 Translate next byte as a key word from table 3 |
| If 1st byte in file, it was saved with P-option |
| 255 Translate next byte as a key word from table 2 |
| If 1st byte in file, this is a LOAD-and-go program |

The Blue Book About GW-BASIC and QuickBASIC - 23 -

 | Table 1 = Single-byte tokens |
| 129 END 151 DEF 176 LINE 201 KEY |
| 130 FOR 152 POKE 177 WHILE 202 LOCATE |
| 131 NEXT 153 CONT 178 WEND 204 TO |
| 132 DATA 156 OUT 179 CALL 205 THEN |
| 133 INPUT 157 LPRINT 183 WRITE 206 TAB(|
| 134 DIM 158 LLIST 184 OPTION 207 STEP |
| 135 READ 160 WIDTH 185 RANDOMIZE 208 USR |
| 136 LET 161 ELSE 186 OPEN 209 FN |
| 137 GOTO 162 TRON 187 CLOSE 210 SPC(|
| 138 RUN 163 TROFF 188 LOAD 211 NOT |
| 139 IF 164 SWAP 189 MERGE 212 ERL |
| 140 RESTORE 165 ERASE 190 SAVE 213 ERR |
| 141 GOSUB 166 EDIT 191 COLOR 214 STRING$ |
| 142 RETURN 167 ERROR 192 CLS 215 USING |
| 143 REM 168 RESUME 193 MOTOR 216 INSTR |
| 144 STOP 169 DELETE 194 BSAVE 217 ' (rem) |
| 145 PRINT 170 AUTO 195 BLOAD 218 VARPTR |
| 146 CLEAR 171 RENUM 196 SOUND 219 CSRLIN |
| 147 LIST 172 DEFSTR 197 BEEP 220 POINT |
| 148 NEW 173 DEFINT 198 PSET 221 OFF |
| 149 ON 174 DEFSNG 199 PRESET 222 INKEY$ |
| 150 WAIT 175 DEFDBL 200 SCREEN --- |
| |
| (gaps: 154, 155, 159, 180-182, 203, 223-229, 245-255) |
| |
| 230 > 234 - 238 AND 242 IMP |
| 231 = 235 * 239 OR 243 MOD |
| 232 < 236 / 240 XOR 244 \ |
| 233 + 237 ^ 241 EQV |

 | Table 2 = Key word tokens preceded by 255 |
| 129 LEFT$ 139 EXP 149 ASC 159 FIX |
| 130 RIGHT$ 140 COS 150 CHR$ 160 PEN |
| 131 MID$ 141 TAN 151 PEEK 161 STICK |
| 132 SGN 142 ATN 152 SPACE$ 162 STRIG |
| 133 INT 143 FRE 153 OCT$ 163 EOF |
| 134 ABS 144 INP 154 HEX$ 164 LOC |
| 135 SQR 145 POS 155 LPOS 165 LOF |
| 136 RND 146 LEN 156 CINT |
| 137 SIN 147 STR$ 157 CSNG |
| 138 LOG 148 VAL 158 CDBL |

The Blue Book About GW-BASIC and QuickBASIC - 24 -

 | Table 3 = Key word tokens preceded by 254 |
| 129 FILES 139 COMMON 149 ERDEV 159 PALETTE |
| 130 FIELD 140 CHAIN 150 IOCTL 160 LCOPY |
| 131 SYSTEM 141 DATE$ 151 CHDIR 161 CALLS |
| 132 NAME 142 TIME$ 152 MKDIR 162 --- |
| 133 LSET 143 PAINT 153 RMDIR 163 --- |
| 134 RSET 144 COM 154 SHELL 164 --- |
| 135 KILL 145 CIRCLE 155 ENVIRON 165 PCOPY |
| 136 PUT 146 DRAW 156 VIEW 166 --- |
| 137 GET 147 PLAY 157 WINDOW 167 LOCK |
| 138 RESET 148 TIMER 158 PMAP 168 UNLOCK |

 | Table 4 = Key word tokens preceded by 253 |
| 129 CVI 132 MKI$ 135 --- 138 --- |
| 130 CVS 133 MKS$ 136 --- 139 EXTERR |
| 131 CVD 134 MKD$ 137 --- |

 | Key words not tokenized (kept as ASCII) |
| ACCESS - - - as in OPEN ... FOR RANDOM ACCESS |
| AS - - - - - as in OPEN ... AS --- and --- FIELD ... AS |
| ALL - - - - as in CHAIN ... ,ALL |
| APPEND - - - as in OPEN ... FOR APPEND |
| BASE - - - - as in OPTION BASE 0 --- or --- OPTION BASE 1 |
| OUTPUT - - - as in OPEN ... FOR OUTPUT |
| RANDOM - - - as in OPEN ... FOR RANDOM |
| SHARED - - - as in OPEN ... SHARED |
| SEG - - - - as in DEF SEG |

The Blue Book About GW-BASIC and QuickBASIC - 25 -

Chapter 3 = VARIABLES

Some texts would aptly lead off here talking about "heaps".
(When I was in school, my car was a heap.) My preference is
more accurate: Variables, their contents and the names by
which you know them are organized internally as tables. The
word table connotes logical structure....

Two tables may exist. One for simple variables, another for
arrays. These tables are maintained in memory immediately
following your program. If your program has both simple
variables and arrays, the first table holds simple variables,
the second table is for the arrays.

Both tables are maintained and searched independently. Their
structures are similar, however, and additions to either table
are done on much the same basis.

As your program executes, any statement that assigns a value
to a variable causes one of the tables to be searched. It is
always done sequentially, from the top of the table downward.
In the event a search fails--in the event this is the first
time a variable has been assigned a value--its name is added
to the bottom of the table.

Because the simple variables table is first, each addition to
this table means that the entire second table must be shifted
downward to make room for the name being added to table #1.
Ergo: This is why most manuals mention that you should do a
VARPTR immediately before any attempt to directly address
array-bytes in memory--in case the arrays have been moved
because of a recently added simple variable.

What is seldom made clear, however, is just when it is a name
is added to either table. Some manuals are so erroneous as to
say "on any first reference" to a variable name. And I have
read none that fully explain about deleting names from the
tables, nor how searching for variables is actually done.

This narrative is needed to fill the literature void. Run time
performance is why. Most of us have heard that BASIC programs
run too slow. Often times they do because many programmers
have little concern for writing efficient code, or they are
simply unaware of how the interpreter works.

The last part of this chapter covers what is actually in the

The Blue Book About GW-BASIC and QuickBASIC - 26 -

variables tables. Most manuals give only a modicum of this
detail. What is here can improve your productivity when, if
you need to know specifics, you need not have to find out the
hard way.

Applying what follows can make a dramatic difference in how
fast some programs run. In any event, coining names, and when
in a program to first declare them, ought to be decided
deliberately: Based on a full awareness of cause and
effect.

When names are added: It is done only by memory allocating
statements. Meaning on a LET, either explicitly stated or
implied as in A = 3. Or, in the case of arrays, on a DIM,
explicitly stated, or not. They are added only once, and
remain in place in the table--relative distance from the
top--during the continuous execution of a given program.
(Remember, arrays are not static. More on that later.)

Oddly enough, an LSET or RSET works as an explicit declaration,
even when the consequence is a null variable. Like, if you do
LSET X$ = "hello", and this is the first time X$ has been
named, the name is added to the table. Now do a PRINT X$. It
will read as if you had done X$ = "". From this we can deduce
no distinction is made for fielded variables vs. "regular"
string variables during the mechanics of searching for names,
and when adding them to the tables. (There is a distinction
about where the data itself is stored. See Chapter 4 for that
greasy grit.)

The theme of explicit vs. implicit memory allocation must
be carried one step further. When a user-defined function
statement is executed, such as DEF FNA(G) = B*C+G, the name of
the function (FNA) and its parameter (G) must already be in
a table, or they are added at that time. Although no data is
actually acted upon, yet, space must be allocated now for the
address that will point to this function-expression, and for
its parameters. But notice that its arguments, B and C, are
not looked for at this point. The search for them is not done
until (unless) this function is actually made use of in some
statement or expression later on in the program. This is only
one instance of a variable "being referenced", but it is not
added to the variables tables.

When names are not added: Some "references" to variable names

The Blue Book About GW-BASIC and QuickBASIC - 27 -

require no table searching, hence they have no influence on the
ordering of table entries. Default typing is such an instance.
The statement DEFINT C-L assigns no data to storage, thus, no
table searching is done. It matters not a whit, where in the
program this statement is encountered.

Dummy variables are another case in point. In the function
POS(B), for example, the "B" is not logically needed, i.e.,
what is or is not in that variable, or whether or not it even
exists is unimportant. So PRINT POS(B) causes no search, and
so, has no influence on names-tables.

The naming of variables in a COMMON statement is another case.
Merely naming them causes no table search, so it has no side
effects at that point. Table searching and the addition of
COMMON names to the tables works the same as for "uncommon"
names: When they are used in a way that demands reference to
some area in working storage. Chapter 11 covers the use of
COMMON and CHAIN in depth. Here, note that in a chained-to
program, COMMON names are passed along as is, ordered the same
as they were stacked by the program(s) that ran previously.
New additions to the tables caused by the program now running
are added to the bottom of the tables that were inherited.

Searches can be provoked sometimes without causing any names
to be added to the tables. And this is almost a worst-case
coding instance; the performance overhead for doing the search
must be suffered with no global benefits to be derived. For
example: IF M$ = Z$ THEN.... In the event Z$ is null, i.e.,
it has never been assigned any data, the entire names-table
must be searched to learn that the name does not exist (and
therefore, Z$ = ""). But this will not cause Z$ to be added to
the table. This same consequence is true when doing WHILE/WEND
and ON GOTO types of conditional tests, by the way, and is also
true for tests involving numeric variables that are zero simply
because they have never been assigned a value since RUN.

To this point then, take note that the tables are built in
sequential order: The first-named variable will be first in
the table, the second-named one will be next, and so on. Table
searches are always done from the top, looking for the one just
named. If it is found the search is ended. If it is not found
--the end of the table is reached--that name is added, but only
if the usage expression dictates that space be allocated to
hold literals, constants, or address pointers to be used (maybe)
later.

The Blue Book About GW-BASIC and QuickBASIC - 28 -

Infer now, also, why it is possible to use the same name for
both a simple variable and an array. Two tables. Using just
"A" causes a different table to be accessed than an A followed
by a left-parenthesis.

Not so easily inferred is the fact that every instance of a
variable name, in an expression, instigates a full top-down
search. This, despite the high frequency of repetitious naming
in BASIC. Like, A = A*A+3. Every encounter of "A" causes a
search, even though the last previous search was for the same
name. So, A = X+A+7 is just as efficient as--or is just as
inefficient as--A = A+7+X. Both cases require three name
searches. By the way, see why in-line literals are faster than
variables. As the interpreter steps through an expression like
the last one, it does not have to search for the "7". It just
ran into it.

On the other hand, no repeat-search is needed for the control
variable in a FOR/NEXT loop, unless that variable is renamed
after the NEXT. When FOR I = 1 TO 10 is executed, the name "I"
must be searched for only once. Pointers are then pushed onto
the interpreter's stack to control the loop. Some champions
of pretty code insist on renaming the control variable after
every NEXT. Like NEXT I or NEXT B, or what have you. Agreed,
it is nice to read. But, it slows down your program.

Every time NEXT is encountered a table search must be done to
ascertain the pre-existence of that name in the table. And to
confirm that it is the same name used in the last FOR, by the
way. Read that phrase, "the control variable" closely: It
means the variable used with FOR or NEXT. Expressions that use
that same variable inside a loop are treated no different than
variables used anywhere else in a program.

 Ergo: Omitting the name after NEXT optimizes performance.
 Using a single NEXT as the terminal point for nested loops
 requires the naming of all FOR-variables, in proper order,
 after NEXT. (Which is slower than NEXT:NEXT, for example.)

The parsing of variable names: As the interpreter bumps along
a line in your program an ASCII upper case letter (A-Z) denotes
the start of a name. The name-string continues until a byte is
encountered that is not a letter or a digit or a period. If
the next (one) character is one of the data-typing appendages
(%#$!) it will be used in the table search, but the appendage

The Blue Book About GW-BASIC and QuickBASIC - 29 -

itself is not stored, as such, in the tables. And finally, if
the next character is "(", it too will be used (but not stored)
to determine which table to search.

Table selection: Logically, the two tables are distinct. If
the name in your program-text has a left-parenthesis as its
last character, the array table is searched. Any character
denoting the end of a name other than "(" causes a search of
the simple variables table.

How table searching is done: Ostensibly, by comparing names.
In fact, it is a little quicker than that. The first test is
for a matching data-type name. All variables that are not of
the same type as the one being searched for are stepped over
immediately. The next test is done on a name's first two
characters. If they are not matched, searching continues. When
both the data type and the first two characters are alike, a
length comparison is made. Searching resumes immediately when
unequal lengths are found. Otherwise, a comparison is done on
a byte-by-byte basis until a difference is found, or until the
end of the name is reached.

Searches for names of only one or two characters are quickest.
Next quickest are longer names that have the same first two
characters, but are of unequal length. The unwary that adopts
naming conventions such as

 TOTAL.A1 ... TOTAL.A2 ... TOTAL.A3

may be surprised at the better performance obtained with

 A1.TOTAL ... A2.TOTAL ... A3.TOTAL

with no real loss of mnemonic quality. Granted, the first
example is (maybe) more aesthetic. Which is needed more,
pretty code or efficiency should be thought about, rather
than build-in less than optimum performance on a whim.

How memory space for the two tables is managed: Because the
fundamental structure of the two tables is similar, the above
comments about when and how tables are searched, and when and
how names are added apply to both simple variables and arrays.
Table-space management is considerably different, however.

The first table, the one with the names of simple variables

The Blue Book About GW-BASIC and QuickBASIC - 30 -

in it, grows longer as a program runs, but it never gets
shorter. (Exception: CLEAR erases everything, of course;
this is one of the least useful, and certainly one of the
most ill-defined key words in the language.)

The second table grows longer, also, but an ERASE will cause
all of the bytes in all of the arrays that follow it to be
moved up, to overlay the area just "erased".

Consider: A handy and sometimes quick method of clearing
totals is to ERASE and again DIM the same array. Notice the
potential for reordering the relative position of array names.
If a DIM is done in the initialization phase of a program, for
several arrays, their position in the table is consistent with
the order in which they are first named. An ERASE done on one,
followed by another DIM of the same array pushes it to the
bottom of the array storage area: It is now at the bottom of
the list for future searches.

Significance (an example): To make a sort loop run faster it
is better if the array's name is at the top of the table.
Because repetitive references to this name must be done, each
name-search in each iteration of the loop will take less time
than would be required if the name were at the bottom of the
array-variables table. If you clear an array--using an ERASE
and DIM sequence--to ready it for sorting another batch of
data, know that the second sort may take longer than the first
one did.

It is reasonable to assume that the interpreter can do a block
move of the array storage area on an ERASE much faster than a
FOR/NEXT loop can clear array elements. In many applications,
total system throughput may actually be better in the second
case. The seemingly longer time needed to do discrete variable
assignments to clear array elements can sometimes be more than
offset by maintaining the array's name at the top of the table.
The factors to consider are: How many unique array names are
in the table, how many times a given array has to be cleared
for reuse, and how much searching for array names is involved
in each iteration of a looping process.

 Note: ERASE and DIM done on string arrays portends a serious
 performance risk beyond the simple issues described above.
 (Chapter 4 is a full discourse on how the interpreter manages
 string space.)

The Blue Book About GW-BASIC and QuickBASIC - 31 -

To what extent the points made thus far should influence the
design of a given program is a function of the end purpose of
that program, and what its overall design requirements are.
Strong arguments can be made for "pretty code", for programs
that must be modified periodically, and especially for those
that may have to be worked on by more than one programmer.

All such arguments are invariably subjective, however. What
follows is an attempt to reduce performance considerations to
an objective level. Recognize that what follows must still be
viewed as approximate, or "rules of thumb", because of the
infinite variety that can occur in the world of programming.

Another preamble is needed before getting to the meat of the
matter. Speed is relative. If your machine runs at 8 MHz
and mine at 16, then mine can be assumed to be twice as fast
as yours. For the purpose needed here. Different kinds of
micros, and memory chips, and machine configurations, and so
on, all do impact the truth of claims about one being such and
such faster or slower, etc. Still, on a given machine, if one
coding technique takes 20 seconds and another technique takes
10, we can jump to the conclusion that the faster technique
will still be about twice as fast as the alternative on some
other machine. (And assuming, of course, use of the same
versions of the interpreter and other "systems software".)

Given these assumptions, the following discussion makes use of
Time Units (TU) for comparison purposes to preclude my being
misread as having said such and such takes so many fractions
of a second. My research did involve taking clock times, but
neither of us should have to do mental gymnastics because one
machine is supposedly 53.7% faster than another. Ad nauseam.

If we accept a base line for the time required to search for
a 2-character variable name, if it is at the top of the table,
as 1 Time Unit, then for one located at position 100 in the
table, the search takes 2.2 Time Units. The additional 1.2 TU
seems so small, especially if we digress for a moment and think
of it as 1.2 milliseconds. In practice, all clock ticks are
important. For highly repetitive processes they can be very
significant, no matter how fast the clock is ticking.

Here is a line of code from a sort algorithm:

 IF AX(IC)>AX(IC+1) THEN SWAP AX(IC),AX(IC+1):EX = 1

The Blue Book About GW-BASIC and QuickBASIC - 32 -

Count the number of table-searches required if the SWAP must
be made. Four for AX(, 4 for IC, and 1 for EX. So, 9 table
searches are required, for this one line of code, every time
it is fully executed, in each iteration of the loop.

In a bubble sort of 1000 elements, 100% out of order, one
pass through the table would take 9000 TU just for searching
for the variables. And this is true only if IC and EX are
the first two simple variables, and AX(is the first array
name. Thus, it is no wonder sort routines run so slowly.

If, on the other hand, IC happens to be way down in the list,
say at position 100, this same sort would require an additional
4800 TU for each pass through the loop. And if EX is also way
down in the search list, say at position 99, another 1200 TU
would be required: An additional overhead burden of 6000 TU.

Fifteen thousand vs. nine thousand. Holding to my theme that
speed is relative, this looks like you could chop six minutes
off of a fifteen-minute sort. Nice. In fact, this one would
run nearly twice as fast because the first pass runs 999 times,
the second runs 998, the third runs 997, and so on. (In a
bubble sort, the depth of the loop is shortened on each full
pass by at least one. The name-search overhead is a constant,
for each line executed in the loop. As the loop gets shorter,
the burden is greater proportionally in terms of the amount of
work being accomplished.)

We would all like to cut sort times in half. But, don't start
recoding old programs yet. The example used here is heavily
loaded for dramatic affect. How many times does a sort have
to be done on data that is 100% out of order to begin with?
How likely is it your loop's data variables are so far down in
the names-table? One hundred simple variables is a lot in any
of my programs.

One opportunity can be gleaned at this point: If some of the
variables used in a long-running loop are named for the first
time late in the program, performance would have to be better
if they were named earlier. Even if that declaration seems
redundant, out of place, or has no obviously logical purpose.

My average program has maybe 40 variable names, rather than the
fictitious 100 above. So, the potential for improving run time
performance by cleverly stacking the names-tables is much less.
Still, the possibility of shaving even 10 or 15 minutes off of
a one-hour run is well worth some serious thinking about where

The Blue Book About GW-BASIC and QuickBASIC - 33 -

in a program to initially declare frequently used variables.

What about long variable names? They are easier to read, no
doubt. If we deliberately contrive a program having 100 unique
variable names, all of equal length, like:

 TOTAL.A0 TOTAL.B1 TOTAL.C2 ... TOTAL.V3

Then 1.16 TU are required to find the first name. And 6.3 TU
are required to find name number 100 in the list. There really
is a difference, as we knew, intuitively. In this (ridiculous)
case the last named variable takes nearly three times longer
than would be the case if all the names had only 2 characters.

Agreed, this contrivance is farfetched. But it does support
my contention that A0.TOTAL, B1.TOTAL.... is more optimum
than those above. And 1.16 TU vs. 1 TU is the proportional
penalty for a name with eight characters vs. a name with only
two. Read this carefully, however. The penalty applies to the
time required to search for a given variable. Which may or may
not have any real significance on program performance overall.

How to get optimum performance insofar as the naming of data
variables is concerned can be summarized at this point. Use
short names. Make them unique within the first two characters.
Name those used most often, first. Keep the total number of
names used to the minimum. Make balancing trade-offs between
the use of simple variables vs. arrays. Avoid conditional
expressions that use names that have never been added to the
tables. For those who like to CHAIN, be cautious of passing
names along; those passed on will be at the top of the tables
in the program that inherits them. Focus optimizing efforts on
names used in long running loops and those used in interacting
with the outside world. (An operator will enjoy the fastest
keyboard response you can provide, for example.)

One more caution is needed. Notwithstanding my enthusiasm for
providing objective guidelines, TU as used here must still be
seen as a relative yardstick. The interpreter's need to move
groups of bytes from memory into the CPU can skew precise
timing comparisons of different machines (viz, 8-bit buses vs.
16-bits). Also, a minute difference between successive tests
on a given machine can occur because no ORG is done to ensure
that the tables align on even-word boundaries.

The Blue Book About GW-BASIC and QuickBASIC - 34 -

And here's a plug for Chapter 15: One of the handy tools
included there is called VLIST. It provides a quick list of
what names are actually in the tables, in the order in which
they are stored, at any selected point in the execution of a
running program.

What is in the variable-names tables: The names themselves, of
course. Immediately following each name, space is allocated to
contain its data. For numeric data, this is the space used to
hold actual values. For string data, this space contains the
address of where each string is physically located. (Again,
Chapter 4 documents where that is.)

A name entry in a table is at least four bytes. Bytes 2 and 3
are the first two characters of your name, in upper case ASCII.
If a name has only a single letter, byte 3 is zero. If a name
is for a user defined function, byte 2 is equal to the ASCII
chart value of that name's first letter, plus 128 (decimal).

The fourth byte of a name is a VLI (Variable Length Indicator).
This is a count of the number of characters in that name, less
two. That is, it is the number of bytes that follow the VLI.
For one or two character names, the VLI is zero. Each of the
bytes that follow the VLI--the remainder of the name, if any
--are equal to their ASCII character equivalents, plus 128.
(Note that adding 128 in decimal is the same thing as turning
on the high order bit in a byte in machine languages.)

The single byte that precedes each name entry is a number. For
numeric variables the number is 2, 4, or 8, which is the number
of bytes that are needed to store an integer, or a single or
double precision value, respectively. The number that precedes
string names is 3, the number of bytes needed to hold a 1-byte
VLI of the string itself, and the 2-byte address of where the
string is actually located.

How the data-type indicator is determined: If a name in a line
of code includes a type appendage, like Z$, the dollar sign is
translated to 3, for example. If a name has no appendage, its
"default type" comes from a string of 26 codes being maintained
in the interpreter's own working storage. The first letter of
a name is used as an offset--as in ASC(name)-64--to get the
current default for all names that start with that same first
letter.

The inference in the paragraph above needs to be stated. Note

The Blue Book About GW-BASIC and QuickBASIC - 35 -

that data-type appendages are translated. And dropped. They
are not stored as a name-character. So, XY$ is really the
same length in the tables as XY. In both cases the type-code
will precede the name (assuming an earlier DEFSTR X). Knowing
this, by the way, performance debates should avoid arguing
about whether or not to use self-typing variable names. There
is a performance advantage to names that have appendages. It
is so slight--something like .02 TU--it ought to be ignored.
(My programs use DEF-type, and no name-appendages to save
wearing out my little pinky on the typewriter shift key. My
performance matters, too, not just the machine's.)

Now we can read between the lines in the language manuals.
Read: "...BASIC's default data type is for single precision
numeric variables..." means that, when the interpreter is
first loaded into memory, all 26 of the codes in the list of
defaults are initially set to 4. And: When we do DEFINT C-L
the codes in list positions 3 through 12 are changed to a 2,
for example.

Further: "A type declaration appendage takes precedence over
a default type..." means, really, if an appendage is included,
the defaults-list is not looked at. 'Lo and behold, with a
DEFDBL X currently in force, X and X$ can be seen as referring
to different variables. Conversely, after DEFSTR X, X$ and X
mean the same thing.

 Note: Although it is not abundantly clear in the manuals,
 nothing "happens" to the data stored in variables whose type
 gets redefined. If A was originally numeric, and contained
 a number, DEFSTR A can be done so that a string can be stored
 by that name. Now, DEFDBL A will again point to the number,
 and A$ will point to the string. Care must be taken in all
 cases involving numerics. If A was originally for an integer
 that number can only be referenced by A%, or by doing a
 subsequent DEFINT A, for example.

Another stray bullet is needed here about data typing:

 Compilers and interpreters work differently. Whether or not
 variables should be "self-typing", and how and when DEF-type
 statements should be used are matters that require serious
 thought for programs that may be run in either environment.
 The conventions used in my shop address this fully; Chapters
 10 and 12 both have comments that fully explore this issue.

The Blue Book About GW-BASIC and QuickBASIC - 36 -

Inside the tables: They are alike. A 1-byte data-type code,
the first two bytes of the name, a VLI-byte, and the rest of
the name, if it has more than two characters. For simple
variables the rest is simple. The data itself comes next,
i.e., in the next 2, 3, 4, or 8 bytes. Arrays have several
more bytes of overhead that follow the name, ahead of the
area allocated to contain the data.

The next two bytes after an array's name contain a total-bytes
count needed for the data area. (This value, plus 2, added to
this counter's own address is the address of the data-type
byte that begins the name entry of the next array.) The very
next byte after this VLI tells how many dimensions the array
has: DIM GX(7,4) has 2 dimensions, one for 7, and one for 4.

The dimensions-indicator byte is followed by 2-byte counters,
each counter telling how many elements are in each dimension.
In the above example, the first counter would be 5, and the
next one would be 8. PS: The counters are in reverse order,
as compared to how they are stated in the DIM. Notice also,
if you did not specify an OPTION BASE 1, the zero-element is
included in these counters. Either way, with or without a
global OPTION BASE statement, the dimensions indicator is a
literal count.

Now we can deduce the "computing" the interpreter does when it
searches for variables. And appreciate why it does take some
time, sometimes.

Beginning at the beginning, to locate the next simple variable,
add the first one's data-type (2, 3, 4, or 8). Add 2 more to
get the VLI, and add it. The result, plus 1 (the width of the
VLI) points to the data-type indicator of the next variable.

Finding the next array variable starts out the same way: The
data-type, plus 2, plus the name's VLI. Now, adding the value
in the next two bytes--the array's VLI--plus 2, points to the
data-type indicator of the next array variable.

Whee. The manuals are now elucidated. An array declaration
could theoretically have 255 dimensions, the capacity of the
1-byte dimensions-indicator. Some manuals actually say this.
Others are more accurate and point out that it is impossible
to construct a line in a program that would specify that many
dimensions. (By the way, a zero-dimensions array cannot be

The Blue Book About GW-BASIC and QuickBASIC - 37 -

specified either. Nor would it serve any logical purpose.)

Each dimension could, in theory, indicate the maximum capacity
of the 2-byte counters. Some manuals specify a maximum. Some
don't. It probably does not matter anyway. Real programs are
bound to run out of memory long before the counters run out of
bits. With only 60k or so of usable program memory, a one-line
program would run out of memory trying to declare an integer
array larger than 30,000 elements. Or thereabouts.

With 30,000 as the problematical maximum for integer arrays,
it is one-fourth that for double precision numerics, or, about
7,500 elements of 8 bytes each (vs. 2-byte integers). Single
precision numeric arrays, with 4-byte elements, will run out
of memory twice as fast as integers; at about 15,000. Strings
require three bytes of overhead per element, so if only one
data character was stored per element, their limit is also
about 15,000. If no data are actually loaded into a string
array, as many as 20,000 elements might be definable. Once
more, these are maximums. They are naturally less depending
on the space used to contain your program itself, space needed
for file buffers, and so on.

Getting back on the main road after that side-track, the
mapping of data elements in arrays needs to be documented.
Those heavily into math may do intellectual tricks using terms
like vectors and matrices. Others--including yours truly--may
draw little crude charts to figure out complicated FOR/NEXT
indexes, subscripts, offsets, or simply: Pointers into arrays.
However we do it, it is for the purpose of devising the logic
for conventional access to individual data elements. For the
unconventional, for those instances where it is prudent to use
VARPTR and PEEK and POKE tricks, it is necessary to know how
the elements are actually stacked up in array storage areas.

The overall design of some programs also demands an awareness
of how memory is allocated for arrays, an awareness that is
hard to glean in a casual reading of most BASIC manuals. An
ERR = 7, "out of memory", can be embarrassing to most veteran
programmers; the flushed face of an amateur merely indicates
incomplete mastery of his burgeoning skills.

Each named array is a subtable. The subtable begins right
after the name's header-string of bytes. The individual
elements are placed contiguously--one right after another--
with nothing physically separating them. This is possible

The Blue Book About GW-BASIC and QuickBASIC - 38 -

because all elements of a given array are of exactly the same
length. Yes, even for string data. Not to beat a dead horse,
but remember that in a string-array, each element is exactly 3
bytes, the VLI-byte followed by a 2-byte address of where each
(variable length) string is itself actually located in memory.

For the simplest example, like DIM AX(5), the cost in the table
is a multiple of the bytes needed for whatever data type A is,
times the number of elements. If A-names are integers, and
no OPTION BASE 1 is in force, the table for this array would
be exactly 12 bytes. Two bytes for each element, position 0
through position 5.

Continuing with this example, an expression referring to AX(0)
accesses the value stored in the first pair of bytes. AX(1) is
a reference to the next pair of bytes. AX(2) refers to the
next two, and so on.

Another momentary aside: When you paraphrase a manual to say
that you get a free DIM out of an expression like AX(3) = 7,
with no explicit DIM for AX having been done beforehand, space
is allocated for a full 10 or 11 elements--for each dimension-
depending on a stated OPTION BASE, or, the default BASE 0 that
is established when the interpreter is initially loaded.

Multidimensioned arrays are mapped nearly as simplistic as
single-wide tables. Each successive dimension has its own
subtable of contiguous elements, and the subtables are
located one after another in the same order as the subscripts
are named in an expression. The size of each subtable can be
computed by multiplying all dimensions, then by multiplying
that result by the number of bytes needed for each element.

Using an example to clarify this, assume OPTION BASE 1 and
DIM X$(2,4,6). The first subtable is 2*4*6, for 48 bytes,
times an elementary length requirement of 3 bytes per, for a
total of 144 bytes. The second subtable is also 144 bytes.
And so is the third. For a total allocation of 3*144, or 432
bytes for the entire array.

Compare this with OPTION BASE 1 and DIM X$(2),Y$(4),Z$(6). The
X$ table-allocation is 3*2 = 6 bytes. Table Y$ is 3*4 = 12 and
Z$ is 3*6 = 18. Which is 36 bytes total. Which is quite a bit
less than the 432 bytes in the preceding example. Most of the
time, for small arrays, memory consumption is a weak topic of

The Blue Book About GW-BASIC and QuickBASIC - 39 -

debate. Large masses of data, on the other hand, tend to
dictate using linear, single-dimensioned, individually named
tables rather than multidimensional arrays. Caveat and finito.

A few parting remarks are needed to round out this subject in
full. The start up section of a program should declare all names
that are used anywhere in the program's fabric. Name all simple
variables first, then arrays. (Remember that all arrays must be
moved downward whenever a new simple variable is added; large
arrays mean large blocks of memory must be relocated.)

Develop habits that will not contradict QuickBASIC. To wit:
DIM all arrays. Even the little ones. GW lets you "default"
small arrays with eleven or fewer elements. QuickBASIC insists
on the use of DIM in all cases.

User defined functions is another semantical ambiguity between
these two languages. In GW you can define a function that names
an array before the array is declared (dimensioned). Not so in
the (dumber) compiler. So, name simple variables, then user
defined functions that use only simple variables, then arrays,
then user defined functions that have to reference arrays. (And
tolerate the burden that a user defined function declared after
arrays have been named will cause the array blocks to be shifted
downward in memory.)

Finishing this chapter, after laboring through my laborious
narrative, hopefully you will be rewarded by writing faster
running programs, and when forced to, by being able to put
five pounds of sand in the proverbial four pound sack. In
either event, my reward is in sharing what I have learned over
a long period of time. And some of it took me a long time to
learn. Whether that was because I am dense or the manuals are
obtuse can certainly be argued. My contention remains:

 To be able to write efficient programs requires a thorough
 understanding of how the interpreter works.

The Blue Book About GW-BASIC and QuickBASIC - 40 -

Chapter 4 = STRINGS

It is certainly possible to write acceptable programs with no
concerns whatsoever about how the interpreter works. Much of
this book is devoted to the theme that you can achieve superior
performance, however, by using techniques that are the most
efficient, based on a total awareness of how the interpreter
does work.

Sometimes the net difference between choices made by a novice
vs. an old hand is hard to measure. Sometimes the difference
is even as much as a few minutes, but no one cares. Two or
three minutes longer than need be, for a program that is used
only once a month, with a typical overall run time of only ten
minutes is not apt to get any programmer fired. On the other
hand, the essence of this chapter is critical for professional
survival.

The theme here is not only on how well a program works. Some
may run well enough, initially, to be acceptable to the one
paying for it. Some may run for weeks, or even months, before
a programming faux pas becomes evident.

The risk: A program is written that is one of several making
up a total application set. It is discovered to be intolerable
some time after the application is installed and its owners have
become dependent upon it. A fix now is going to be expensive.
For someone.

This type of risk is always potential. Of course. When the
fault is your own, the cost for repairing it becomes yours
also, usually. Anyone that has written more than a few sizable
programs has learned to live with the aggravation caused by an
occasional bug. A bug inside a program, that is. Design bugs,
on the other hand--those that permeate the overall scheme of
how a program was mapped-out in the first place--can be much
more than aggravating. They can mean misery. Seldom is it fun
to have to completely rewrite any program because its design
was based on invalid assumptions.

How strings are managed by the interpreter is one area of
knowledge sorely needed to preclude making serious design
mistakes--knowledge that in many cases can be gotten only at
U.H.K. Tuition rates at the University of Hard Knocks can be
very expensive.

The Blue Book About GW-BASIC and QuickBASIC - 41 -

Suffer my continuing criticism that many manuals are obscure.
In one case cited below, so erroneous even, that its advice
could cause you to make design decisions that you will later
regret. The purpose of this chapter is to cut learning costs.

For some this may be only a refresher course. Others may find
even more of value. The cost of a few minutes reading time is
bound to be a cheaper lesson, for anyone, than having to learn
from costly mistakes.

As you read what follows maintain a mental image of a simple
memory map. An interpreted BASIC program is a continuous
string of bytes, a block of text if you will, that is much the
same as it is stored in a file on disk. A file created by SAVE
without the "A" option. What the bytes of that text actually
look like is unimportant at the moment. (Chapter 2 documents
all of that.)

When you LOAD a program--or create one while in editing mode--
the text of the program lines is stored in memory as a "block
of bytes". For this narrative, see this as block number two,
of five. These blocks are soft subdivisions of a single chunk
of memory that a GW-BASIC program runs in. The overall size
of this chunk cannot be larger than 64kb.

 Block-1 is a working-storage area for the interpreter's
 own use. Its size can be varied within certain limits by
 use of the "slash options" when the interpreter is first
 loaded. From then on, the size of this block remains fixed.

 Block-2 is your program. Its size is initially similar to
 its "file size" as it is stored in a disk file. This size
 remains constant while a program is running. While you are
 editing, this block increases or decreases in length as you
 add or delete program lines, or change anything that alters
 the physical length of a given line.

 Block-3 is where your variables are stored after you do a
 RUN. This block is conceptually a table of names; each name
 is immediately followed by what is "in" that variable at a
 given moment. Chapter 3 describes this block, fully. For
 the subject at hand, remember that what is actually in string
 variables, in this block, are the addresses of where strings
 are, not the strings themselves.

 Block-4 is generally called "string space". This is where

The Blue Book About GW-BASIC and QuickBASIC - 42 -

 all "strings" are actually kept. This is the block that this
 chapter focuses on. It is that heap of bytes that is bounded
 on the north by the bottom of block-3, and on the south by
 the beginning of block-5.

 Block-5 is last. Its size is fixed while running. Most
 manuals allude to this as the interpreter's "stack". Its
 size can be altered by use of CLEAR. The bottom of this
 block can be considered as the end-of-memory for programs
 that use conventional techniques. This soft boundary is
 normally set for the maximum of 64k bytes, but it can be set
 to be less, by use of a slash-M option when the interpreter
 is first loaded.

Bearing this simplified map in mind, remember that blocks-1, 2,
and 5 are static in size while a program is running. Block-3
grows downward. The space in block-4 is used from the bottom
up. When the bottom of three runs into the top of four, or
vice versa, hum the jingle in the beer commercial:

 "When you're out of FRE(""), you're out of space...."

When this happens, here is what the interpreter does: It runs
through your stack of variables (in block-3) looking for those
that are for strings whose addresses point into block-4. As
each one is encountered, its string is moved, if need be, so as
to wind up with all currently in-use strings packed end-to-end
at the bottom of block-4. When it gets done, if some space
was freed up as a consequence of overlaying strings no longer
being used, the program keeps right on running. Or walking.
The execution pace can slow to a crawl even. Read on.

If only a little bit of garbage gets discarded you may not even
be aware that it happened. Sometimes it takes long enough for
you to hum the tune suggested above. In some cases it can take
long enough for you to go to the store and replenish your beer
supply.

No matter how long the garbage collection takes, in the event
you really are out of memory, and you get the dreaded ERR = 7,
a trip to town might be a good idea anyway: To look for a new
job.

If my sense of levity tries your patience, remember the manual
that said--in the staid manner of all such literature--the time

The Blue Book About GW-BASIC and QuickBASIC - 43 -

required for repacking strings can take "...a minute to a
minute and a half". Or something like that. If my quote is
imprecise, my remembrance of what it said is accurate.

Where that range of 60 to 90 seconds came from is a complete
mystery to me. On an older, slower micro it can be as little
as a mere few milliseconds. In contemporary machines (8088),
running at 10 MHz, it can take half an hour. Or more.

Melodramatic? Not at all. Wrote a POS (Point Of Sale) program
for a shoe store. Held the SKU (Stock Keeping Unit) codes in a
single-dimensioned string array. Four thousand codes, mostly
6-bytes each. About 36kb used for this. (Prices and inventory
balances were kept on disk.) Total program size was about 56kb.
No sweat; ran beautifully on Wednesday. And Thursday. Big sale
started Friday. Heavy traffic all day. Boom. About midday,
with nine people standing in line, the "cash register" goes out
to lunch. And it stayed gone for over twenty minutes.

Fact or fiction? Try this:

 DIM X$(3999) 'space allocation
 FOR I = 3999 TO 0 STEP-1 'decreasing loop
 X$(I) = STR$(I) 'phony look-up code
 NEXT 'fill whole table
 PRINT TIMER 'mark start time
 PRINT FRE("") 'provoke a clean up
 PRINT TIMER 'how long to do?

Continuing with empirical research, we can deduce that if the
codes were stored in ascending sequence, instead of backwards,
the clean up would only take 13 or 14 minutes. That would be
better. Maybe only half of your customers will get mad at
you. Far better still, don't make anyone mad.

There are several tricks and techniques that can be used to
stave off lengthy time-outs, and a couple of others that will
enable you to warn an operator of an impending pregnant pause.
Those suggestions are at the tail end of this chapter. That
is where they deserve to be. They ought to be used only when
doctoring programs that were malformed in the first place.

Only one suggestion needs to be heeded to ensure that no well
written program will ever go into an uninterruptible time-out:
Once a program gets rolling, make sure that the size of blocks
three and four remain static. Static enough, at least, that it

The Blue Book About GW-BASIC and QuickBASIC - 44 -

can be predicted that their boundaries will never collide.

The coding techniques that can be used to freeze dynamic
storage areas are not exotic, nor even contrary to what some
would call "standard programming practices". To be able to
predict, and therefore to preclude unnecessary "garbage" in
string space is not difficult either. But it does require
an awareness of what causes fragmentation in the first place.

Some of this knowledge can be intuitively surmised from reading
programming manuals. Some is so subtle that it can be gleaned
only by extensive probing. And some of us are more adept at
reading between the lines than are others. What follows makes
no arbitrary discrimination. It is the sum of it all that is
necessary to keep in mind while programming. In all programs.

If a statement in a program says PRINT "Hello", there is no
impact on any memory utilization. The interpretive routine
that executes PRINT gets its output directly from the quoted
literal that is imbedded in the fabric of your program.

In the case: X$ = "Hello", may cause a small impact. If this
is the first time X$ has been encountered, that name must be
added to the tables in working storage. In my simple map
above, the size of block-3 must be lengthened to hold the new
name (4 bytes), plus the "overhead" for the interpreter to know
how long this string is, and that it is located up inside your
program. (Some manuals say the overhead for strings is four
bytes. I count three; the length-byte, plus the address pair.)
The bottom boundary of block-3 just moved downward 7 bytes.

Contrast this with: X$ = STR$(2*400). If the variable's name
is already in working storage, the size of block-3 remains the
same, but the interpreter needs to construct a 4-byte ASCII
string: A space, an 8, and two zeros. When doing so it uses
the next four bytes just above the current roof of block-4, the
area of memory that thus far, hopefully, is unused for anything
else. After the requested string is generated, the variable's
name-entry is updated to a length of 4, and the address-bytes
are overlaid with the address of where this string is actually
at down in block-4. And the interpreter's work registers are
updated to show that the top of block-4 has just moved upward
four bytes.

Do it again. X$ = STR$(2*400). Our manuals are sorely remiss

The Blue Book About GW-BASIC and QuickBASIC - 45 -

on this: Another 4 bytes of memory are used to hold this newly
manufactured string, even though the target's space requirement
is exactly the same as it was. One space, an 8, and 2 zeros.
And, its name-entry in the simple variables table is now updated
to point to a "new" address. The result is a hole. The four
bytes used for the previous string are now, unfortunately, an
unaddressed free-space fragment. They are garbage.

Do it differently: LSET X$ = STR$(2*400). Take advantage of
an important opportunity implied in the manual's description of
how LSET and RSET work. They reuse string storage, if it has
been previously allocated.

FIELD, LSET, and RSET were added to BASIC in the early days of
random access files. (Read: Disks.) There is still a trend
in the literature to imply that LSET and RSET only work with
"fielded variables". In fact, they work quite well with any
string variable.

When you FIELD #1,7 AS X$, the variable's name is added to
the tables in block-3 on exactly the same basis as if you did
X$ = "Georgia". Or, X$ = SPACE$(7). The only difference is,
where the string itself is.

Using these same examples: The fielded X$ is up in block-1, in
the interpreter's working storage, in an area set aside as a
buffer for your file #1. As described earlier, "Georgia" is
up in block-2, a literal in your program. And the 7-spaces
were manufactured on the fly, down in block-4 in the so called
"string space".

Now we read between the lines: If you do a LET to a variable
that was previously fielded--instead of an LSET or RSET--
"...the logical association of that data to a file is lost."
Because the string that is now pointed to is down in block-4,
not, as it was, up into the file's read/write buffer.

Before stumbling on we should know of a quirk that is not even
implied between the covers of the manuals. Bilingual programs
that have to work in either interpreted or compiled mode have
to contend with this:

 When a data file is opened--which must be done before its
 buffer can be defined with fielded-variables--its buffer's
 space-allocation (and its contents) remains unchanged after

The Blue Book About GW-BASIC and QuickBASIC - 46 -

 the file is closed. That same work area can be reused for
 storing any string with LSET, RSET, or MID$. If the same
 file is opened again--the same file number, not necessarily
 the same file specification--previous field statements are
 still in affect, if no redefinition of those variables was
 done in the interim.

 Here's the catch: The above paragraph is totally true when
 using the interpreter. It is absolutely false when using
 the compiler. Don't bother to look. It is equally true
 that, none of this is mentioned anywhere in either of the
 BASIC manuals. (PS: OPEN initializes all fielded variables
 as hex-zero bytes, not as spaces--another gotcha not in
 the manuals.)

When variables are named in a field statement, if they had been
used elsewhere previously, the strings they addressed before
are abandoned: More junk for the garbage collector.

Mark this point before racing on: The growth of block-4 can be
contained by pre-allocating working storage for strings, and
then, by making maximum reuse of the space thus set aside. Do
it like this: During the start-up of a program, declare fixed-
length work strings. For example:

 W1$ = CHR$(0) 'for single byte operations
 W2$ = MKI$(0) 'for pairs of bytes
 W4$ = MKS$(0) 'for 4-byte words
 W8$ = MKD$(0) 'for 8-bytes at a time
 WB$ = SPACE$(80) 'for a whole (print) buffer

Now, as coding proceeds, use LSET, RSET, and MID$ to make
continuous reuse of these worker-variables. (Not only will
this constrain the growth of block-4, overall performance of
your program will usually be better).

String "functions" were used above to force the interpreter to
pre-allocate string workspace. Compare this technique with
using W4$ = "...." instead. Remember, when a quoted literal is
first declared, the variable will point up into your program.
Later, if you do an LSET to a variable that points to program
text, a string of bytes equivalent to the length of that quoted
string must be allocated at that time, down in string space,
before the LSET can be accomplished.

The Blue Book About GW-BASIC and QuickBASIC - 47 -

In any event, ignore the ill-formed advice cluttering up the
manuals. Yes, X$ = "Hello"+"" will force a string to be placed
immediately down in "free" memory. (Because of concatenation;
regardless of the fact that, really, nothing is being tacked
onto the word Hello.) This seemingly innocuous little trick may
also trigger a garbage clean up. Even if there is not enough
room left for only the null, which needs no space at all.

Some of the above can be learned by reading manuals closely.
By reading what they say literally, and by inferring what they
almost say. But, more must be known before you can program so
as to not get any nasty surprises. Nasty? Because you cannot
predict.... If you cannot predict, you cannot promise. If you
cannot promise, do you expect to get paid? Compare:

 100 PRINT CHR$(34);"hello";CHR$(34)

 200 PRINT CHR$(34)+"goodbye"+CHR$(34)

Knowing the ASCII character for code 34, even elementary
students can tell you that the two lines above will print a
greeting and a salutation bracketed by quotation marks. Some
seniors might notice that line 200 uses concatenation.

The very astute might even spot what older veterans have
learned the hard way (maybe). Line 200 just created 9-bytes
of garbage. The interpreter does all concatenation down in
string-space memory. And, it just moved the top boundary of
block-4, 9-bytes closer to colliding with the bottom of the
variables storage area. The program is now 9 bytes closer to
the moment when a time-out must be done if a collision does
occur. Unnoticed concatenation can cause more traffic jams
than unseen ice on a freeway.

 PS: Line 200 runs slower than 100; "goodbye" had to be moved
 (copied) from one place to another before it could be acted
 upon. In line 100, "hello" can be printed right from where
 it is, in program text-space. This difference is small, for
 small things, but can be very significant for lengthy output.

The overall concept of variable length strings is beautiful.
To be able to concatenate--to be able to hook two strings
together, end-to-end--is even better. And it is so easy to
do. So much so that it is enough, almost, to make one want
to think that BASIC is a higher level, "high level language",

The Blue Book About GW-BASIC and QuickBASIC - 48 -

than COBOL. Little that goes on in a COBOL program is hidden
from the programmer, however. He does not have to worry about
running out of memory unexpectedly. In COBOL, all storage
areas must be explicitly allocated ahead of time by the
programmer himself. In BASIC we can let the interpreter take
over the burden of managing space for us. If we do rely on
that, as we are coding, we must maintain a mental tally of the
litter we are leaving behind.

The following is another example of string concatenation:

 X$ = "Hello"
 Y$ = "and"
 Z$ = "goodbye"
 M$ = X$+" "+Y$+" "+Z$+"."

What is the memory fragmentation cost in this case? 42 bytes.
To determine this, do a PRINT FRE(0) just before this segment
of code, and again just after. The difference in the two
numbers printed will be 60 bytes. The resultant length of M$
is 18. And 60 minus 18 is 42. To duplicate this technique of
measuring, know that all of the variables used (X$, Y$, Z$, and
M$) must have been previously encountered in the program so that
their table-overhead has already been accounted for.

If you prefer bookkeeping over programming, so be it. My
preference is to not have to bother with keeping track of how
many bytes will wind up in the bit bucket. Besides being a
chore, a small accounting error could exact a large penalty.

One obvious alternative is to avoid doing concatenation. That
is sage advice. Like all such advice, it must be tempered with
realism. For a small. quick-out program that can afford to burn
the bytes because there are so many, and the run will finish
before the memory runs out, no problem. For full scale, real
applications that have to run for hours and hours, if we borrow
that concept from COBOL--of pre-allocating storage--then we need
not be bookkeepers. Or be paranoid.

Using the earlier example of WB$ as a general purpose worker,
here is one alternative to doing concatenation.

Given:

 X$ = "Hello" : Y$ = "and" : Z$ = "goodbye" : WB$ = SPACE$(80)

The Blue Book About GW-BASIC and QuickBASIC - 49 -

then

 LSET WB$ = X$: MID$(WB$,7) = Y$: MID$(WB$,11) = Z$

then

 PRINT LEFT$(WB$,17);

will produce a "concatenated" message with absolutely no cost.
No cost in the sense of causing any memory fragmentation. The
trade off, obviously, is that the cost is now one of effort on
your part. Calculating, exactly, the arguments to use in the
MID$ and LEFT$ statements is tedious. Pay now, or pay later.

One more incidental must be considered before assuming that
there will be enough "free space". The above described what to
do: Make maximum reuse of already allocated string variables,
and avoid doing concatenation. The do-not-do list of rules
needs to be longer because, incidentally, the interpreter's
appetite for free bytes is voracious.

Here is an example of a do-not-do. It is not a very useful
algorithm. It is merely a method of conveying an important
insight: Choosing a technique for how to do something must
be done with care.

 200 IF RIGHT$(TIME$,2)<>"00" THEN 200
 210 PRINT LEFT$(TIME$,5)

When the interpreter bumps into the word TIME$ in line 200 it
constructs an 8-byte ASCII string, like "07:14:52". It does
it in string-space, immediately above the current top-of-block
boundary, of block-4. It then subtracts 8 from that block's
beginning address. And it does it again, and again, and again,
until the seconds roll past 59 and become zero. Then it does
it one more time, to get the hours and minutes for line 210.

The above is not only bad technique, it may not work at all.
Line 210 may never be gotten to. On a machine running at
8 MHz, over 24,000 bytes would be burned every 10 seconds.

If the looping burns more bytes than available, at that point
in the loop, a time-out will occur, to free-up "free space".
And to do so, remember, it has to run through your variables

The Blue Book About GW-BASIC and QuickBASIC - 50 -

and pack your strings, regardless of the care you have taken
to preclude fragmentation. And while it is doing this chore,
necessary or not, the execution of your timing loop has been
suspended. And while the interpreter is off cleaning up its
own mess, time rolls on. What are the odds that "00" was
passed by in the interim? You could be trapped in this loop
for a long time. Forever, even. Or at least until a lucky
coincidence in time lets the interpreter conclude your test
before it runs out of memory again.

So: Wholesale concatenation is a no-no. And so is using
substring functions--or implicit concatenation--whenever
it will cause the interpreter to construct a full length ASCII
string of text, from which to extract the requested substring.

Like: PRINT STR$(789) has no impact on string space. This
construction is done up in block-1, in the interpreter's own
work area. Oddly enough, PRINT MID$(STR$(789),2) -- to keep
from getting an unwanted leading-space--will cause all four
ASCII-text characters to be strung together, down in your
"free" string-space first, before the PRINT interpretive is
directed to print the three you want from there. And, at a
cost of pushing the top of block-4 closer to an unexpected
time out, all because of four, very temporary bytes.

So, don't do it that way. Do LSET W4$ = STR$(789) then do a
PRINT MID$(W4$,2). Which is also an alternative technique,
albeit a not very elegant one, that would work successfully
for the timing-loop above. Viz: LSET WB$ = TIME$, then the
test, IF MID$(WB$,7,2)<>"00".... In this way you decide where
the test-string will be constructed in memory. What is often
called "free space" may be free to the interpreter, but it can
be costly to you.

All of which brings us to the decision making point: Before a
program is written. It's called designing. What must be done?
Where can you put it? How big will it be? Roll these three
answers around, and around, and determine if there will be
enough memory. Not just to hold it all, but will it be enough
until the job is done? The answer to this last question should
determine the discipline to be used when coding. To use memory
conserving techniques, or, "... damn the torpedoes, full speed
ahead." Which may equate to not much speed at all if you SWAG
wrong about the memory needed. (SWAG is a technical term often
used in software engineering: Scientific Wild-Assed Guess.)

The Blue Book About GW-BASIC and QuickBASIC - 51 -

A large string-array is slow to clean up. Each element is not
unlike having an equal number of individual string-variables,
when we use FRE(""), Which can be used to deliberately provoke
the repacking of string-space. Which is a way to be able to
warn the operator that your program is about to pause for the
cause. Which is better than letting the interpreter decide
when it needs to be done, with no warning to anyone.

Continuing with my promise at the beginning of this chapter:
You could do something like A = FRE("") at arbitrarily fixed
intervals. Maybe at the start of a menu-selected task, for
example. As a better alternative, in some programs, force a
garbage clean up, upon completion of each major task.

An alternative method of knowing when to signal for the dump
truck, to get rid of your garbage, is to monitor when it's apt
to show up unbidden. Pick an arbitrary waste figure, like
4,000 bytes, and periodically test to see if FRE(0) has fallen
below this threshold. When it does, jump to your subroutine
that warns somebody it's time for the machine to take a break.

A restart is another method that can be used. Sometimes. It
is not always easy to do, but if your union boss is sensitive
about unscheduled breaks....

A simple RUN resets everything, and no garbage clean up is
necessary (or done). If a start-up involves opening files, or
includes soliciting one-time input from an operator, this idea
may not be too attractive. In a few cases CLEAR may be used
to avoid going all the way back to the procedural beginning.
Doing either of these, or anything similar, may also entail
having a mechanism for remembering what was in some variables,
to be able to keep on running as if nothing untoward had
happened.

The "anything similar" hinted at above could involve moving
large string arrays outside of the program altogether. This
might be good salve for a sore spot, where it is the time that
clean-up takes, rather than the frequency with which it must
be done. One must consider where the strings for such an array
come from in the first place, of course. And whether or not
they could be kept in a file instead of an array. VDISK can
sometimes be used as a viable alternative, for example, with
only a nominal impact on overall performance.

The Blue Book About GW-BASIC and QuickBASIC - 52 -

A middle of the road answer for problems involving large
string-arrays must be mentioned, for the benefit of those who
just might not have already discovered it. Short strings can
be stored in numeric-arrays. Although they too take up space,
they do not slow down the garbage collector. For example:

 DIM A(2000) 'DEFDBL A is in affect
 X$ = "hello " 'any 8-bytes
 A(999) = CVD(X$) 'ERR = 5 if LEN(X$) < 8
 LSET X$ = MKD$(A(999)) 'looks just like it did before

Some of the solutions suggested above straddle that fine
line between "good programming practices" and the unorthodox.
(Chapter 10 gives my arguments, pro and con, for making
professional, ethical compromises.) A well mapped-out, well
coded program, or set of programs, should not have to resort
to makeshifts like having to announce the need to time-out.

If my recommendations seem to you to be, to develop coding
habits slightly different than what might be considered as
"normal BASIC", appreciate from whence they come. My ambition
is to pass along experience garnered from a lot of programs.
Some were better than others. The best, invariably, were those
where I maintained a total cognizance of how the interpreter
works.

Thus my continuing contention: The same will hold true for
you. Your best programs will be those that are coded in full
consideration of how the interpreter works. Bearing in mind,
also, the vagaries of the compilers, programs efficiently coded
for the interpreter will also behave efficiently if they are
later put into production as a compiled package.

The Blue Book About GW-BASIC and QuickBASIC - 53 -

Chapter 5 = NUMBERS

My most frequently used BASIC manual devotes three whole pages
to numeric constants, and how they are stored in memory, using
highfalutin terms like floating point, exponential notation,
and mantissa.

Contrast this with the forty-odd pages devoted to "graphics",
and ten or so more to playing music. Some call me cynical.
They should have to write data processing programs on today's
computers using software more akin to playing games than doing
accounting.

All of that pompous jargon that is used in those few pages
about numbers is meaningful, no doubt, for those figuring the
number of atoms in a billiard ball. Only a word or two can be
found, however, for those of us doing the mundane with money.
For money, or for ourselves.

A small part of this chapter will deal with small numbers; the
greater part, with the greater problem of dollars and cents.
Which also embraces great big totals, like for Yen. Knowing
where most of the chips in my machine came from, it would seem
those folks, at least, would critique our manuals to be sure
that we can compute their export payments precisely.

Textbooks about computers invariably begin by talking about
binary numbers. We can skip that tedium here. Only a short
review of the elementary is needed to set the stage for the
real bit busters.

 The bits in a byte--all eight of them--are still just that,
 no matter how that byte is offered up for the benefit of
 human consumption.

 Agreed: A pattern of 0100 0001 is the traditional way to
 show the contents of a byte in binary. In this case, if
 shown as a hexadecimal value, it would be 41. If shown as
 a decimal number it would be 65, or if treated as an ASCII
 printable character, it is the capital letter A.

 In all events, it is still an 8-bit byte. How it is to be
 exhibited is up to the person wishing to communicate with
 another human. The bits in the bytes themselves, inside the
 machine, are still just that. Some are on and some are off.

The Blue Book About GW-BASIC and QuickBASIC - 54 -

 Whatever that pattern is, it remains the same, no matter who
 is eyeballing it.

 Agreed: PRINT "A" and PRINT CHR$(65) and PRINT CHR$(&H41)
 will all print the letter A. If X$ = "A", and Y$ = CHR$(65),
 and Z$ = (&H41), then ASC(A$), and ASC(Y$), and ASC(Z$) will
 all, also, equal 65, or 41H, and so on.

At least we no longer have to fool with octal, which we used a
lot on the old PDP-8 machines. Hexadecimal is still in vogue,
however. Perhaps because it is a shorter form of notation than
octal. And monitors can display alpha characters as well as
numbers. Octal had the advantage back when all we had were
digital displays; the digits 0-7 could be used to display very
large values, using much less space than would be needed to
show the same thing in decimal notation.

Now that we have big screen displays, and seldom need to do
memory dumps to paper, it is unfortunate that even hexadecimal
persists. Granted, some people may be impressed by those who
can speak "hexadecimal".

The folks most responsible for perpetuating the hexadecimal
hex are probably those that contribute to the development of
assemblers; some of them really do seem to like it. (We mortals
grew up learning to count on our fingers. Base 10, not 16.)

Pick up any BASIC manual that has DEF SEG in it. The example
shown is always: DEF SEG = &HB800, the first address in screen
memory (CGA). Why is hexadecimal used and not decimal? They
could show us: DEF SEG = -18432 (or DEF SEG = 47104! because
a negative address does look a bit perverse).

There is a very small advantage to using in-line hexadecimal
literals--&HB800 is imbedded in a "tokenized program" as two
bytes, whereas 47104 uses four--but this same advantage can
be had by using the negative complement of 65536 (i.e., -18432).

Unfortunately, there is no "intrinsic function" in BASIC with
which to obtain the full range of positive numbers that may be
stored in a 16-bit word.

Here are two "user defined functions" that can be useful for
overcoming the clumsiness of negative addresses.

The Blue Book About GW-BASIC and QuickBASIC - 55 -

 Given: DEFSNG B:DEFSTR M 'define data types
 M = MKI$(-18432) 'start of CGA memory

 Then: DEF FNB = ASC(MID$(M,2))*256+ASC(M)

 Or: DEF FNB = CVI(M)-65536*(CVI(M)<0)

 Now: PRINT FNB produces 47104, rather than -18432

Performance is the same for either of these; either will work
with the interpreter, but only the second one can be compiled.
(The compiler will permit the first one, but gives an overflow
error at run time. It is extremely hard to anticipate what the
compiler will do with your arithmetic expressions. It abhors
multiplying and dividing more than most fourth-graders.)

Here is another one: DEF FNB = LOC(1)-65536*(LOC(1)<0). This
is useful to GET 1,FNB-1 because you can GET and PUT way beyond
32767, but the LOC function returns a negative file pointer if
you do. (Chapter 8 has loads of hard-won info about files.)

So, 2-bytes, 16-bits, can represent 65,536 unique bit patterns.
If one bit is used as a sign-bit, we cut the capacity in half,
but now both negative and positive numbers can be stored in the
same space; the range of numbers possible is then from a low of
-32768 to a high of +32767. This is what BASIC calls integers.

Agreed: &HB800 and -18432 are two different ways to "print"
the same thing. In modern micros--8080, Z80, 8086, 8088, 80286,
80386, 80486--numbers are stored (in memory) in 2-byte words,
with the two bytes in reverse order if we are reading from left
to right.

If we assign -18432 to an integer variable, then find those two
bytes in memory using DEBUG--which displays memory contents in
hexadecimal--they will be seen as 00B8. Which is the same as
if we had used &HB800 as a literal. See the similarity, and
that the two bytes are "reversed".

Do not let the hyperbole in the manuals confuse things. It
does not matter to the micro how the bits in a word get set.
See this:

 DEFINT C-L:DEFSTR M-Z 'define data types
 X = MKI$(-18432) 'memory = 00B8

The Blue Book About GW-BASIC and QuickBASIC - 56 -

 I = ASC(X) 'I = 0
 C = ASC(MID$(X,2)) 'C = 184
 PRINT HEX$(I) 'prints 0
 PRINT HEX$(C) 'prints B8
 PRINT C*256+I 'prints 47104
 PRINT C*256+I-65536 'prints -18432
 PRINT HEX$(C*256+I-65536) 'prints B800

Suppose you want to print a character on the screen then move
the cursor so that it is superimposed over that character.

 Here is one way to do it, slowly...

 LOCATE 10,30:PRINT "?":LOCATE 10,30

 Here is a faster way...

 LOCATE 10,30:PRINT "?";CHR$(29); '29 is a backspace code

 Here is an even faster way ...

 LOCATE 10,30:PRINT MKI$(7487); 'CVI("?"+CHR$(29))=7487

See how the use of MKI$ in the above can output two bytes to
the tube (conceptually, a serial device). It can be done to a
sequential file too. So why all the bull about CVI, CVS, CVD,
MKI$, MKS$, and MKD$ being for the benefit of random access
files? Who do they think they are kidding: "BASIC stores data
in random files in a compacted form." What is in files is up
to the programmer that generates them. (Chapter 8's theme.)

"Convert Variable Integer" was the original mnemonic intent of
CVI. MKI was a clumsy acronym for "Make Integer". In neither
case does anything get "converted" or "made". This is true for
CVS and MKS$, and CVD and MKD$, also. All of these functions
are merely useful for telling BASIC how you want to store your
own data. It matters not at all whether that data is in a
fielded-variable (in a file buffer), or down in string space.

CINT, CSNG, and CDBL--Convert Integer, etc.--do, however,
convert numeric data. Just as the manuals say. They have been
in the language since the days when we saved our programs and
data on audiocassettes. They are as useless today as they were
back then.

The Blue Book About GW-BASIC and QuickBASIC - 57 -

Integers are stored in two bytes. Single precision use four,
and double precision use eight. To "convert" numbers from one
data type to another, simply reassign the value to a variable
of the type wanted. (A = B or B = I, etc.) Upward conversions
always work, of course, but if the value in a source variable
exceeds the capacity of the target, an overflow error occurs.

An old manual said that CINT was useful for rounding decimal
fractions to whole numbers. See this:

 100 DEFINT C : DEFSNG B : DEFDBL A
 110 B = 1245.55
 120 C = B
 130 PRINT C
 140 C = CINT(B)
 150 PRINT C
 160 B = -1245.55
 170 PRINT C
 180 C = CINT(B)
 190 PRINT C
 200 A = 44444.55555555555#
 210 B = A
 220 PRINT B
 230 B = CSNG(A)
 240 PRINT B
 250 A = B
 260 PRINT A
 270 A = CDBL(B)
 280 PRINT A
 RUN
 1246
 1246
 -1246
 -1246
 44444.56
 44444.56
 44444.5546875
 44444.5546875
 Ok

Ok what? See that these "conversion functions" effectively do
nothing for us. And that rounding is done without regard to the
sign of the number.

Once upon a time a memory byte cost a buck. (Now they are more
like ten for a penny.) Cost caused the invention of 2-byte,

The Blue Book About GW-BASIC and QuickBASIC - 58 -

4-byte, and 8-byte numbers. Presumably they persist in the big
machines because of performance costs. A savings of only a few
seconds of processing time each day in large DP shops can amount
to as much as someone's salary for that day.

Neither of these two cost factors have much significance in
today's "personal computers", but space can sometimes still be
a critical issue. A large integer array requires only one
fourth as much memory as double precision. Agreed. Speed is
less often a design issue, however, in choosing which type of
variable to use.

I use 24, 30, and 36 as yardsticks for estimating performance,
for doing integer, single, or double precision arithmetic. The
implied ratio is: Single precision takes 25% longer and double
precision takes 50% longer than integers. It does not matter
what the real times are--milliseconds, hours, days--these
ratios remain about the same. The factors are approximate.

Most of the differences in time for doing arithmetic with 2,
4, or 8-byte words is caused by the time it takes to move words
from memory into the MPU and back. That time does vary among
micros depending on their data bus bandwidth (e.g., an 8-bit
bus vs. 16-bits.) The time required for different types of
calculations also varies, but that truth is responsible for a
much smaller skew in the accuracy of my rule-of-thumb ratios
for deliberating performance issues.

Far more critical to performance, usually, is choosing the best
technique for "processing" large numbers. Those decisions do
have to consider first, which data type should be used.

Assuming the need to "compute" dollars and cents--which is a
valid assumption in at least 99% of my programs--begin by
reviewing the magnitude (size) capacity of the different types
of numeric variables:

 For integers it is $327.68- or $327.67, if insertion of the
 decimal point is delayed until print time, and presuming
 the dollars were converted to pennies in the first place.

 Single precision variables can handle up to one hundred
 thousand dollars, precisely. Unformatted, as pennies, the
 range is -9999999 to +9999999 (seven nines: $99,999.99).
 Which is enough capacity, so far, for the balance on most
 car loans, but not enough for doing amortization schedules

The Blue Book About GW-BASIC and QuickBASIC - 59 -

 for many home mortgages.

 Double precision variables can almost handle the national
 debt: Up to Ten trillion dollars. (Americans and Frenchmen
 use trillion; British and Germans say billion.) Stored as
 pennies, the range is -999999999999999 to +999999999999999.

Those 15 nines might be printed as $9,999,999,999,999.99--
using a PRINT USING statement, dividing what is actually in
the variable by 100, at print time. And that is THE KEY to
how to store money in a micro, in BASIC. As pennies.

All totals should be accumulated as whole numbers. Only. No
fractions. In the case of regular dollars and cents, if the
input source includes two decimal positions, INT(A*100) will
produce a whole number (of cents). Which makes sense.

INT (integer) works with all three numeric data types. The INT
(or FIX) function should always be used when first assigning
floating point numbers to single or double precision variables
to preclude possible cumulative errors caused by stray bits.
(Review the consequence of line 250 in the above program.)

Here is another example of what I call "stray bits":

 DEFDBL A
 A = 1234.7
 PRINT A 'prints 1234.699951171875

 DEFDBL A : DEFSTR X
 X = "1234.7"
 A = VAL(X)
 PRINT A 'prints 1234.7

In the first case above, A is real close to being right. If
PRINT USING "####.##";A is done in either of these cases, the
output is the same (1234.70), and is correct, if we can ignore
what is not shown.

It is embarrassing, to say the least, to have an accountant
confront you with a Trial Balance listing that is in fact, out
of balance by even a penny or two. Especially when it occurs
after a program has been in use for several months.

The "cumulative error" in (hidden) floating point fractions
can be self-compensating for a long time, over a long list of

The Blue Book About GW-BASIC and QuickBASIC - 60 -

figures being added into a single total. This is especially
true where the list includes both positive and negative
numbers. The risk of floating point errors is eliminated
entirely if only whole numbers are used at all times.

It also simplifies the problem described in the manuals about
doing IF-conditional tests involving floating point numbers.
There are no minute discrepancies to worry about if no junk
bits ever get turned-on.

Now is the time for some literal truth about literals; what the
manuals (erroneously) refer to as "constants": A constant is a
value that does not change during program execution. It may
have gotten into memory in the first place from a variety of
sources. A literal is a constant at the time it is literally
stated in a program source line. If that statement assigns the
value to a variable, whether or not that value remains constant
is up to the person who wrote the program.

Imprecise English can be ignored; imprecise BASIC descriptions
cannot. Take careful note: Double precision literals that do
have to include fractions must also have that pesky pound-sign
appendage. Observe:

 10 DEFDBL A
 20 A = -1234.7 'no data-type appendage
 30 PRINT A*100
 40 A = -1234.7# 'double precision, for sure
 50 PRINT A*100
 RUN
 -123469.9951171875
 -123470

Oddly enough, millage rates can be correctly hard-coded without
having to remember to append a data-type symbol if they can fit
in, and are assigned to, single precision variables. (An error
of only a few mills will irk any tax assessor.)

There is another BOAB (bit-of-a-bitch) of difference between
integers and floating point variables. Negative zip. Watch
out for this one:

 1110 DEFDBL A
 1120 A = -A
 1130 X = MKD$(A)

The Blue Book About GW-BASIC and QuickBASIC - 61 -

 1140 PRINT USING "######.##";CVD(X)
 RUN
 -0.00
 Ok

Ok my foot! An Accounts Receivables statement that shows what
is owed is a negative nothing can cause some customers to have
second thoughts about doing business with vendors that employ
incompetent programmers.

If the above program included

 1150 FOR I = 1 TO 8
 1160 PRINT ASC(MID$(X,I));
 1170 NEXT

we would see 0 0 0 0 0 0 128 0 and can infer that BASIC does
not always turn off the minus-sign bit when successive math
processes result in a value of zero. George Boole would roll
over in his grave if he could see this.

My compiler manual tells me that the high order bit of the
third byte is the sign bit, and that, if the fourth byte of
single precision variables is zero, the whole thing is zero.

It also says these things are true for double precision (viz,
the seventh and eighth bytes). It does not warn me to PEEK
before a PRINT USING, however. None of my interpreter manuals
mention any of this, apparently preferring that we should learn
for ourselves the hard way rather than back pedal (what this
country boy sees as) a bug in the math package. A bug that is
nearly old enough to grow a mustache.

The example used to demonstrate this not-so-funny phenomenon
is a contrived one (arbitrarily assigning a minus-zero in line
1120). It does not matter. This same thing can happen when
"computing" with floating point variables. It is far better to
remember this simplistic example than to have a programming
faux pas be seen by folks that do not trust computers.

One obtuse solution to this problem is:

 IF ASC(MID$(X,8)) = 0 THEN LSET X = MKD$(0)

which cleans up all of the bytes in double precision data
fields in relative files. Which can be a real problem. Many

The Blue Book About GW-BASIC and QuickBASIC - 62 -

data files have a long life span. Some records may be updated
by a lot of programs, often, and remain in situ indefinitely.
(This same trick works, by the way, for single precision fields
by sampling byte-4, and using MKS$.)

Where care has been taken to ensure only whole numbers are ever
stored, there is a simpler trick that can be used to ensure no
dangling sign bits get left behind. It too is kinky looking:

 A = CVD(X) 'A is double precision
 LSET X = MKD$(A+0) 'X is an 8-byte string

The following ever-so-slight variation of the same trick will
not work (will not clear-up a minus-zero):

 A = CVD(X)+0
 LSET X = MKD$(A)

It is not a bad idea, therefore, to adopt a habit of always
updating floating-point fields with a plus zero, as in
MKS$(B+0) or MKD$(A+0). The zero does not "hurt" the value
that is being stored, and in this case, the plus sign will
not run afoul of any of Judge Boole's laws.

See what is meant by remarks about the difference between what
is taught in school, and what we have to resort to out here in
the jungle. Adding a literal zero to anything looks as odd as
that old pun about coding two STOP statements back-to-back in
programs that run so fast that they sometimes skid through the
first one.

As mentioned elsewhere, more than once, my preference today is
to store all user-visible amounts in data files as formatted
ASCII strings. Back when the capacity of a floppy was only
128kb, most of us would do almost anything to save a byte or
two. Which included using MKI$, MKS$, and MKD$ sometimes.

On today's machines, with floppies holding better than a Meg,
and all serious users having at least a 20mb hard disk, we
can afford to spend a few of those bytes as a fair trade-off
for achieving better performance.

One argument is: A simple PRINT of a fielded-variable, as in

 PRINT X

The Blue Book About GW-BASIC and QuickBASIC - 63 -

is all that is needed to output what the user wants to see.
Contrast this with the "old fashioned way"; something like...

 A = CVD(X) : PRINT USING "#######.##";A/100

which is certainly a lot slower at output time. The extra
storage cost, in this example, is two bytes--a 10-byte string
vs. an 8-byte "compressed" MKD$. Two bytes times 1,000
records = 2,000 bytes. Big deal. Even, assuming five fields in
each record were done this way, the cost is still only 10,000
bytes compared to 8-bytes per field the way we used to do it.

Another strong argument for burning a few of the user's bytes
is that it saves him money. In programming costs. PRINT USING
does a real good job of rounding, of both positive and negative
amounts. BASIC can do it better and faster than we can. No
matter what coding techniques are used involving ABS, INT, and
FIX, or two or three IF-statements, rounding can be a real pain
in the posterior for floating point values.

One caveat needs to be documented here lest you too waste hours
looking for microscopic bugs: GW-BASIC and QuickBASIC do not
always produce exactly the same answers when working with "long
fractions".

Suppose an operator typed 4654.110217381453, and you stored it
in a double precision variable called A. And later you printed
what was in A using PRINT USING. The output can vary depending
on the mask used, and whether the compiler or interpreter is
used.

Using GW-BASIC:

 PRINT USING "#####.##############";A prints 4654.11021738145300

Using QuickBASIC:

 PRINT USING "#####.##############";A prints 4654.11021738145303

That little "0" (or "3") on the far right in the above two cases
may or may not be significant to bankers and accountants. It may
be to some land surveyors, and it is bound to be meaningful to
those taking pot shots at the moon. Starwars programmers please
take note.

The Blue Book About GW-BASIC and QuickBASIC - 64 -

We have witnessed a lot of growth in DOS-based BASIC. A lot of
additions have been made to accommodate new mechanical gadgets.
It is unfortunate that they have not opted to add, also, what
would have been nice to have had all along: PRINT USING that
did not print, i.e., a function for generating formatted ASCII
strings, in memory, in a string variable.

 PS: The best BASIC that I have ever used, undoubtedly, (and
 I have used better than a dozen) does have formatted-string
 capability. And a lot of other goodies, and, its compiler
 and interpreter speak the same language. It was authored by
 a real pro, a fellow named Ted Williams. He understands what
 we poor application programmers have to do to eat. From my
 chair, his product is analogous to the classical witticism:
 "The best answer is not always the correct answer." In this
 case, because that BASIC is not DOS-based (his O/S is called
 THEOS) it is not a viable option. Chapter 1 states my case
 for GeeWhiz. DOS is in the majority. My sense of ethics
 keeps me from conning my clients away from the mainstream.

Now, back to this mainstream: PRINT USING can be used to
generate formatted strings, without printing. It is not as
efficient as a built-in function could be, but it does work,
and it is more efficient than can be done with a lot of MID$
and IF statements. The way to do it is into a dummy record,
in a dummy relative file (which some dummy started calling a
"random file", somewhere back down the line). The following
dummy program demonstrates how this dummy does it.

 1000 DEFSTR X:DEFDBL A 'define data types
 1010 OPEN "dummy" AS 1 LEN = 16 'relative file
 1020 FIELD 1,16 AS X 'work field
 1030 A = -359550# 'some money
 1040 GET 1,1 'reset record pointer
 1050 PRINT #1,USING "######.##";A/100; 'format in buffer

At this point X = " -3595.50 ". Now it is easy to LSET
as much of X as is wanted, into any string variable, be that a
fielded variable, in a real file, or in some work area. The
length of X can be set to whatever may be needed; it is a good
idea that it be more than enough to tolerate the rare crap we
all suffer from time to time, when a USING-mask does not define
enough print positions.

 Hint: This is also a simple method to use to keep the world
 from ever seeing "%-3595.50", and, to preclude screwed-up

The Blue Book About GW-BASIC and QuickBASIC - 65 -

 columnar alignment of fields that are actually printed. By
 doing this dummy print first, a simple IF can be used to see
 if what is not yet visible ought to be, or it ought to be
 managed more professionally than BASIC would do it. (How
 nice it would be if we could error-trap this stinker. A box
 of TD Forms W-2 can be expensive; a line-wrap caused by this
 type of "bug" could mean an entire rerun would have to be
 done. And guess who pays for the wasted forms.)

A few more notes are needed to round off this proposed trick of
the trade. The GET 1,1 is a must, every time this "function"
is used, to maintain the buffer-position-pointer in the same
place. So is that trailing semicolon. See why this is a
dummy file: No PUT is ever done. Even so, when you close up
shop, DUMMY will be seen with DIR, with no records in it. So,
just before END or SYSTEM, you may want to KILL "dummy".

An alternative to the dummy trick is to get PRINT USING strings
out of monitor memory. Do a PRINT USING to a known location on
the screen and then use PEEK or SCREEN to get ASCII characters
into a work-string. Like this:

 X = SPACE$(20) 'DEFSTR X already done
 L = CSRLIN
 C = POS(0)-1
 PRINT USING "#####.##### ";A

 FOR I = 1 TO 20
 MID$(X,I) = CHR$(SCREEN(L,C+I))
 NEXT

In the above simplistic example, an arbitrary 20-byte fetch
was done, and the trailing spaces in the USING-mask are for
covering the eventuality that what we want has "slipped" to
the right because BASIC generated a preceding percent-sign.

In the event you do not want the operator to see what is
going on, PRINT USING can be done to a "blank area" on the
screen with a preparatory statement like COLOR 7,7 (when the
foreground and background arguments are the same, what is
printed cannot be seen).

As a general rule, performance is about the same for either,
SCREEN or PEEK. Using PEEK as an alternative for picking
up ASCII characters from video-RAM has to contend with the
every-other-byte problem, of course. (Text mode characters

The Blue Book About GW-BASIC and QuickBASIC - 66 -

are two bytes: A video attribute byte, plus the character
code itself. See Chapter 6.) PEEK can still sometimes be the
better alternative: In the event there is not enough "blank
space" on the screen, and you have a color machine, and want
to PRINT USING to a currently invisible page. (Chapter 7,
ad nauseam.)

There is another trick that can be used to obtain the result
of having used PRINT USING. The "numerics portion" of the
binary-to-ASCII conversion that is done, is done up inside the
interpreter's working storage area before the PRINT takes
place. Given a default DEF SEG, PEEK can be used to fetch those
characters. Like this:

 1000 DEFSTR X
 1010 X = STRING$(25,0)
 1020 PRINT USING "hello ###.#####";123.456
 1030 B = 1545 ; interpreter working storage address -1
 1040 FOR I = 1 TO 24
 1050 MID$(X,I) = CHR$(PEEK(B+I))
 1060 NEXT
 1070 I = INSTR(X,CHR$(0))-1
 1080 PRINT LEFT$(X,I)
 RUN
 123.45600
 Ok

Several variations of this scheme are possible, of course. Here,
a 25-byte work string was used, and the looping arbitrarily picks
up all 24 of the bytes that the interpreter uses for constructing
PRINT USING strings. When it does it, if a mask has less than
the maximum of 24 digit positions, PEEK will return a zero-byte
following the last-used position. (Thus the 25 zeros set up in
line 1010 will ensure the INSTR trick in 1070 will always work.)

The key factor in this scheme is the address in line 1030. It
really should be 1546; B in this example is shown as one less so
that B can be added to I during the loop.

See the leading space at print time in this example. The first
byte of the string--PEEK(1546)--could be that pesky percent sign,
in the event that what is to be printed exceeds the mask.

Yes, this scheme is vulnerable (and profane). That address of
1546 is correct for GW-BASIC 3.23--other versions of GW-BASIC may
use a different address. Trial and error probing can be done to
confirm the correct address for a given software release. And,

The Blue Book About GW-BASIC and QuickBASIC - 67 -

needless to say, forget this scheme entirely for QuickBASIC
programs.

PRINT USING is useful also for "converting" exponential
notation (so called) to the format we non-scientific types
prefer. And it is a way to solve those problems when STR$
will not produce our preferred format.

VAL is the "opposite" of STR$, of course, and will convert
ASCII numbers back to binary numbers, regardless of their
format. Even VAL is not accurately described in the manuals,
however.

Numbers that have been stored as formatted strings have to
dispense with commas, leading dollar signs, and the like,
naturally, if you need to convert them back to numeric values.
It is also necessary to be careful about what follows a
number-string. It used to be that VAL would automatically
terminate scanning, from left to right, when any non-numeric
character was encountered. BASIC manuals quit promising that,
some time ago.

Now, VAL("12 34") returns 1234, for example. Stranger still,
if a string of digits is followed by CHR$(28), or CHR$(29), or
CHR$(31), then VAL returns zero, no matter what the leading
digits are. In GW-BASIC, that is. QuickBASIC still ignores
spaces imbedded anywhere in a string of digits, but does manage
to stop scanning a string when any non-numeric character other
than a space is encountered, and return a true numeric value.
It is best to always code so that the length-argument in
expressions like VAL(LEFT$(X$,L)) is precise; if L embraces too
many bytes, you may not be fond of the answer.

And we need some other answers. Answers to questions that the
manuals provoke, but never explore. Viz, the permitted ranges
for floating point numbers: "approximate ranges" are -1.7E+38
to -2.9E-39 for negative values and 2.9E-39 to 1.7E+38 for
positive values.

Translation: These are "limits" in the sense of what can be
assigned to a variable without causing an "Overflow error".
These ARE NOT the ranges of what can be stored and processed
correctly. (Remember, 7-digits or 15-digits are the pragmatic
limits, irrespective of a decimal, or its position).

The Blue Book About GW-BASIC and QuickBASIC - 68 -

Terms can be confusing too. Mantissa refers to the bit-string
that represents a number. Exponent is the (next) position in
that bit-string where the decimal should be.

Floating-point numbers are stored as bit-strings, in 4 or 8
bytes, as has already been said. If we look at the 8 bytes
containing MKD$(2.2) we would see (left to right in memory):

byte-1 byte-2 byte-3 byte-4 byte-5 byte-6 byte-7 byte-8
205 204 204 204 204 204 12 130
 in decimal

byte-1 byte-2 byte-3 byte-4 byte-5 byte-6 byte-7 byte-8
CD CC CC CC CC CC 0C 82
 in hexadecimal

byte-1 byte-2 byte-3 byte-4 byte-5 byte-6 byte-7 byte-8
1100110111001100110011001100110011001100110011000000110010000010
 in binary

The "mantissa bit string" (the magnitude) for MKD$(2.2) is:

10.001100110011001100110011001100110011001100110011001101

Reading from the left, the first bit is arbitrarily turned on.
This is the bit that the manuals call "implied". The next 7
bits are the 7 right-most bits from byte number 7, reading from
left to right. The remaining 48 bits come from bytes 6, 5, 4,
3, 2, and 1, reading the bits in each byte from left to right.

The high-order bit in byte-7 (the left-most bit) is the sign bit
for the number being represented. If this bit is 1, the number
is negative; if this bit is 0, the number is positive.

Byte-8 is the "exponent byte"--it points to where the decimal
would be in the mantissa bit string, if in fact it was printed
as shown above. In this case, byte-8 reads 130 in decimal, but
130 less 128 is 2 (128 accounts for the high-order bit in byte-8
being on). Effectively, the exponent cannot be larger than 56,
that is, the decimal cannot be beyond the length of the string
of bits that represents the mantissa. (The QB manual says the
mantissa is 58 bits. Best I can deduce is that it is 56 bits,
the "implied" 1 + 7 + 48.)

If the exponent byte is less than 128 (the high order bit of
byte-8 is off) the number is a fraction--contains no integer

The Blue Book About GW-BASIC and QuickBASIC - 69 -

portion--and the exponent number indicates how many zero-bits
need to be inserted in front of the mantissa string.

Now, looking at the mantissa string shown above for MKD$(2.2),
each bit position to the left of the decimal (the integer)
represents a positive power of two; each bit position to the
right of the decimal (the fraction) represents a negative
power of two. As in 1, 2, 4, 8, etc. If a bit is one (1) it
is on; if it is zero (0) it is off. Notice that the integer
mantissa bits are stored from right to left and the "leading
zeros" are dropped (the number is "normalized" according to
the manuals). The fraction mantissa bits begin immediately
after the "binary point", and are stored from left to right.

The following shorty demonstrates how to "read the bits". In
this case M contains a string of ASCII ones and zeros that
correspond to the mantissa string for MKD$(2.2).

1000 DEFDBL A:DEFSTR M:DEFINT C-L
1010 M="10001100110011001100110011001100110011001100110011001101"
1020 E = 2 'Exponent (note decimal position is "implied" by E)

To compute the integer-portion of the mantissa:

1030 G = 0 'G = powers
1040 FOR I = E TO 1 STEP-1 : C = ASC(MID$(M,I))-48 '0 or 1
1050 A = A + C * 2 ^ G : G = G + 1
1060 NEXT

To compute the fractional portion of the mantissa:

1070 G = -1
1080 FOR I = E+1 TO 56 : C = ASC(MID$(M,I))-48
1090 A = A + C * 2 ^ G : G = G-1
1100 NEXT
1110 PRINT A
RUN
 2.2
Ok

Although an exponent of -127 is mechanically possible, the
"limit" of 2.9E-39 cannot be seen, per se. The books say PRINT
USING can specify a "mask" of 24 digits; in fact that limit is
23, for fractions, because the decimal point counts as a "digit"
in a USING mask.

The Blue Book About GW-BASIC and QuickBASIC - 70 -

So: -2.9D-17 will PRINT as 2.775557561562891D-17 or, as
.00000000000000002775558 with a maximum allowable PRINT USING
mask of ".######################" (23 pound signs). The other
"limit" of -1.7D+38 will print as .4995850990994722, or it will
be the same string of digits followed by 7 zeros if a max-size
PRINT USING mask is used.

All of the above is true for single precision, which uses only
4 bytes for storage, but 8 for internal machinations (then the
number is "truncated").

Here is another way to observe the internal similarities of
single and double precision numbers:

 1000 DEFDBL A:DEFSNG B:DEFSTR M-Z 'define data types
 1010 M = MKD$(1234.7) 'LEN(M) = 8
 1020 X = MKS$(1234.7) 'LEN(X) = 4
 1030 PRINT (X = MID$(M,5,4)) '-1 if true, 0 if false
 1040 PRINT CVS(MID$(M,5)) 'same as X
 RUN
 -1
 1234.7
 Ok

See that the four right-most bytes of double precision numbers
(8 bytes) are formatted the same as for 4-byte single precision
numbers. Sometimes we can take advantage of this "fact". Like
this:

Assign a number to an 8-byte string, as in

 M = MKD$(1234.7)

then test to see if it will fit in only four bytes, with

 IF LEFT$(M,4) = MKS$(0) THEN....

which will allow us to "pack" numbers in fewer bytes in data
files. Sometimes. Of course, when reading such files some
mechanism is needed for determining which "fields" are 8-byte
numbers and which are four.

Meanwhile, back to the story of the "phantom bits". See why
IF A=0 may not work, even when we PRINT A and see it is zero.
When working with floating point variables it is imperative to

The Blue Book About GW-BASIC and QuickBASIC - 71 -

remember that many bits may be hidden from the casual observer.
And hidden from casual (or amateur) programmers. And from some
teachers, preachers and politicians, casual or otherwise.

There is also a "bit" of difference between those two BASIC
language products (GW-BASIC and QuickBASIC) that are supposed to
produce identical results. When fiddling with minute fractions
be aware that MKD$ and CVD may not always translate as exactly
the same number. See this:

 1000 DEFSTR M:DEFDBL A:DEFINT C-L 'define data types
 1010 A = 6638.071237449458# 'double precision number
 1020 M = MKD$(A) 'LEN(M) = 8
 1030 FOR I = 0 TO 15 'alter left-most byte
 1040 MID$(M,1) = CHR$(96+I) '96 = 60 in hex
 1050 PRINT HEX$(ASC(M)),CVD(M) '60, 61, etc.
 1060 NEXT 'until 6F in hex

RUN with GW-BASIC produces

 60 6638.071237449458
 61 6638.071237449458
 62 6638.071237449458
 63 6638.071237449458
 64 6638.071237449458
 65 6638.071237449459
 66 6638.071237449459
 67 6638.071237449459
 68 6638.071237449459
 69 6638.071237449459
 6A 6638.071237449459
 6B 6638.071237449459
 6C 6638.071237449459
 6D 6638.071237449459
 6E 6638.071237449459
 6F 6638.07123744946

but if compiled with QuickBASIC this program produces

 60 6638.071237449458
 61 6638.071237449458
 62 6638.071237449458
 63 6638.071237449458
 64 6638.071237449458
 65 6638.071237449458
 66 6638.071237449459
 67 6638.071237449459

The Blue Book About GW-BASIC and QuickBASIC - 72 -

 68 6638.071237449459
 69 6638.071237449459
 6A 6638.071237449459
 6B 6638.071237449459
 6C 6638.071237449459
 6D 6638.071237449459
 6E 6638.071237449459
 6F 6638.07123744946

which at a glance seems to be the same output. Look again.

Given that M is an 8-byte string, and that the left-most byte
contains the least significant bits of MKD$(A)--the trailing
decimal digits--then look what happens when that byte is equal
to 65 (hexadecimal). GW-BASIC "reads" this number to have a
final digit of 9. QuickBASIC says it ends in 8.

Now, suppose you saved some numbers in a file with GW-BASIC.
And you read those numbers back with a compiled program. Or
vice versa. What you see may be different than what you saw.

The moral of this lesson is the seesaw. Be alert when "mixing"
these two languages. It is nice to be able to do dynamic
debugging in interpretive mode of programs that are to be used
later in compiled form, but watch for gotchas like this. And
remember that 2 plus 2 is not always 4, exactly, in BASIC (or a
lot of other languages).

Reviewing what I have just written, I am compelled to request
your indulgence, but not inclined to rephrase anything. No
offense is intended toward those who teach. Their world has
real-life demands too. For sure.

The systems software products we are obliged to use could
always be better too. For sure. Their developers are often
forced to abide by economics-based decisions, no doubt, even
when their expert acumen would dictate otherwise. Granted.

What has been shown is how this old duffer has learned to
live with what exists. Critical cracks are meant to give
perspective; coding suggestions are meant to be useful advice.
Sporadic levity is meant to keep you from falling asleep.

None of this should be construed as recommendations to use
anything other than "good programming practices". In my world,
what is good, is, usually, what is profitable. If you too can

The Blue Book About GW-BASIC and QuickBASIC - 73 -

profit from any of this, neither of us has wasted our time.

The Blue Book About GW-BASIC and QuickBASIC - 74 -

Chapter 6 = DEVICES

When we have to write a program that can run in more than one
environment--on various makes or models of machines, varying
machine configurations, or updated software versions--then we
really begin to appreciate the challenges of interfacing with
the outside world. Challenges for us, and for all language
developers.

Most language developers try to remain aloof and avoid direct
contact with hardware devices, preferring to do all input and
output via "device drivers" in the operating system. Being one
rung further up the software social ladder, programmers like us
prefer not to consort with the peons at the ends of the cables,
either. But, we have no choice. We live in the real world.
Systems software writers seemingly live in urban cloisters.

Granted, our cultural positions are better today, in general,
than that of a few years ago. Nearly all "dumb devices" are
now "intelligent peripherals". But, they still enjoy being
unique. Sometimes their uniqueness goes beyond a class-level;
some individuals born only a few days apart will have traits
that resist legislation intended for the good of the majority.

Add to that observation that it often seems there is no single
legislature. In fact, one is tempted to think sometimes that
there is social conflict between computer manufacturers, the
language developers, and the operating systems writers. They
each tend to write their manuals autonomously, only now and
then alluding to the vagaries of the others.

Which brings us to the point of this chapter. We can presume
those folks were paid for what they did. Our reward depends
on making an application work. Not many clients will be very
sympathetic to an excuse that "the manuals" are vague, remiss,
or even wrong. The buck stops here.

Witness: Wrote a nice little application for the bookkeeping
department of a company that owned several convenience stores.
They called it an inventory program. It was so simplistic that
even that name seemed highfalutin. But it did work, and did
what they wanted it to do, for a long time.

Then one day, they hired a new operator. One that "knew a lot
about computers". She wanted to fancy things up a bit. She
held down <Alt> and punched the number for a pseudo-graphics

The Blue Book About GW-BASIC and QuickBASIC - 75 -

character. Know what happened when she let go? Crash-o. The
next output on the monitor was the operating system prompt.

There she sat with files left open, buffers loaded, data files
half updated, the FAT fractured, and no backup since last week.
My program was gone. The interpreter was gone. The operating
system was in limbo. The operator was mad. And my immediate
thoughts were about voodoo dolls and the natives that write
systems manuals.

The BIOS in that machine crapped-out on any <Alt>+number. The
keyboard was an older 83-key model. I finally deduced that the
BIOS would only tolerate the newer 101 models. Nothing in any
manual said so, yet, the machine was still configured just as
my client got it from a computer store. (Rather than spend a
lot of time developing a BIOS patch, I opted instead to simply
give them the 101 keyboard that I had used while developing
their program. My out-of-pocket cost to fix "my bug" was
sixty bucks. Lab time-to-find was over ten hours.)

Now, back to once upon a time, that time when the interpreter
itself was "the operating system". When you cranked up the
machine, it came up running BASIC. It was in charge. It could
predict what would happen when you used its commands. Today,
it no longer has autocratic authority.

Today the interpreter is just another program. It is now a
software peer of word processors, spread sheets, and games.
Any of these may run in the "domain" defined by the operating
system; all of them are supposed to live by the laws of that
kingdom. Most are law abiding. Most of the time.

When it comes to files and devices, when it is necessary for
the interpreter to make calls to operating system services, it
can promise you what the outcome will be, only to the extent
that it can assume it will regain run-time control. And you
can write your operator's instructions from a third world only
to the extent that when (if) your program regains control you
know, exactly, what is what, where what is, and what might
or might not have happened behind your back.

Remember that operative word IF when you read the following
suggestions. Students trying to get an A in Computer Sci 101
do not have to worry about Murphy's law. If you are getting
paid to write a program to do payrolls, much of the code you
write, most of the documentation, probably over half of the

The Blue Book About GW-BASIC and QuickBASIC - 76 -

testing, and a predominant influence on overall design has to
deal with precisely that. What IF.

If you want a punch-proof keyboard, good luck. We would like
to design "turn key" applications secure enough to promise an
operator that they can do themselves no harm, no matter what
keys they hit on the keyboard. So....

If you have a nicely laid out data entry mask on the screen,
and the operator is supposed to fill in the blanks:

 INPUT will not work, obviously. If the wrong key is hit
 the interpreter will clobber your nice layout and tell the
 operator to "Redo from start". Which makes no sense. The
 last thing you want them to do is turn off the machine and
 turn it back on. Meanwhile, the cursor is no longer sitting
 where you last put it.

 LINE INPUT will not work, either. If a cursor-arrow key is
 hit, all kinds of things must be done to clean up the mess on
 the screen. Not to mention the problems of, if they type too
 many characters, etc.

 INP can be used, but it is a bad idea. It is in the same
 league as PEEK and POKE; bit-fiddle in toy programs, but not
 in real applications that may have to survive changes in
 machine configurations, new models, or software updates.

 INPUT$ might be used, one character at a time, but not if
 you want to see what is in the second byte of two-byte key
 codes.

 INKEY$ is the remaining choice. Use it inside a WHILE/WEND
 loop, echo what you want, accept as many or as few keys as
 are wanted, and BEEP when you want to. Yes, this solution
 requires several lines of programming, at a minimum. Yes,
 you are effectively having to write your own keyboard driver.
 With it set up as a subroutine--or a couple of specialized
 ones--the overhead is not too bad. If efficiently written,
 performance will likely be acceptable. Chapter 13 contains
 suggested techniques for implementing this concept.

If you want a punch-proof keyboard, good luck. We would like
to design "turn key" applications secure enough to promise an
operator that they can do themselves no harm, no matter what

The Blue Book About GW-BASIC and QuickBASIC - 77 -

keys they hit on the keyboard. But....

 If an operator hits <Print Screen> and the printer is on,
 and on-line, that request is going to be carried out without
 your permission, or even, your awareness. And you thought
 the printer was on line 40 of a 66-line page, maybe. Or you
 had been counting down to the top of the next W-2 form, or
 whatever. Meanwhile, the operator just dumped your menu all
 over their pay checks. And destroyed the continuity of your
 next-check-number logic.

 If an operator holds down <Ctrl> and hits <Break> you may or
 may not know it. The interpreter may go immediately into
 program editing mode, or, it may trigger an ERROR 8. Which
 can confound your error handler, because you know there is
 no "Undefined line" in your program. And you cannot simply
 BEEP and RESUME NEXT. (See Chapter 9 about this, and other
 strange encounters in the never-never land of error traps.)

 If an operator holds down <Alt> and <Ctrl> and hits --
 horror of horrors--we all know what happens. Just try
 explaining to some, however, why they can do this on a whim
 in a card game, but they had better not do it while posting
 accounts receivables transactions.

We can remap the keyboard, of course: Reassign the meaning of
some keys, and turn-off some, altogether. But this is a bad
idea. It is too specific. It requires knowing exactly, what
keyboard, which operating system version, and what BIOS-clone
is being used. Which makes it tough to transport any program
to another machine, or survive upgrades.

On any (regular) request for keyboard input, the interpreter
translates whatever key-codes the underlying hardware and
software hands up. If we stay within the realm of BASIC,
accepting its definition of keys, it is reasonable to presume
that future upgrades of the language will not obviate what
worked in the past.

 PS: Some manuals encourage you to use ON KEY trapping;
 some include some "scan codes". In my shop we don't use
 either. This trap is as mean as a bear trap, and, the
 codes shown are seldom the right ones for a given machine.

Similarly, if we use INP, the interpreter simply grabs a
byte from the requested port and hands it to us. It cannot

The Blue Book About GW-BASIC and QuickBASIC - 78 -

do any translation for us. (The purpose of INP is to get an
unadulterated byte from a device port without any regards as
to what type of device is connected to that port.) These are
also the codes we get if we opt to OPEN "KYBD:"--which still
makes our program sensitive to specific keyboards, the BIOS,
and different releases of device drivers.

My money is bet on the interpretation of keys by BASIC. Sure,
it chooses to ignore some, like <F11> and <F12> and the seldom
used <Scroll Lock>. And it gives me the same codes for those
duplicated gray keys and white keys. If the operator wants to
move up one line on the monitor, it matters not to me which
up arrow she hits. K.I.S.S.

"Keep It Simple, Stupid." That advice is echoed in nearly all
books about programming. Suffer my passing it along one more
time. It is fundamental to my suggested solutions to keyboard
input problems.

 To minimize the risk of an unwanted <Break> tell your user
 that they should never use <Ctrl> or <Alt> while running
 your program. According to KISS, there are too many keys
 on the keyboard as it is.

 In any long running process, like a sort routine, output
 some indication from time to time that your program is
 thinking, and not on cloud nine because the <Pause> button
 was hit inadvertently.

 A warning about the use of <Print Screen> should be enough.
 Untimely use of that key is a risk, but, no more so than
 the many other things that can go wrong while trying to
 control a printer. Which is a separate topic, later.

 And print a character. Or move the cursor. Or change the
 page. Or blow the horn, or something, so that they soon get
 used to the idea that they will get some response from all
 live keys, and the dead ones do nothing.

That last suggestion sets the tone for a few notes about that
real odd ball device: The monitor. In my book it deserves
only a few notes. To cover all of its variants would require
a hefty tome, indeed. At any one point in time, probably only
two or three pages of such a book would be relevant to a given
application problem.

The Blue Book About GW-BASIC and QuickBASIC - 79 -

If we tally the current list of key words in BASIC we find that
over ten percent of them are unique to this one device. Added
to that, old-timers like LOCATE have been stretched. Once upon
a time it required only two parameters: line and position; or
row and column, if you prefer. Now as part of LOCATE, you can
turn the blinking cursor on and off, and you can specify what
the blinking block's size should be. And you can omit any of
the parameters that need not be changed. So the manual says.

Exterminators beware: There are bugs in that advice about not
having to restate line and column parameters. Try LOCATE ,,1
to turn-on the cursor, after having last printed something on
line 25 at position 80. ERR = 5 is apt to occur. (Chapter 9
is the one, remember, about many types of strange encounters.)

Not to malign the eloquence of Sir Winston Churchill, but:
"Never has so much been done by so many, to accomplish so
little." Nay, this is not the Battle of Britain, but neither
need it be a battle of the bytes.

Fancy output takes a lot of code, a lot of time, and delimits
the environments in which a program can run. Granted, programs
that are to be mass marketed have to have sex appeal, same as
boxes of cereal on grocery shelves. If your client thinks he
wants his masks and menus in blue, and green, and yellow, and
red, he may change his mind when you tell him that each change
in color will cost a couple of hundred dollars extra. When you
tell him also, that high intensity doesn't work on some brands
of monitors, and that underlining will cause blurred text on
some, he may change his mind about the worth of pretty.

Here are my stock solutions for "conventional" monitor output.
They appeal to some, appease most, and keep my labor charges
reasonable. They are sufficient for all data processing
programs. (Pixel pounding is too far afield from the subject
of generic devices. Chapter 7 is dedicated to the graphics
gang.)

Write all programs so as to be self-adapting, to whatever
adapter is in the machine. My favorite technique during
program initialization:

 CLS 'so that it is blank
 COLOR 0,0 'invisible
 PRINT "oops" 'at position 1,1

The Blue Book About GW-BASIC and QuickBASIC - 80 -

 BM = &HB000 'Base Monitor address
 CM = 12 'Cursor Max size
 DEF SEG = BM '1st assumption (mono)
 I = PEEK(0)+PEEK(2)+PEEK(4)+PEEK(6) 'hash = ASC(o+o+p+s)
 DEF SEG:COLOR 7 'reset the defaults
 IF I-449 THEN BM = &HB800:CM = 7 'true = color adapter

 Note: An alternative trick is to do something "illegal",
 like PCOPY, for an assumed mono-adapter, then let your
 error handler set a flag, then do a RESUME NEXT. This
 can be a little tricky, however. WIDTH 40 will trap in
 interpreted BASIC (on a mono-adapter), but not if the
 program is later compiled. Read Chapter 7 for more about
 differences in SCREEN modes, and about how the compiler
 and interpreter differ when addressing different monitor
 adapters.

From here on, BM is the DEF SEG value for the monitor's memory,
and CM is the second of the two values for sizing the cursor,
zero being the first value, of course.

When the interpreter is first loaded it self-initializes in
text mode--WIDTH 80:COLOR 7,0,0--with an underscore-like cursor.
Because data entry operators glance up only now and then, a
larger (full block) cursor--LOCATE ,,1,0,CM--is easier to spot
quickly. During field editing, when their focus is totally on
the screen, LOCATE ,,1,CM\2,CM is good (a half block) for
indicating that they are in insert mode, for example.

A note is needed about a seeming contradiction: DEF SEG names
a "hard address"; any time we resort to that we are vulnerable.
Some compromises are inevitable, however. This one is based on
calculated risks. Having stored that address in a variable, in
only one (fixed) location in all programs, even if it does have
to be changed some day, that effort should be minimal.

PRINT lesson: The character fonts are not the same. This can
be seen in the hardware manuals, but not until it has been seen
on the screen, do you see what they mean.

Because the characters displayed by a mono-adapter are formed
in grids that are 9-dots per print-column, and 14-dots high,
per print-line, they are much crisper than a Color Graphics
Adapter's 8 x 8 format.

The Blue Book About GW-BASIC and QuickBASIC - 81 -

Because of this, reversed video has to be placed low on your
list of options for highlighting text. In mono it can be done
nearly anywhere, any time. To achieve an acceptable degree of
legibility with a CGA, the print-space above highlighted text
must also be in reverse video. Even if that space is just
that, i.e., space-characters. (Thus, do not do reverse video
on line one.)

Another useful option in mono is underlining. Forget it, if
you want to design screens that will work on anybody's machine.

Agreed, the above is basic to hardware, not to BASIC, but it
can still be an expensive lesson to learn the hard way. Like
the one about the border-argument for COLOR. Never use it,
either. Especially in programs that need to survive the next
upgrade (to EGA/VGA, for example).

There are three ways to talk to the tube. Conventionally,
using LOCATE, PRINT, and the like; POKE bytes directly into
monitor memory; or, OPEN "CONS:" for OUTPUT as a file.

The third possibility is now nearly archaic. It can still be
done, but to no great advantage. In old machines (and still
on big mainframes) it was a way to output to video terminals.
Asynchronous devices. Where, when you PRINT, the output is
sent down a cable. Where, the device at the end of the wire,
printer, boob-tube, or otherwise, outputs characters itself,
or does mechanical functions such as a page slew depending on
the codes that are sent to it.

A monitor is different than a terminal, although, this is
hard to explain in ten words or less. The picture on a CRT
(Cathode Ray Tube) display is being constantly repainted by
electron beams scanning over the face of the screen. A page
on the screen correlates to a block of memory. When we do
output to a monitor, we put codes directly into bytes of the
computer's memory. On a CRT-terminal, the codes are stored
remotely, in the terminal's own memory.

Although an operator thinks they look the same, programming
a monitor can be done quite differently than for a terminal.
Knowing we have a monitor, and knowing which page of memory
is being displayed, and knowing which memory bytes align with
which row and column on the screen, we can POKE codes just
where we want them. This results in what will seem to be, an
instant change on the screen. And quick we must be.

The Blue Book About GW-BASIC and QuickBASIC - 82 -

Contemporary packaged programs such as word processors are
hard to mimic when it comes to doing data processing jobs in
BASIC. But, they have set a de facto precedent for operator
interaction with the machine. Granted, some are far superior
to others. Some adhere to basic principles of human factors
engineering; some were written by programmers unfamiliar with
ergonomics, biomechanics, and typography. Collectively, they
have become what is expected: "All programs work this way."

So mine work this way: All screens are BLOAD files. They are
built separate from the using program. Rather than having to
do LOCATE and PRINT statements a zillion times, which is slow,
and tedious, BLOAD is used like a shotgun. Not only is it fast
and easy, a lot of text can be blasted with a single program
statement. Working in text mode, here are some fundamentals:
(Again, see Chapter 7 if you like to punch graphics pixels.)

 Each character on the screen uses two bytes of memory. The
 first byte is a character's code, itself. The next byte has
 the preceding character's COLOR attributes. A screen shows
 25 lines of 80 characters. A line in memory is 160 bytes; a
 full screen in memory is 25 times 160, or 4000 bytes.

 To quickly blast a screen "mask" do a DEF SEG = BM followed
 by BLOAD "filename",0 (assuming BM has been pre-loaded with
 either &HB000 or &HB800 as shown in the earlier example).

 The offset parameter following the BLOAD is critical. If a
 BSAVE screen was built on a mono-machine and the target one
 has a graphics adapter, and you omit the offset when you do
 a BLOAD, the file is aimed at the wrong place in memory. It
 is loaded at the address specified in the file-header, i.e.,
 the address from which the BSAVE was done. (All BSAVE files
 have an extra 8 or 15 bytes added to what you save. More on
 that in a minute.)

 By the way, if you do a BLOAD into a nonexistent block of
 memory, no one will tell you. The bytes just zoom into the
 ether.

 In the program that builds a screen, a mask, a menu, or a
 help page, do DEF SEG = BM followed by BSAVE "filename",F,L
 with F and L specifying From and Length. To save an entire
 screen F = 0 and L = 4000. For partial screens it is easiest
 to work with whole lines. To BSAVE lines 5 through 10, for
 example, to jump over the first four lines, F = 4*160 and the

The Blue Book About GW-BASIC and QuickBASIC - 83 -

 length (to save) is, L = 10*160-F.

 While a program is running--while an operator is entering
 data in fields on a mask, for example--an existing page can
 be saved, as is, before doing "pull down" overlays such as
 help screens. Do a BSAVE of the as-is screen, BLOAD the
 overlay, and when ready to resume, BLOAD the one that was
 saved in the hold-this-picture file. In this case, because
 the program that is doing the BLOAD is the same as the one
 that did the BSAVE, no offset needs to be specified with the
 BLOAD.

 Another by the way: BSAVE can be a little slow, depending
 on where you send the file. Going to a floppy is slow; hard
 disk is much quicker, but the very best place to hold work
 screens is VDISK. That is quick, both for the BSAVE, and the
 BLOAD to bring it back. Forget PMAP, PCOPY, VIEW and their
 kin, if you want to run on any machine. (Sales of monochrome
 monitors is likely to continue to outpace color. They still
 cost a lot less.)

Most of the above can be deduced by carefully reading all of
your systems manuals from cover to cover, in maybe something
less than thirteen passes. Here are some tidbits garnered by
trial and error; some errors can be real trials. Given this
hindsight, on your next pass through the manuals watch for
these. They are mostly there, even if not easily discerned.

 The first byte of a file that was created by a BSAVE is a
 file-type indicator. It is equal to 253 in decimal. It is
 followed by three, 2-byte words.

 The first pair of bytes following the 253-code are equal to
 BM, the value you used with DEF SEG = BM. The next pair of
 bytes are the offset, and the next pair are the length that
 was specified with BSAVE. (In machine language context, the
 bytes in 2-byte words are reversed, remember.)

 The 7-byte file header is followed by a continuous string of
 bytes, just as copied directly from memory to disk. Which
 means, for text mode files, a character-byte, followed by its
 color attributes, followed by the next character, and so on.
 Ergo, what was on the screen, colors and all, blinking and
 what have you, can be brought back to the screen, just as it
 was, at the moment the snapshot was taken.

The Blue Book About GW-BASIC and QuickBASIC - 84 -

 Incidentally, the memory-image file block used to be followed
 by a copy of the same seven bytes that are in the file's
 header, plus one more byte, a control-Z, code-26. In some
 recent release, three-point-something-or-other, that extra 7
 bytes at the end no longer occur. Find that little gem in a
 manual, if you can. (Another example of: If they never told
 us in the first place, they can skip telling us they changed
 it.)

 Two more notes need to be made; they are in the books, but,
 not noticeably so. COLOR ,,(border) is a global aspect. It
 relates to an entire screen; it is not an attribute of any
 one character so it is not saved in a BSAVE file. (PS: Do
 not use the border-argument. Forget it. You can spend many
 hours trying to fix programs that are moved to a machine that
 has a different monitor adapter.)

 The other note at hand is, think of the cursor as a figment
 of a monitor's imagination. The cursor's location, size, and
 current on or off status are all maintained by adapter-driver
 software; it is not a character, per se, in a byte, in memory.

 Hint: I have been known to save these values with my BSAVE
 files, anyway. Reserve a few blank spaces somewhere. Make
 them hidden as in COLOR 7,7 then PRINT CHR$(value-to-save).
 After a BLOAD, use SCREEN or PEEK to retrieve those values.
 (See Chapter 12 also, about using the monitor's memory for
 storing data, and for inter-program communications.)

Given the above, the possibilities are numerous. It is not a
very big chore at all to write a program that can make BLOAD
files out of text files. Or vice versa. Or to write filters
that can change the colors of existing masks and menus, a real
solution for transporting some applications from CGA monitors
to monochrome, for example. (Like for converting what was
blue, to bright, maybe, to get rid of unwanted underlining.)

Chapter 12 tells my methods for easily creating BSAVE masks
in the first place. Getting back to the theme of this chapter,
here are a few more notes about making a monitor act like you
programmed in C, or some language that claims to be "closer to
the metal" than interpreted BASIC.

 Moving highlighted words: A lot of menu techniques let the
 operator select a function by using the cursor-arrow keys
 to change which text string is currently being displayed in

The Blue Book About GW-BASIC and QuickBASIC - 85 -

 reversed video (or underlined, or a different color, etc.)

 Conventional BASIC would expect you to do a COLOR, a LOCATE,
 and a PRINT (to do not-highlighted-video) of the text you
 are moving away from. And then do, another COLOR, a LOCATE,
 and a PRINT of the moved-to text. That is slow. No matter
 what souped-up machine you are programming on.

 Mine is a much faster trick, unconventional though it is:
 Calculate the offset (DEF SEG = BM) to the address of the
 first highlighted character's attribute byte. Use FOR/NEXT
 with a STEP of 2 and POKE the code necessary to turn off
 the highlight. Now calculate the offset to the address of
 the target area and use a 2-step FOR/NEXT again, to POKE the
 attribute bytes of the new string of text to be highlighted.

 See that POKE to a character position is similar to PRINT.
 And when you POKE to attribute positions you are doing what
 the interpreter would do with the first two values used in a
 COLOR statement (but it doesn't do it until you PRINT).

 Similarly, a SCREEN (function) can be mimicked with PEEK, but
 faster. When you specify two parameters with SCREEN the code
 that is returned is the same integer value that you would get
 using PEEK addressed to a character-byte. A third, non-zero
 parameter in a SCREEN function will return an integer value
 corresponding to the bit pattern of an attribute byte, the
 same as would a PEEK to that same address.

Granted, if you are accustomed to using LOCATE to get to a line
and a position, and have developed instant recall for the digits
to use to get the COLOR you want, PEEK and POKE tricks may seem
more complicated. Initially, anyway.

Lines and positions are not difficult to calculate if you use
your imagination instead of looking at the screen. In your
mind's eye see that each line is 160 bytes, not 80. The codes
for characters are in even-numbered positions (beginning with
position zero). The color of each character is in the next
adjacent, higher numbered byte.

If you enjoy bit banging in BASIC go ahead and unscramble the
attribute bytes so that you can see what numbers would be used
if they were created by a COLOR statement. But you don't have
to. Just PEEK a byte that already has the desired flavor and
make a note of that number; it is the seasoning to use in a

The Blue Book About GW-BASIC and QuickBASIC - 86 -

POKE statement later, with no impact on your gastrointestinal
system.

Meanwhile, lose no sleep worrying about being a hypocrite. My
constant inference that PEEK and POKE are vulgar must be viewed
in perspective. Used within the monitor's memory, they are
tolerable, even if not Platonic. They still should not be used
in mixed company. Bit fiddling elsewhere, in programs built
for others, is still considered sinful on my farm.

 Reminder: DEF SEG = BM is critical before doing POKE or
 BLOAD, or you are apt to get shot right out of the saddle.

Putting data on the screen, quickly, is a horse of a another
color. Whether we are working with COLOR or not. PRINT is
the pragmatic choice, but, the fewer the better. Consider:

 PRINT X$;:PRINT Y$;:PRINT Z$

This could be done as PRINT X$;Y$;Z$. Obviously. What is not
obvious is the performance difference for singular instances.
For a one-liner, on one screen, followed by interaction with
the keyboard clerk, the performance differential of these two
alternatives is insignificant. For twenty lines in succession
however, the difference is very noticeable.

For example: X$, Y$, and Z$ are fields in records; they are
for the account code, name, and phone number of customers. On
screens that halt for operator input after each one is shown,
no problem. If you have to display say, twenty records per
page, your operator will appreciate faster page-paint time.
Count the difference. Sixty PRINT statements vs. twenty.

Better still, use one variable instead of three. Chapter 3
tells how long it takes the interpreter to find your variables;
common sense is enough to know that the time for twenty has to
be less than for sixty. This is a good example of where common
sense can produce better results than textbook doggerel.

If, in the above case, X$ and Y$ and Z$ are fielded variables
in records, named one after another in a FIELD statement, the
record could be redefined so that one variable encompasses all
three fields as a continuous string.

Before pondering the question of what to do if the fields that
are to be displayed are not juxtaposed in the records, ponder

The Blue Book About GW-BASIC and QuickBASIC - 87 -

first why they are not. Who designed the record layout? How
was it decided which fields should come first, second, and so
on? When it comes to adding to an accounting balance it does
not matter where in the record that data field is; not many
people watch a computer compute. When you are outputting data
to a monitor, however, somebody is going to be watching.

Now, extend the above two suggestions all the way: Arrange
data in records in the order they will most often be shown.
Store numeric amounts as strings, already formatted. To heck
with PRINT USING; do the "using" when you do the computing, and
store the result in the records so that it can be shown as is.
For blank space between fields, put those spaces in the records
also. With the capacities of today's disks we no longer have
to be as stingy as we once were. (Chapter 5 tells how to save
formatted numbers in data records, easily and quickly.)

My favorite payroll application has a master-file layout with
1200 bytes in each employee record, mapped as 103 data fields.
Only one PRINT statement is needed to display an entire record.
It blasts three lines for each of five (240-byte) variables.
That is quick. It is nearly as fast as a word processor that
is holding all it knows, in memory.

 PS: Multiline PRINT statements can be tricky. Printing
 begins at the column where the cursor is currently sitting.
 Supposedly. Or, it commences in column one of the next line
 down if what is to be printed is "...wider than the screen".
 Predicting just what "wider" means is not easy. Compiled
 programs behave differently than interpreted ones: BASIC,
 BASICA, GW-BASIC, and QuickBASIC all play by different rules
 when you are near the bottom right corner of the screen.

Back to payroll: A BLOAD "mask" is done first, with all the
pretty lines, and boxes, and field descriptors. The cursor is
sent to line 1, column 1. GET loads my five fielded variables,
then I do a one-shot PRINT U$;V$;X$;Y$;Z$. Which outputs a
total of fifteen 80-character lines of data.

Sure, there is some waste. To make adjacent fields straddle
my pretty lines, they are separated by a CHR$(28) byte, which
works as a right-arrow key would. To skip over column-header
lines on the mask, line-advance codes are permanently imbedded
in the records at fixed locations. Total waste is about 200
bytes per record. For 100 records, it is about 20,000 bytes.
Which is less than one percent of a 20Mb hard disk. If that

The Blue Book About GW-BASIC and QuickBASIC - 88 -

still seems extravagant, do some counting of the junk bytes in
a typical word processing or spreadsheet file.

This concept of ready-to-show record formats has to consider
that other "standard output device": The printer. You say
LPRINT or PRINT #<file-number> and a string of bytes--codes
and characters--get sent down the wires, one at a time. The
interpreter sends whatever you tell it to, and, it sends some
codes of its own choosing. Like, after each print statement
(that has no trailing semi-colon or comma) it sends a pair of
bytes, to tell the printer to jack the paper up one line.

The <Print Screen> function works similar, but the data that
is output comes from the monitor's memory. It is sent by the
operating system, not by BASIC. They do not work in exactly
the same way. Nor do they know what the other is doing, how,
or when.

The interpreter is (marginally) smarter than the operating
system. You can use WIDTH (printer) in a program, or OPEN the
printer as a "random file", to pre-condition the interpreter
to know when to, or not to, issue line advance codes.

The <Print Screen> key invokes a direct service call to the
operating system. It has no idea what is going on inside the
interpreter. It outputs 25 full-length, 80-byte lines, all
2000 of the character-bytes in a monitor memory page, skipping
over the attribute bytes. Which explains why, by the way,
hidden characters on the screen will not be hidden when they
get to the printer.

What happens at that end of the line is another matter still.
Even the cheapest printers are today, "intelligent". So much
so, you have to be clever to get them to do what you want, and
you have to be careful or they will outsmart you.

Because there are so many makes and models available, and they
seem to get smarter every year, trying to anticipate what will
happen is not unlike trying to predict what may happen when a
teacher has to leave the classroom momentarily. How to best
cope with adolescent children is a subject for experts. The
suggestions that follow are merely for unruly printers.

Always OPEN the printer as a file device and do output to it
via PRINT #<file-number> statements. The alternative is to
spend several days trying to figure out why LPRINT is causing

The Blue Book About GW-BASIC and QuickBASIC - 89 -

odd "File already open" errors. This must be triggered by,
apparently, an internal conflict related to doing BSAVE/BLOAD
operations. Whether this is the true culprit, or common to all
versions of the software is unknown to me. At a point I quit
experimenting with kluges to get around the problem and just
accepted that LPRINT was practically useless.

Cardinal design rule: Plan all print lines to be one byte less
than the width of a full line. On an 80-character printer, for
example, format your lines to print only 79 columns. This is a
pragmatic rule. Too many others want to help decide when it is
time to do a line advance. The interpreter has its own screwy
and inconsistent ideas. Most modern printers try to get in on
the act also, but each has its own theory about what is best.

Far less time (and paper) will be wasted during testing if you
keep it simple and use a semicolon to continue-on-a-line, or
no semicolon to print-and-advance, never letting the printer
get to column 80 (e.g.) where someone else is apt to contradict
your intentions.

Printer programming maxim: Portability problems precludes all
pretty printing. The "Install" programs supplied with many
packages are sometimes bigger than the end-use product because
there are so many different printers out there (that must be
programmed in so many different ways). Aesthetic output is a
demand of word processors. For my money, accounting reports
can be fully useful rendered in simple ASCII. Pretty printing
can cost a pretty penny, and have more impact on the bottom
line than can be cost justified.

One bent coin, a CHR$(27), can cause more problems than a sack
of slugs in a casino. Escape code sequences date back to the
earliest days of mechanized data processing. The tradition
continues today that a byte that looks like 1B in hexadecimal
is to be seen by a receiving device as a warning that, what
comes next are device parameters, not printable characters.
See this:

 On a monitor, a CHR$(27) is an attractive left-arrow symbol.
 Sent to a printer, with <Print Screen> or otherwise, it can
 reek havoc. Transmitted unintentionally, the next one, or
 two, or several bytes, are bound to be misunderstood. Even
 printers that are supposed to be "compatible" may switch to
 italics, underlining, or whatever, differently. All of them

The Blue Book About GW-BASIC and QuickBASIC - 90 -

 will react to an escape-code sequence--not many will react
 in exactly the same way, for a given series of codes.

 This is no less true whether coming from the monitor, or sent
 inadvertently in a string of data coming from files or coding
 bugs. Caveat. In Latin, English, or any language, a code-27
 byte is not profane to a machine, but it can provoke strings of
 profanity from humans.

The other low-order codes in the ASCII chart--those below a
space character, CHR$(32)--are less pernicious. Some may
cause only minor problems; some, severe migraines. Sticking
to decimal notation, here is my general attitude toward these
naughty kids.

 Code-12 is one of the most dependable. It is useful to slew
 the paper to the top of the next form or eject a page. It
 must be used consistently, however, to achieve consistent
 alignment on successive pages. If CHR$(12) is followed by
 a semicolon, the next thing printed begins on the current
 (now top) line. No semicolon (or comma) after CHR$(12)
 produces one blank line after the slew, because, BASIC
 sends a carriage return code after your top-of-form code.

 Code-28, as cited in the example earlier, has not caused me
 any grief thus far. On the monitor it bumps the cursor one
 position to the right, like a nondestructive space character.
 To date my experience with a variety of printers has been
 that this code is synonymous to a code-32 space character.

 Code-13 is usually followed by code-10; seen in hex as 0D0A.
 This pair is what the interpreter sends for you, to cause a
 line advance and a repositioning of the print head to the
 beginning of the next line. If these codes are imbedded in
 your records, you may need to use a semicolon after the last
 variable, to keep from getting an extra line advance.

 PS: That old green manual--circa 1986--is misleading. It
 says BASIC sends out only a CHR$(13) and leaves it up to
 the device driver to send the follow-on CHR$(10). Makes no
 difference to me who is doing it. Fact is, when using
 "standard" software, all sequential output--to a printer
 or a data file--always includes the 13/10 pair of codes
 at the end of each line.

 Avoid all of the other codes below 32 unless your boss is
 liberal with overtime. Code-0 is a funny one, for example.

The Blue Book About GW-BASIC and QuickBASIC - 91 -

 A zero-byte will be seen on your monitor as a space, same as
 a code-32. Printers have minds of their own, remember. Some
 will also produce a space. Some just discard a zero-byte,
 pretending it was not received at all.

The high-order codes--those above 127--can be brats also.
Especially those from 128 through about 155. Notice that 128
plus 12 is 140. Or conversely, in terms of bits in a byte, if
the left-most bit is ignored, decimal 140 becomes 12. Thus,
what looks like a lower case letter (i) wearing a hat, on the
monitor, causes a page slew on a lot of printers.

In short, if you want to always know what column, what line,
and what page you are on, no matter what printer is plugged
in, be cautious of the codes you send. Those from 32 through
127 are pretty predictable. The others may be pretty, but
pretty onerous when used in peculiar circumstances.

Thus ends my notes on what can or cannot be printed with
confidence. Which assumes that what we send actually gets to
the printer. More must be noted before we can be confident
of that.

Before printers became so educated my programs used to halt
and give the operator advice when they ran out of paper. In
this case, or in the event someone accidentally kicked the
plug out of the wall, my program would wait patiently until
told to carry on. That is the way we did it a long time ago,
back around 1982, or so.

In fact, an old (1986) Big Blue manual says printing is
asynchronous with processing. That is so much bull. It was
bad advice then, it is now, and it will likely be wrong from
now on.

BASIC still thinks that what is happening is asynchronous.
It sends bytes to the adapter. The adapter sends them to the
printer, and the interpreter monitors the adapter to see if
the printer sends back a problem signal. The time interval
between your PRINT and what is happening on paper defies
the word asynchronous. Big buffers is why.

A little six pound two hundred dollar printer has a whopping
8,000-byte buffer. Enough memory to hold the print-image for
six or eight paychecks, maybe. Imagine the problem of, when

The Blue Book About GW-BASIC and QuickBASIC - 92 -

the stack of blank checks runs out, five checks before the end
of the payroll. Nobody knows it.

The printer's cry for help will probably not be heard. You
sent the check lines out as fast as you could, trusting that
they would all get printed. Then you closed up shop and
returned to your start-up menu, or worse yet, branched to the
routine that does a batch update of your master file.

There are numerous error codes in BASIC that can be triggered
by printer related statements. Any one code would suffice. It
really makes no difference to me what is wrong. My response is
invariably the same: Abort. Noisily, of course.

Most of the time a BEEP is not enough. It would be helpful to
your operator, and both of us, if the manuals were clearer on
how to discern just what is wrong. Here are some things
learned the hard way.

 If you do an OPEN and get ERR = 68, "Device unavailable",
 it is because there is no adapter in the machine for that
 printer port (or the adapter is kaput).

 On the other hand, if a working adapter does exist, no
 error is triggered on OPEN, even if the printer is off,
 off-line, or it has been stolen. (Contrast this with an
 OPEN to a data file; if it doesn't exist, but should, you
 get an immediate error.)

 If you do LPRINT or LLIST to a non-existing or non-working
 adapter you will get ERR = 57, "Device I/O Error". Maybe.

 If you do WIDTH, as in WIDTH "LPT1:", for example, no error
 occurs no matter what exists, does not exist, or is not
 working.

 Having succeeded in doing WIDTH, which always succeeds if
 everything is spelled correctly, if you then do an OPEN, an
 LPRINT, or LLIST to an absent or lazy adapter, it seems the
 interpreter changes its mind because it will then generate
 ERR = 55, "File already open". Which is crazy. Or at
 least, illogical.

 Three other error codes are possible when one variant or
 another of PRINT is done. If it fails. When you read the
 manuals see why I consider error codes 24, 26 and 27 as if

The Blue Book About GW-BASIC and QuickBASIC - 93 -

 they were all alike. Once upon a time it was nice to be able
 to react differently to each. Today it is a blamed nuisance
 that there are three. As it has always been a nuisance that
 a simple range test was not an exact technique, because that
 odd error code (25) has nothing to do with I/O.

A well-designed application has to anticipate that many kinds
of failures can occur while printing, and provide some means
to do a restart from a midpoint, or, allow for a complete
rerun without double whacking already updated files. When a
printer does cry for help, there is no way to correlate what
you just sent with whatever it just got around to trying to
print. And, postoperative cries for help will fall on deaf
ears.

Even though software and hardware technologies are advancing
rapidly, but not always at the same pace, it would seem that
the manuals writers could give us some indication as to what
is contemporary and what is archaic; what is useful and what
is not; what works and what doesn't.

Hopefully this chapter has provided some of that, and a bit
more, for those three normal devices: the keyboard, monitor,
and printer. What is abnormal in my book, still, is things
like a mouse, a light pen, and making music. Fun, yes, but
irrelevant to the business of doing serious data processing.
We can do that, but we have to be more clever than ever, to
do it in BASIC, on machines that are more adroit at playing
games than producing profit for their owners, or you, or me.

The Blue Book About GW-BASIC and QuickBASIC - 94 -

Chapter 7 = GRAPHICS

Graphics can be fun. Especially so, in the context of a game.
A game, in the sense of, an intellectual challenge: Can you
learn to do it armed with nothing more than a machine with the
mechanical capability, BASIC language manuals, operating system
manuals, and hardware reference books.

Be prepared for a real contest. My game has not yet ended. It
likely never will. At this point we have reached a stalemate.
My unnamed opponents (that wrote the manuals) won a couple of
rounds. What follows are things learned from the rounds I won,
before my stamina began to wane, and my budget gave out.

To write a technical work that would accurately cover all of
the different types of adapters and monitors would require a
lot of hands-on testing. And a lot of money. And the book
would never get printed because new hardware of this genre is
born everyday, so it seems.

What is included here covers MDA, CGA, and EGA. The Monochrome
Display Adapters have been around the longest (1981). Color
Graphics Adapters were the first machines that provided monitor
output in color (1981 also). Enhanced Graphics Adapters were
next, offering more colors and higher resolution images (1985).

VGA--Video Graphics Array--is so new it is not yet named in the
BASIC manuals (1987). The Hercules Graphics Card (1982) is not
identified, as such, either.

Thus far my experience has been that what worked on the older
hardware works on the new. To take full advantage of the new,
or the old, requires technical knowledge of a specific piece
of hardware, and a basic understanding of how BASIC talks to
any of them.

This chapter has two goals: To bridge the gaps between the
manuals, and to provide some freeze-dried code that is useful.
The manuals are all written so as to stand alone; they seldom
allude to each other. The coding examples in the BASIC manuals
are meant to convey concepts; they are rarely usable as shown.

A logical first move for this game is to state what is meant:
In BASIC, any SCREEN statement whose first argument is other
than zero puts you in "graphics" mode. Conversely, SCREEN 0

The Blue Book About GW-BASIC and QuickBASIC - 95 -

is "text" mode.

One fundamental difference between these two modes is in how
printable characters are stored in video memory, and where
they come from. So, a second move in this game should be to
review where PRINT gets its characters from, for both, text
and graphics modes.

The upper range of characters in the adapter's font set--
CHR$(128) to CHR$(255)--are sometimes called pseudo-graphics
characters. Just why "pseudo" is used, is beyond me. Agreed,
they are non-ASCII. They are just as useful when in graphics
mode as they are in text mode, however.

This is equally true of those low-ball characters that are in
ASCII range (0-127), that are pretty, but not, "pure" ASCII.
That standard says codes below 32 are control codes and their
exact meaning can be further defined by a manufacturer. Thus,
those codes have been further defined as printable characters.
Sometimes. Depending on....

All of the characters that can be shown on a monitor attached
to a monochrome adapter come from dot patterns burned into ROM
on the adapter board. That font set covers the full range of
256 character codes (0-255).

This is true for the graphics adapters, too, when in text mode.
When an adapter is commanded to switch to graphics mode, the
character set, or part of it, is "soft"; the dot patterns for
some characters may come from RAM, rather than from ROM.

 Distinction: RAM--short for Random Access Memory--can be
 changed via software. ROM--short for Read Only Memory--
 cannot be changed. While ROM can be read, "randomly", what
 is stored in it is permanent; it was burned-in (as software)
 electronically, by the manufacturer. Thus, bits in ROM are
 frozen, as is, with or without power.

Which brings up the issue of GRAFTABL.COM: A "soft" character
set that is needed on CGA machines if you want to PRINT or use
the function-version of SCREEN, for character codes that are in
the 128-255 range. The more expensive graphics adapters have
this set of characters stashed in ROM, also, in addition to the
lower-128 set of codes. If you load a soft-set of characters,
however, such as in GRAFTABL, all graphics adapters quit using
their "default" font set for codes 128-255, in favor of the
soft ones, when operating in graphics mode. (In text mode they

The Blue Book About GW-BASIC and QuickBASIC - 96 -

use the standard 0-255 font set, no matter what has been loaded
by GRAFTABL.)

Now, for the next move: In text mode characters are stored in
video memory as codes. Adapter electronics continuously scans
the monitor and that memory. Each print position on the screen
correlates to a specific byte in memory. As those bytes are
scanned, a character-generator chip on the adapter repeatedly
converts the codes into corresponding pixel (picture element)
patterns.

When in graphics mode the character generator chip is bypassed.
What are shown on the screen then, are pixels that correlate to
bits in video memory. In concept this is simple; if a bit is
set on (a binary one), a dot on the screen is illuminated. If
a bit is off (a binary zero), a blank spot occurs.

Which bits (of certain bytes) align with a given dot-position
on the screen can wait a couple of pages. At this point note
that, when we PRINT a character in graphics mode, the code that
would normally be stored in memory is immediately decoded, and
the character is stored as individual bits, rather than as a
1-byte code number.

Thus: Graphics mode characters are "soft"; they are made up of
dots (bits on or off). Text mode characters are also shown as
dots, but they are stored as codes, and are repeatedly decoded
by adapter electronics. Knowing this basic difference, see how
PRINT produces a "canned image" of pixels, but, after they are
printed (decoded) in graphics mode, they are stored in memory
at that point as primitive bit patterns.

When we program in graphics mode the commands we use also
create bit patterns in video memory. This may be done on the
basis of one pixel at time, or with some commands, multiple
sequences of pixels. Which is how we create images like boxes
and circles. In concept, see that PRINT is really no different
than other "macro statements" that generate complete "icons".

A new DOS-native capability was added in Release 3.3: DLL,
i.e., Down-Line-Loadable code sets for printers or monitor
adapters (or any other device that plays by the same rules.)

This new feature of DOS is generically called "Code Pages". It
was conceived primarily for use with foreign languages. It is

The Blue Book About GW-BASIC and QuickBASIC - 97 -

complicated, however, and the manual's descriptions of how to
make good use of the capability is so confusing that if you are
so inclined, reserve a hefty chunk of court time; it is going
to be a long tournament if you are determined to win.

The major difference between devices that support DLL Code
Pages (viz, EGA/VGA), and those that do not, is that the entire
range of codes (0-255) can be overwritten by software supplied
bit patterns. They can also be changed on the fly, and used
in both text and graphics modes. On the fly meaning from DOS,
not from BASIC. Meaning, before loading BASIC, or via SHELL.

As is always the case, SHELL is risky. Read the definition of
SHELL in the BASIC manuals with one eye closed. GRAFTABL, for
example, is a single-shot DOS command. Only parents can do it.
Do not try it using SHELL. Run as a child process, GRAFTABL
has no respect for its parents and will likely hang the whole
family. It will not let you return to BASIC; it may even force
a manual reboot. Once done, successfully, what is loaded is
what you live with until the next reboot. There is no means
for getting rid of it, and a second "load" will not work to
overlay a previously loaded font set.

At about this point some books would refer you to an appendix
to see what the printable characters look like, and which codes
are assigned to each. Forget it, if you want to know for sure.

Charts in hardware manuals can be trusted more so than those in
software manuals but, it is not unusual to find differences in
what any of the books show, and what characters really do look
like. The following tiny BASIC program can be trusted to tell
the truth, on any machine, at any given point in time, for the
text-mode set of characters then in residence.

 10 CLS:LOCATE 16,1 'clear and move the cursor
 20 DEF SEG = &HB800 'for mono use &HB000
 30 B = 0 '1st offset into video RAM
 40 FOR I = 0 TO 255 '0-255 character codes
 50 POKE B,I:B = B+4 'show one:bump offset by 4
 60 NEXT

Take note that, in the above routine POKE puts codes directly
into memory. BASIC has no idea why you are doing it, so it
does not attempt to translate your intentions. POKE was used
because BASIC will not PRINT all of the characters possible.
It will print them all save for the following codes when used

The Blue Book About GW-BASIC and QuickBASIC - 98 -

in a CHR$ statement (for example):

 decimal ASCII meaning BASIC behavior

 7 BEL - alarm BEEP, print nothing
 9 HT - horizontal tab prints 7 spaces
 10 LF - line feed down 1 line, position 1
 11 VT - vertical tab home (same as LOCATE 1,1)
 12 FF - form feed clear (same as CLS)
 13 CR - carriage return works same as code 10
 28 FS - field separator reposition 1 space right
 29 GS - group separator reposition 1 space left
 30 RS - record separator up 1 line, same column
 31 US - unit separator down 1 line, same column

What is happening here is, BASIC "translates" what you say to
print--as in PRINT CHR$(9)--and does function calls to the
BIOS, or otherwise commands the adapter, rather than transmit
a character code, per se.

BIOS: Basic Input/Output System, which is boot-ROM and DOS
related. The acronym BASIC has no kinship to the BIOS's first
name. Also: In the new PS/2 machines there is an ABIOS and a
CBIOS, to support OS/2 and the old DOS. As used here, BIOS is
a handy name for them all.

Add to this wealth of trivia, the BIOS for video output may be
in one of three places. For MDA and CGA it is an integral part
of the system BIOS, i.e. it is on the mother board. For EGA
and VGA, all interrupts for video services are rerouted to a
specialized set of BIOS routines contained in the adapter. The
Hercules-like adapters (and some other newer types) depend on
software drivers. On boot up these device drivers are loaded
into memory, and the interrupt address for video services is
modified to point to these product-specific drivers.

How to spell all of these acronyms correctly, and who invented
them when, is somewhat trivial. Programming in BASIC, the rest
is trivial also when we depend on the interpreter to do what
we ask it to. It does provide an easy, dependable, interface
to all of these low-life mechanics. An intellectual awareness
of what is happening down below, however, can make it easier to
see what we are seeing. On the screen, and in the manuals.

Most of the above is really basic, including that about BASIC.
In text mode, all characters are stored in video RAM as 1-byte

The Blue Book About GW-BASIC and QuickBASIC - 99 -

codes (0-255), each one followed by an attribute-byte. How to
address those bytes is covered in Chapter 6. Graphics adapters
offer more capability than monochrome. Staying with text mode,
for the moment, here are some new opportunities.

 WIDTH 40: Character fonts are the same as WIDTH 80, but are
 two print columns wide, per character. On the screen. They
 still use 1-byte of storage per, so a line on the screen is
 40 columns; a line in video RAM is 80 bytes.

 PCOPY: The fastest gun in the west when it comes to having
 to "switch" screens. (BSAVE and BLOAD are still useful, and
 are described in more detail, later. PCOPY is a much better
 alternative for some screens.)

 MEMORY: Video RAM is hardware mapped. Regular software does
 not load into this memory space, so it is a safe place to
 "put things of your own", without worrying about corrupting
 other software that may be in memory. (Unless, of course,
 somebody else uses this space in a similarly uncouth manner.)

How much memory is an interesting question. The business of
using PCOPY, for example, requires that you know this little
fact. Suppose your machine was a flea market special, and it
came with no documentation. (Or, it cost a small fortune, but
you have no confidence in the documentation, or your ability to
count the chips accurately.) There is a relatively painless
way to get the machine to help you. PCOPY itself can be used
to help determine the amount of video RAM available.

Working in text mode, WIDTH 80, each full-screen page requires
4kb. So, if PCOPY 0,3 works, but PCOPY 0,4 gives an "Illegal
function call", the adapter has 16kb. That is, 4 pages of 4kb
each; the pages are numbered 0, 1, 2, and 3.

In SCREEN-0-WIDTH-40 mode, the number of PCOPY pages doubles
because each full "page" uses only 2,000 bytes. (Remember that
PCOPY is always illegal on a monochrome adapter. BASIC manuals
say that PCOPY works in all screen modes; another instance that
belies their use of the word "all".)

Presumably you know what kind of adapter is in your machine.
To be able to write programs that are self-adapting, in the
event they are supposed to run on any machine, it may also be
necessary to determine which graphics adapter is in use. (If

The Blue Book About GW-BASIC and QuickBASIC - 100 -

SCREEN 0:PCOPY 0,1 fails, the issue is mute: Monochrome.)

One tell-tale difference between CGA and EGA is in how memory
is used by the adapter. See this, assuming PCOPY 0,3 works:

 10 SCREEN 0:CLS
 20 DEF SEG = &HB800
 30 POKE 16384,65
 RUN
 Ok

If what is shown in the upper left corner of the screen is "Ak"
rather than "Ok", the adapter is CGA and not one of its fancier
successors. This example is useful to demonstrate the need for
technical awareness when we opt to "go around" the interpreter.

Video RAM in a CGA begins at address &HB800 and consists of a
full 16kb, up to, and including address &HF7FF. Using decimal
numbers, 16kb is 16384, and the address range is 47104 through
63487. A not so trivial piece of trivia for a CGA is the next
16kb. It too can be addressed, with POKE for example, but it
is phantom memory. The adapter "wraps" this second 16kb range
of addresses to match the base address that begins at &HB800.
(Which accounts for the "Ak" seen above.)

EGA, on the other hand, has an honest 64kb of memory, and VGA
has 256kb, addressed as 4 blocks of 64kb, each. At least. Not
all of this memory is video RAM, however. Part of this address
space contains the video services BIOS, mostly in ROM chips.

The above memory figures are honest assumptions. Yours, mine,
and the BIOS routines. What actually exists, in chips plugged
into the adapter, may vary. PEEK and POKE can be used to find
out the truth, if the truth need be known, which is needed, if
you want to use PEEK and POKE. Even so, be watchful of lies,
like in the case of the CGA's tricks with memory addresses.

An easy way to determine CGA vs. EGA, and to determine which
type of monitor an EGA has been switch-selected for, is to
experiment with different SCREEN statements. Any SCREEN mode
argument larger than 2 will cause an error on a CGA (ERR = 5).
SCREEN 7 and SCREEN 8 are valid--will not cause an "Illegal
function call"--on any of the more sophisticated adapters.
SCREEN 9 and SCREEN 10 are usable with an EGA adapter, but only
if the option switches on the adapter are set for use with an
"Enhanced Display" monitor (as opposed to a "Color Display",

The Blue Book About GW-BASIC and QuickBASIC - 101 -

e.g. RGB: Red, Green, Blue).

Some texts would encourage you to use operating system "service
calls" to find this out. My habitual inclination is to not go
native unless there is no practical alternative.

One reason for this attitude is, you cannot always trust the
answers you get by sampling BIOS bytes. It can take umpteen
hours to determine their truthfulness. And truth is relative.
Let BASIC make its own determinations. Even when it decides
incorrectly, we are bound to abide by its judgment, anyway.
(If we want to use the natural capabilities of the language.)

Which technique to use, and when, depends on your confidence
in the configuration data stored in the BIOS. Which is where
BASIC gets its advice from. All of which depends on the "tech"
that installed the boards, and whether or not he set the little
switches and jumpers correctly. And whether or not he who made
that board followed the "standard" rules about switch meanings.
And on, and on, and on.

Now, on with the show: How to show what you want to see. In
BASIC. An opening move for this phase of the game is to see a
list of the key words that are peculiar to doing graphics, and
those that are useful otherwise, but behave peculiarly in this
mode.

The following list of key words are those invented especially
for graphics. These are the ones that will generate run time
errors (ERR = 5, "Illegal function call") if SCREEN 0 is in
force at the time they are encountered.

 CIRCLE POINT
 DRAW PRESET
 PAINT PSET
 PALETTE VIEW
 PMAP WINDOW

Two key words that existed before graphics was invented can now
be used in a different context: GET and PUT. They date back to
the early days of disks. Now, while in a SCREEN mode of other
than zero, they can be used to exchange blocks of bytes between
the adapter's memory, and numeric arrays in your own program.
Which, as we will soon explore, can be more fun than a chicken
plucking contest in June, any time.

The Blue Book About GW-BASIC and QuickBASIC - 102 -

Two of the key words that were invented when graphics made its
debut are useful in both text and graphics modes (and with a
monochrome adapter): COLOR and SCREEN.

Four old key words--LINE, PRINT, STEP, and USING--now play new
roles when used in combination with the key words that were
invented just for graphics.

Two of the oldest words in BASIC are WIDTH and CLS. They were
in MBASIC, even, back in the seventies, in the realm of CP/M.
In those days the manuals described them accurately. Their
meaning and behavior has been modified so many times since, it
is no small wonder that the people who write the manuals cannot
precisely describe what they do, how they work, or when to use
them.

Here are some notes from the margins of my manuals. Thankfully
they leave us a lot of white space for such jottings.

 CLS: In text mode, all character bytes are set to CHR$(32);
 all attribute bytes are set according to the second argument
 of the most recent COLOR statement. My newest manual refers
 to "alpha mode"; it must mean text mode (or maybe a beta mode
 is coming). CTRL-HOME clears the same as CLS, but that only
 works if (when) the program has halted for keyboard input.
 If function-key legends are being displayed, line 25 is also
 cleared in memory, but it is then immediately restored to
 what is being shown; both the text, and their companion
 attribute bytes.

 WIDTH (GW-BASIC): Does nothing if the argument used (40 or
 80) is the same as what is already in force. An easy test
 for determining the current setting is to LOCATE 1,41. This
 will error trap (ERR = 5) if the current width is 40; if no
 error, current width is 80. Do not use the WIDTH "SCRN:"
 form of syntax. If in 40-column mode and an illegal argument
 is used--not 40 or 80, as a literal, or from a variable--the
 interpreter gets confused. From then on it thinks 80 is 40,
 and vice versa. Which can really drive you up a tree. (The
 only way out of this mess, for sure, is to quit and go back
 to DOS and reload the interpreter.) Now, see this:

 1000 CLS : DEF SEG = &HB800 'prepare to load a BSAVE file
 1010 BLOAD "PICTURE.MSK",0 'a graphics screen "mask"
 1020 WIDTH 80 'ready to print text

 The "note" in the manual is wrong. Do not expect WIDTH to

The Blue Book About GW-BASIC and QuickBASIC - 103 -

 act like CLS. If the above program is jump started--as in
 GWBASIC <program>--the screen will be blank and the PCOPY
 page-0 will be "clear". If you BREAK and do a RUN--as we
 do when debugging--nothing gets cleared. (This is also
 true if line 1020 had said WIDTH 40.) The moral to this
 story is: Always issue a SCREEN-WIDTH-CLS sequence if you
 want to be sure of what will be seen, and, what the not yet
 visible parts of video memory looks like. PS: Always do
 it before a BLOAD, if what is being loaded was not saved in
 the current mode.

 WIDTH (QuickBASIC): All bets are off about the 40 vs. 80
 business. The compiler permits WIDTH 40 or WIDTH 80, and the
 result is "compatible" with the interpreter. It goes beyond
 the interpreter, however, and permits 0-255 to be used as an
 argument for WIDTH "SCRN:"--although, if WIDTH "SCRN:",0 is
 encountered, an error will be provoked at run time. There is
 no easy trick that can be used to find out what WIDTH is in
 vogue while a compiled program is running, so it is up to you
 to keep track of it yourself.

 PCOPY: The manuals say to see CLEAR for more information.
 Which is interesting reading material, but it has nothing to
 do with PCOPY. (An old typo most likely; probably should say,
 see CLS.) When editing program lines, DO NOT use PCOPY in
 immediate execution mode. Especially on an EGA. The small
 variations in video services between the system BIOS and the
 one on an EGA can sometimes cause the BASIC editor to garble
 your program.

 VIEW PRINT: Don't. Not if you want to LOCATE on line 25,
 and the program is supposed to run on anybody's machine. In
 the event you establish a text window, then later attempt to
 revert to using the whole screen, a LOCATE to line 25 may
 cause an error (ERR = 5). This is probably related to BIOS
 variations, also. My only known cure, if this happens, is
 to dump everything and reload the interpreter.

 "Viewport": This term is not defined, as such, anywhere.
 We are supposed to infer its meaning by reading the separate
 pages on CLS, VIEW, WINDOW, and their kin. Because they are
 inconsistent in terminology, and because this "concept" does
 not produce consistent results among the different adapters
 (various BIOS implementations), and because the interpreter
 and compiler behave with slight variations, the best advice
 is: Don't rock the boat. In a given machine, working with
 a given release of software, this concept can be appealing.

The Blue Book About GW-BASIC and QuickBASIC - 104 -

 It is not unlike atomic isotopes, however. The half-life of
 a given program may be dramatically different, depending on
 the numbers involved in the nucleus in which it was written.

 SCREEN (function): The newer manuals say this only works in
 "alpha mode". (The older books did not warn us this may not
 work in graphics modes.) The truth, in any event, depends on
 the IQ of the BIOS that is providing video services. Because
 characters become just so many bits in graphics modes, to
 respond to a BASIC request for a character's code the BIOS
 has to unscramble the bits to see what character they match.
 Some can do it, and some cannot. Also: In a CGA, which can
 re-encode characters from pixel patterns, it can do it for
 codes 128-255 only if GRAFTABL is in residence. In all cases,
 it is critical that matching font sets are involved. A BSAVE
 image, for example, can be interpreted correctly only if the
 character set then in residence exactly matches the one used
 at the time the image was generated. Which means you have to
 be very careful when writing programs on one machine that are
 destined for another. (This applies to entire character sets
 now that DLL Code Pages lets anyone fiddle with the fonts.)

 SCREEN (statement): The books all say the page arguments are
 usable only with EGA. Nothing prevents you from doing the
 same thing on a CGA, effectively, using POKE and PCOPY (for
 text), but it does take some programming work, and poking
 verbose text takes a lot of execution time. A real effective
 trick is to BLOAD text pages directly into video memory slots
 that correspond to PCOPY page numbers.

So goes my home remedies for the key words that give the worst
headaches. One more note is sorely needed, but there is no
handy place in the manual to write it. Except maybe, up front.
One of the meanest lessons to learn the hard way is to not edit
a program while in any graphics mode. While debugging graphics
programs it can be a nuisance to have to keep switching back to
text mode, but there is a real risk that the editor will garble
a program that is modified while in any of the graphics modes.
(This relates to my earlier notes about PCOPY, by the way.)

Now for some free code out of my modules library. These BASIC
routines are useful to show how some of the graphics statements
can be used. They are not textbook examples. They are bona
fide chunks of code from products that have been delivered to
live clients.

The Blue Book About GW-BASIC and QuickBASIC - 105 -

The first two modules are useful for enlarging images; the next
two are for rotating objects about their own axis. All four of
these use POINT to "read" pixels already on the screen and PSET
to "write" pixels where they are wanted. Because they conform
to conventional programming practices, they are equally useful
in all graphics modes, and work with either the interpreter or
the compiler.

From now on assume DEFINT C-L. While not critical, performance
is better with integer variables. With the interpreter, they
are all faster if remarks are omitted, and logic is condensed
into multiline statements. (Chapter 10 shows how coding style
impacts interpreted programs, and how to choose techniques that
give the best possible performance.)

To double the width of an image:

 1000 SCREEN 2 : DIM D(15) 'dot tank
 1010 LOCATE 2,2:PRINT "W" 'an 8 x 8 test icon
 1020 FOR E = 8 TO 15 'row loop
 1030 FOR F = 8 TO 15 'pick-up loop
 1040 D(F) = POINT(F,E) 'save dots on 1 row
 1050 NEXT : C = 8 'C = first column
 1060 FOR F = 8 TO 15 'replot 1 row
 1070 PSET(C,E),D(F) 'put 1 dot
 1080 PSET(C+1,E),D(F) 'second put, same dot
 1090 C=C+2 'bump column count
 1100 NEXT 'finish 1 row
 1110 NEXT 'finish all rows

To double the height of an image:

 2000 SCREEN 2 : DIM D(15) 'dot tank
 2010 LOCATE 2,2:PRINT "H" 'an 8 x 8 test icon
 2020 FOR E = 8 TO 15 'columns loop
 2030 FOR F = 8 TO 15 'pick-up loop
 2040 D(F) = POINT(E,F) 'save dots in 1 column
 2050 NEXT : L = 8 'L = first row
 2060 FOR F = 8 TO 15 're-plot 1 column
 2070 PSET(E,L),D(F) 'put 1 dot
 2080 PSET(E,L+1),D(F) 'second put, same dot
 2090 L = L+2 'bump row count
 2100 NEXT 'finish 1 column
 2110 NEXT 'finish all columns

The Blue Book About GW-BASIC and QuickBASIC - 106 -

To invert (flip) an image on its horizontal axis:

 3000 SCREEN 1 : WIDTH 80
 3010 LOCATE 2,2 : PRINT "L" 'an 8 x 8 test icon
 3020 FOR H = 8 TO 15 'columns loop
 3030 I = 8 : E = 15 'I = 1st row : E = end row
 3040 WHILE I<E 'from 1st to end
 3050 J=POINT(H,I) 'save dot at H,I
 3060 PSET(H,I),POINT(H,E) 'replace H,I with dot from H,E
 3070 PSET(H,E),J 'replace H,E with saved dot
 3080 I = I+1 : E = E-1 'down 1 row : end = 1 less
 3090 WEND 'finish 1 vertical line
 3100 NEXT 'finish 1 horizontal line

To reverse (spin) an image on its vertical axis:

 4000 SCREEN 1 : WIDTH 80
 4010 LOCATE 2,2 : PRINT "C" 'an 8 x 8 test icon
 4020 FOR H = 8 TO 15 'rows loop
 4030 I = 8 : E = 15 'I = 1st col : E = end col
 4040 WHILE I<E 'from 1st to end
 4050 J=POINT(I,H) 'save dot at I,H
 4060 PSET(I,H),POINT(E,H) 'replace I,H with dot from E,H
 4070 PSET(E,H),J 'replace E,H with saved dot
 4080 I = I+1 : E = E-1 'right 1 col : left = 1 less
 4090 WEND 'finish 1 horizontal line
 4100 NEXT 'finish 1 vertical line

An interesting trait of POINT and PSET (and PRESET) is that
they can be vectored into thin air. Even so, as the books say,
their arguments must stay within the natural range of integers
(-32768 to 32767). In the above routines the coordinates that
are shown align with the positioning mechanics of LOCATE, i.e.
uniform spacing in increments of 8 columns (16 if WIDTH 40) and
8 rows. This does not have to be, of course; the logic itself
can be used for any size of rectangular icon, placed anywhere,
by changing the start and stop arguments for the loops.

This next routine uses DRAW, CIRCLE, and PAINT to draw a big
clock in the middle of the screen, in "medium resolution". My
term. Various texts play with this. Some used to call this
"high resolution". When higher resolution images came along,
medium, high, and very high resolution became state of the art

The Blue Book About GW-BASIC and QuickBASIC - 107 -

terminology. (Interestingly enough, "low resolution" is not a
popular term.)

Here, in SCREEN 1 or SCREEN 2, with WIDTH 40, this shorty uses
graphics statements, and LOCATE and PRINT. And DRAW, which is
a handy way to dangle the angle of clock hands.

 5000 DEFINT C-L:DEFSTR M-Z 'define types
 5010 T5=SPACE$(5) 'time$ tank
 5020 SCREEN 1,0:WIDTH 40:CLS 'screen set up
 5030 LSET T5=TIME$ 'get system time
 5040 L = 360-(30*VAL(T5)+VAL(MID$(T5,4))/2) 'long hand angle
 5050 H = 360-(6*VAL(MID$(T5,4))) 'hour hand angle
 5060 CIRCLE(160,100),7,2 'dot at junction
 5070 PAINT(160,100),2
 5080 DRAW "C2 TA=L; NU36" 'draw long hand
 5090 DRAW "TA=H; NU50" 'draw hour hand
 5100 FOR I = 86 TO 90
 5110 CIRCLE(160,100),I,2 'rim around clock
 5120 NEXT
 5130 LOCATE 6,19 : PRINT 12 : LOCATE 20,20 : PRINT 6
 5140 LOCATE 13,11 : PRINT 9 : LOCATE 13,28 : PRINT 3
 5150 CIRCLE(198,52),1 : CIRCLE(198,150),1 'dot @ 1 & 5
 5160 CIRCLE(222,72),1 : CIRCLE(222,126),1 'dot @ 2 & 4
 5170 CIRCLE(122,52),1 : CIRCLE(122,150),1 'dot @ 7 & 11
 5180 CIRCLE(98,72),1 : CIRCLE(98,126),1 'dot @ 8 & 10

As used here, DRAW is handy. It is used to draw two short
lines. Which could be done with LINE. In this case, it also
takes care of the angle of those lines. Which is one of the
few good uses of the "Graphics Macro Language".

Examples of DRAW in the older manuals use string concatenation.
For other than observation, such examples are useless. (See
Chapter 4; it dwells at length on why concatenation should not
be used in real programs.) The alternative is to set up a base
set of "command strings", then use MID$-type mechanics to alter
them during program execution, or to code one whale of a lot
of quoted strings. In the end, because of all of the overhead
needed to avoid memory fragmentation, you too may conclude:
DRAW is handy, but not as often as its advocates would lead us
to believe. More personal cynicism: Graphics programming is
highly humdrum, no matter how you do it.

In the routine above, see the tedium involved in plotting the
dots that are used in place of numbers on the clock face. In
fact, this short program took over eight man-hours to develop.

The Blue Book About GW-BASIC and QuickBASIC - 108 -

Which included the time to design, code, debug, and test, with
CGA, EGA, and VGA, for both SCREEN 1 and 2, using interpreted
BASIC. (DRAW in the early releases of the QuickBASIC compiler
could not include the syntax used here, forcing us to use the
cumbersome VARPTR alternative. And that is very humdrum.)

In the interest of saving time, which is of prime interest to
those of us programming for a living, the need for a graphics
tool soon becomes obvious. My own, coded entirely in BASIC,
is not unlike a lot of the "paint" programs in the stores. (In
fact, it was development of that tool that first gave birth to
the early routines now in my modules library, including those
above that can enlarge and rotate icons.)

The big advantage to a homemade tool, written in BASIC, is the
ability to generate "cut and paste" images that can be stored
in an icons-library; images that will be "compatible" with any
end-product application program also written in BASIC.

Two different techniques can be used. BSAVE and BLOAD are best
for full screen "masks". They impose no memory burden for the
end-use program. PUT and GET are best used for partial-screen
images, and for assembling full page montages to be stored as
a final BSAVE file. But PUT and GET do require vast chunks of
temporary storage, for both, the generating program and the one
that needs to merely do a GET so that it can then PUT what was
gotten.

The easiest of these two techniques to implement is BSAVE and
BLOAD. All that need be known, basically, is how much memory
to save. PUT and GET demands a tad more than can be gleaned
from the manuals. Taking the easiest first, see that BSAVE and
BLOAD of graphics screens is similar to doing it in text mode.
(Chapter 6 gives that detail.)

Graphics pages are mapped in 16kb blocks. In SCREEN 1 or 2,
for example, the size-to-save argument is 16384, which is the
inclusive total of from 0 to 16383, counting position-0 as 1.

 Thus: BSAVE "picture.msk",0,16384 stores an entire screen.

 Then: BLOAD "picture.msk",0 will reload (redisplay) it.

Of course, DEF SEG = &HB800 must be issued first, in either of
these cases. As a matter of habit, do a default DEF SEG as
soon as possible after whatever it was that required that it be

The Blue Book About GW-BASIC and QuickBASIC - 109 -

changed in the first place. That advice is in the fine print
in the manuals, but they do not say why. My advice is based on
an awareness that the interpreter can run amok once in a while
because it uses the "default address" itself. It is not easy
to get a handle on just when, however.

One rarely documented piece of trivia affords an opportunity
when doing a BSAVE of 16kb graphics screens. There is a hidden
string of 192 bytes that are not used for anything, but they
are saved in a BSAVE file, and therefore, reloaded by BLOAD.

The advantage: COLOR, per se, is not saved with BSAVE, nor
for that matter, is the 1 or the 2 used for a SCREEN mode, or
whether WIDTH 40 or 80 was in effect at that time. So, POKE
can be used to store these values in a file that goes to disk,
so that a using program can automatically conform to whatever
adapter settings existed when the file was generated.

This can be done in one of two ways: Do the BLOAD then use
PEEK to condition COLOR and WIDTH statements, etc., or by
opening the picture-file first, as a relative file, so that
a GET can be done to obtain the values needed to condition the
adapter prior to doing BLOAD.

The (almost) secret 192 bytes are located between the two 8000
byte blocks that make up a 16kb graphics page. The first byte
of that free space can be seen by: DEF SEG = &HB800, then a
PEEK(8000). To discern the magic of 192, remember that 8kb is
really 8192, and two times 8192 is 16384, which is the sizing
argument needed to BSAVE all of a 16kb graphics page.

Here is how to see the beginning of that "hidden" string of
bytes before a BLOAD is done:

 OPEN "picture.msk" AS 1 LEN = 1 'relative file
 FIELD 1,1 AS X 'DEFSTR X already done
 GET 1,8008 '1st byte is now in X

The record (byte) pointer is determined by adding 8 to 8000,
to account for the 7-byte header in a BSAVE file. (What the
header bytes contain is covered in detail in Chapter 6, also.)

When opting to go this route, be sure to CLOSE a file that is
about to be implicitly opened by BLOAD, or you will trigger a
"File already open" error. PS: BSAVE and BLOAD both cause an
implicit OPEN and CLOSE sequence; another little omission in
the language manuals that is irritating to have to learn by

The Blue Book About GW-BASIC and QuickBASIC - 110 -

trial and error.

As we have come to expect, trial and error is the only sure way
to find out the full truth about the use of PUT and GET, also.
Here are a few more notes from the margins of my manuals; they
might save you the aggravation of some of my errors.

 To GET an image from video memory into an array, the name of
 the array must be specified in the GET statement. Ok. They
 forgot to tell us that the array must have been explicitly
 dimensioned beforehand. (Traditionally, in BASIC, DIM only
 had to be specified if any of the dimensions was larger than
 ten.)

 PUT cannot be used if no GET has yet been done. At a glance
 it would seem that one would only want to PUT after a GET.
 In practice, however, it is easier to code routines that are
 supposed to PUT what used to be, before doing a GET at a new
 location. To make this possible, immediately after a DIM of
 a pixel tank, force-load dummy "image dimensions" into the
 array. This can be done in one of two ways:

 DIM D(100) : GET(0,0)-(0,0)

 or

 DIM D(100) : D(0) = 1 : D(1) = 1

 The second trick shown here is the equivalent of what would
 have been the natural consequence of the first one, assuming
 that DEFINT D had already been done. The advantage of the
 the first method is that a first PUT will reproduce whatever
 already exists at that initial location. (Assuming PSET is
 the "action verb" following PUT.)

 The older manuals (1986) did not give us a clue about how to
 compute how large an array had to be, to hold an image of a
 given rectangular dimension. This oversight forced me to do
 a lot of probe coding; "Illegal function call" is not very
 instructive.

 The newer manuals provide a formulae, which is nice, and it
 works. One more bullet would have been better still, to keep
 you from getting shot down inadvertently. The formulae shown
 requires an awareness of how many pixels are used in various
 SCREEN modes. When you follow their cross reference to the

The Blue Book About GW-BASIC and QuickBASIC - 111 -

 description of SCREEN to find this out, you still may come up
 short. WIDTH 40 requires twice as much array space as does
 WIDTH 80, in any of the graphics modes. In fact, it would be
 nice if they went all the way, and explained that graphics
 pixel-mapping is established by the combination of SCREEN and
 WIDTH, not necessarily by a SCREEN statement alone.

 The formulae shown in one of the BASIC manuals is echoed here,
 in the event yours does not have it. Use this (if WIDTH 80,
 divide this by 2) as the DIM-size for the smallest possible
 integer array:

 4+INT(C*I+7)/8)*L

 where C = columns, I = bits-per-pixel, and L = lines (rows).

 It is equally nice that the description of PUT warns us that
 an "Illegal function call" will occur if the image to be PUT
 is too large to fit on the screen. Because the error-trap
 mechanics in BASIC are somewhat flaky (read Chapter 9), it
 is better to know what is legal in the first place. Then you
 can decide whether or not you want to take a chance on the
 sheriff catching you.

 Sticking with integer-arrays--which is practical because
 there is no advantage to using floating point arrays--the
 first two array elements contain the column-count, and the
 row-count, of an image captured with GET. By testing these
 two values just before a PUT, we can determine if we are apt
 to go over the edge and bring down the long arm of the law.

 Assuming OPTION BASE 0--which is a safe assumption because
 BASE 1 has never been seen in any of my programs--see this:

 GET(0,0)-(C,L),D 'D(0) = C+1 and D(1) = L+1

 These are pixel position counts, e.g., if D(0) is ten, add 9
 to the first argument in a PUT to see if there is enough room
 for the width of an image. In the same way, if D(1) is five,
 add 4 to the second argument of a PUT to see if the length of
 an image will fit. PS: Maintain an awareness also, that the
 C-factor (columns) is the one that is double for WIDTH 40 vs.
 WIDTH 80. The value in D(0) is the actual number needed if
 no change in width occurs between the GET and PUT.

Now that our manuals have been illuminated, we can get on with

The Blue Book About GW-BASIC and QuickBASIC - 112 -

the business of creating icon files. Which is fairly simple:
BSAVE "icon.msk",F,L--none of which has anything to do with
graphics, because BSAVE can copy any chunk of memory into a
"binary file" on disk.

Continuing with the same names in the above one-liners, the
value for F--the "from address"--is equal to VARPTR(D(0)).
Not to beat a dead horse, but notice that the default DEF SEG
is the correct one to be riding before a BSAVE, for anything
coming from an interpreted BASIC program's own working storage
area. (For LNA addresses--"Large Numeric Arrays"--a term
invented by the compiler writers, see the QuickBASIC manuals.)

The L-for-Length factor, the number of bytes to be saved from
an array, must be at least as large as the GET-image required.
It does not have to be as large as the array itself, of course,
in the event you are using a large, general purpose dot-tank to
hold images of various sizes. Again using the preceding names
of variables, here is my formula for determining L, which is
a minor variation of the one used for calculating the size of
an array needed for GET:

 4+INT((D(0)+7)/8)*D(1)

The difference being, obviously, the bits-per-pixel factor is
omitted here, since it has already been accounted for.

The BLOAD counterpart to BSAVE, for home-brew icons, is rather
simple too. Use VARTPTR(D(0)) as the offset argument in BLOAD,
and do a PUT of array D. To preclude an undesirable run time
error, the same test suggested earlier can be used to ascertain
whether the image to be output will have enough room toward the
right, and downward, from the vector named in PUT.

There are times, here too, that it would be nice to know what
graphics mode was in use at the time an array-icon was saved.
An easy way to make an icon file self-identifying is to store
a few pointers in the array, just before a BSAVE is done.

As a convention, for example, to flag WIDTH 40 vs. 80, set D(0)
to a minus, and tell everyone that when they first BLOAD an
icon, to ascertain the sign of D(0), then immediately force it
to be positive; like D(0) = ABS(D(0)). (This is essential
before doing any PUT.)

In tight corners, to make sure that a dot-tank array is large

The Blue Book About GW-BASIC and QuickBASIC - 113 -

enough to hold an anticipated icon file, the size of the file
itself can be examined. Like this:

 OPEN "icon.msk" as 1 : B = LOF(1) : CLOSE 1

The smallest integer array that can hold this file will be one
with a DIM not less than: (B-8)/2. This is valid for newer
releases of BASIC; in days of yore, (B-15)/2 would be correct.
Since B-8 is a tad larger than B-15, just stick to B-8 and not
worry about which specific software release quit replicating
the file-header bytes on the tail end of BSAVE files.

For the sake of safety, a parting caveat is needed: An icon
file about to be loaded must be able to fit into an already
declared array; BLOAD does not concern itself with anybody
else's fate. You can accidentally clobber your program if an
incoming file overlays memory areas that it should not. Read
Chapter 3 if you are interested in how arrays are stacked up
in memory by the GW-BASIC interpreter.

For those motivated by such things as productivity and profit,
this chapter has, hopefully, favorably enhanced at least one
or the other. For those enjoying the graphics game, hopefully
some of this has clarified the rule books, at least.

For pixel poking cowboys, the following program may be of use.
It will draw a border around the screen, in SCREEN 1 or 2, no
matter what WIDTH has been established. To be able to POKE
pixels, rather than to use the high-level language capabilities
of BASIC, it is necessary to know which bits to shoot at.

How to draw a bead on particular bit positions can be discerned
from the arguments imbedded in the code. For the high priced
adapters, they are valid for SCREEN 1 and 2, but not for modes
7 and above. If you are inclined toward the big game, change
the DEF SEG to &HA00, and experiment with the offsets until
you get what you want to see. And have fun.

 6000 DEFINT I
 6010 DEF SEG = &HB800 'CGA memory
 6020 SCREEN 1
 6030 FOR I = 0 TO 7999 STEP 80 'vertical lines
 6040 POKE I,240 'bits 4-7 cols 0-3
 6050 POKE I+8192,240 'bits 4-7 cols 0-3
 6060 POKE I+79,15 'bits 0-3 cols 76-79
 6070 POKE I+8192+79,15 'bits 0-3 cols 76-79

The Blue Book About GW-BASIC and QuickBASIC - 114 -

 6080 NEXT
 6090 FOR I = 0 TO 79 'horizontal lines
 6100 POKE I,255 'bits 0-7 line 0
 6110 POKE I+8192,255 'bits 0-7 line 1
 6120 POKE I+7920,255 'bits 0-7 line 98
 6130 POKE I+7920+8192,255 'bits 0-7 line 99
 6140 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 115 -

Chapter 8 = FILES

Presumably you are using a version of the interpreter that has
disk files capability. If not, what follows is not likely to
be very interesting reading.

My assumption is, if you do not have a disk-based machine, you
are probably not interested in reading anything in this book.
The old cassette-based machines must all be in the silicon
graveyards by now, and it is hard to believe that anyone makes
much use of the cassette-only mode of operation of the newer
machines that have the "cassette portion" of the interpreter
burned-in, in ROM.

When is the last time any programmer had to use MOTOR? It is
still in the language. We used to use it to start the capstan
motor running, preparatory to processing data on magnetic tape.
Perhaps we should be grateful that REWIND and the old "punched
paper tape" commands finally passed on, to the big bit bucket
in the sky. (MOTOR is foreign to QuickBASIC. It is still in
GW-BASIC, probably because it was burned into the memory of so
many ROMs just a few years ago.)

On the other hand, some old timers are sorely missed. Once
upon a time, in the early days of disks, we could OPEN a drive
as a device and access disk sectors on a relative basis. Which
made it pretty easy to write tools to fix disks that had become
corrupted. And to be able to control what got written where,
and more importantly, when, exactly, data was actually output
to the disk.

Hold on. This chapter is not a trip down memory lane. A few
nostalgic remarks are useful, however, to set the tone for what
follows. File processing in BASIC is tied to both, its history
of evolution, and to anachronisms that defy any sense of logic.

One purpose of this chapter is to lower the bridge between DOS
and BASIC. The language manuals read as if what can be done,
and what is done, is unique to BASIC. Because most I/O done by
BASIC are via requests to DOS services, programmers must know
thoroughly, DOS data file concepts: No matter what language
they are programming in.

Where files are, and when records are actually written in those
files is managed by DOS. What is in files is up to you. Some

The Blue Book About GW-BASIC and QuickBASIC - 116 -

BASIC commands do fool with the data stream you read or send to
a file; it is not necessary to use those commands at all. In
fact, in DOS, nothing in any file identifies them specifically
as belonging to BASIC or any other language. (There is no way
to look inside a file and know, absolutely, how it came to be.)

A second purpose of this chapter is to describe how, in BASIC,
to store, retrieve, and update data in disk files. How to do
it quickly, and safely. Here the discussion is about general
concepts. Canned coding techniques for implementing some of
these ideas can be found in Chapter 13.

The language manual is organized as two books in one. One is
called the "User's Guide", the other is the "User's Reference".
Of these two, the "guide" is, undoubtedly, the most misleading
piece of literature in the field of programming. Especially
so, when it comes to doing data file processing.

For example: "Sequential files are easier to create than...."
And, "... series of ASCII characters." Further: "Creating and
accessing random access files requires more program steps...
requires less room...stores them in a compressed format in the
form of a string."

Here is my alternative introduction on the same subject: If
you want to use variants of INPUT and PRINT to do file I/O, OPEN
the file in INPUT or OUTPUT mode. If you want to GET and PUT,
OPEN the file in RANDOM mode. Conversely, if you want to move
around in a file, you must use GET and PUT. If you only need to
process records serially, from the beginning of a file to its
end, you may be able to read it with some form of INPUT, or write
records with PRINT or WRITE. Maybe.

Whether one is easier than the other can be argued, but to no
purpose. Which method to use depends on what it is you want to
accomplish; to do a good job in either case is not especially
easy. In fact, BASIC sometimes makes it more of a chore to do
either, than it is in some other languages.

Whether the data in a file is "ASCII characters", or fields
have "compressed strings" is up to you. And it certainly has
nothing to do with BASIC. All bytes in all files are simply
bytes. Whether they should be interpreted in groups (fields)
as accounting figures, as text, or as "binary" (words) as in a
COM or EXE file depends on the frame of mind of two people: He
that created the a, and he that wishes to make use of it.

The Blue Book About GW-BASIC and QuickBASIC - 117 -

It is certainly possible, and practical, to OPEN any file on
a disk in either mode. Often, both modes can be used on the
same file at different points in time. Occasionally, even,
both modes can be used to an advantage, on a single file at
the same time.

Yes, using two different modes of OPEN on a given file is a
little odd. Perhaps. It is also odd, what we have to do to
get a machine to do what we want it to sometimes. Which is the
root of my earlier remark that BASIC (and DOS) sometimes makes
it a real chore to do data file processing.

Of these two, DOS is the nutcracker, more so than BASIC. With
the exception of indexed-files -- which BASIC gives no help on
-- most of what follows is true, no matter what programming
language we use. (At the conceptual level at least--commands
are spelled different in other languages, and they each have
their own vagaries, but the fundamental problems are the same.)

From here on my presentation is organized along the same lines
as data files are typically processed. In three different ways.

 Sequential files: A file is read (or written) from beginning
 to end without "wandering around" or leaving any gaps.

 Relative files: Data in a file are accessed anywhere within
 the file by use of a record pointer. In concept, this is no
 different than using a subscript to access elements in an
 array.

 Indexed files: Access to data in a file is exactly the same
 as for relative files, but rather than having to use a number
 to find a record, an "index key" can be used. Thus, see that
 an indexed file is a relative file whose records can be found
 by referring first to an index, to get the relative position
 number of a record (stored with the key), then by using that
 pointer to access the desired record.

Notice that these three terms (commonly used by software types
on the big machines) apply to how data in a file is accessed,
not about what is in the bytes. There is also, usually, an
implicit meaning associated with each of these terms about how
data is organized in files: About the grouping of bytes into
records and fields.

The Blue Book About GW-BASIC and QuickBASIC - 118 -

Notice also that the accepted meaning of these terms pre-dates
DOS and BASIC. Why they insist on warping the English language
is beyond me. What they call "random files" should be referred
to as relative files. Little logical use can be made of data
accessed on a haphazard basis (see Webster re: random). For a
really good description of these three file concepts, read any
COBOL manual.

Neither DOS nor BASIC has any way of knowing what is in a file.
A file is simply a bunch of bytes. The terms used here are
convenient for human dialogue; they infer how data is arranged
in files, by a programmer.

Now is the time for all good coders to review which of these is
correct for a BASIC program. To do so, we must know what BASIC
does. Specifically. We begin with a look at sequential files.
They are the simplest in concept, but most peculiar insofar as
how BASIC treats them. Relative files are next; nearly all data
processing in BASIC must be done with relative files. This is
also fundamental to indexed files. Because BASIC does not have
indexed file capabilities, per se, if we want to access records
on the basis of keys, we have to generate and maintain our own
"key index".

PS: Even in languages that do support indexed files, it is not
uncommon for a programmer to do his own thing, to overcome real
or perceived inefficiencies inherent to that language. This is
probably more often done in the world of DOS than with other
operating systems, regardless of the language used.

Sequential files contain ASCII character strings. So the books
say. They are wrong. ASCII defines a range of codes from 0
through 127 (decimal). The other 128 numbers (128-255) that an
8-bit byte can represent are not defined by that standard, and
are therefore, not properly called ASCII characters. These are
codes for fancy characters that can be displayed on a monitor,
and, printed by some printers. Bytes in the 128-255 range can
also be read or written by BASIC programs to data files that
are opened for INPUT or OUTPUT. Whether they should be seen as
characters, or symbols, or whatever, depends on the eyes of the
beholder and the legerdemain of the magician that stored them in
a file in the first place.

The low-order ASCII codes, from 0 through 31, are designated as
control codes, rather than as representing human-readable text

The Blue Book About GW-BASIC and QuickBASIC - 119 -

characters. In a narrow context, BASIC treats three of these
as the standard intended, when reading or writing data in files
opened in sequential processing mode. The specific codes that
BASIC somewhat conforms to the standard on, are:

 decimal ASCII meaning BASIC behavior

 10 LF - line feed end of field (weird)
 13 CR - carriage return end of field & record
 26 SS - start special sequence end of file sentinel

The other code possibilities in the 8-bit, 0-255 range are
processed by BASIC no different than is the letter A (65),
save for a comma (44), and a quotation mark (34), as we will
soon see. My remark above that code 10 is weird is because

 PRINT #1,CHR$(10);"hello";CHR$(10)

will output what we say, but if that data stream is read by

 LINE INPUT #1,X$

then X$ will contain nine bytes. The values of those bytes in
decimal are: 10, 104, 101, 108, 108, 111, 10, 13, and 10. What
is peculiar is that code 10 is treated like any character, but
it also causes the 13/10 pair at the end to be read into X$, as
if they too were regular characters.

Normally, a 13/10 pair (0D/0A for those that like hexadecimal)
work as an end-of-input-into-a-variable, and those codes never
normally get passed up to a BASIC program using OPEN for INPUT.
Which is also true of code-13, by itself, by the way, whether
it is followed by a code-10, or not.

As a last act, PRINT to a file is always followed by the 13/10
pair. BASIC does this for you, whether you like it or not.
Just like when printing, semicolons and commas between fields
in a PRINT statement cause continuous strings of output; the
semicolon and comma are merely syntax characters, they are
not output to the file. (Unlike the semicolon, which does
nothing, the comma causes extra spaces to be generated in the
output stream.)

The WRITE command was invented a few years ago to simplify the
problem of generating field separators in output streams. They
are needed to be able to read sequential file data with INPUT

The Blue Book About GW-BASIC and QuickBASIC - 120 -

or LINE INPUT (with the file-number syntax) into separate
variables used in a single statement. Like in:

 LINE INPUT #1,X$,Y$,Z$

the incoming data stream must have commas imbedded in the data
so that the data can be aligned with the separate names of your
variables (fields).

WRITE will generate those commas on the same basis as they
were used. Like:

 WRITE #1,X$,Y$,Z$

will cause a comma to be inserted in the output file between
each of the fields represented by X$, Y$, and Z$. Wow.

WRITE also puts free quotation marks before and after data
output from string variables for us, so that on INPUT someday,
the interpreter will not get confused by commas and quotation
marks that are really text, i.e., that are not control codes
that BASIC depends upon to align data bytes with variables.
Wow, again. (It is hard to believe that anyone ever uses WRITE;
none of my programs ever have.)

INPUT$ is another odd BASIC command, only sometimes handy for
processing sequential file data. Like: X$ = INPUT$(1,1) which
will read one byte--the next one in sequence since the last
"read"--and assign that byte to X$, no matter what that byte
contains. INPUT$ can be used to read varying numbers of bytes,
in groups. It is necessary for the using statement to know
how many to ask for, lest it ask for more than can be had.

The reference manual implies that INPUT$ is for communications
processing. Beats me why. A file is a file, and bytes are
bytes, no matter whether they travel courtesy of the telephone
company, or are merely dizzy from riding around on a spinning
disk.

In practice, OPEN for INPUT is nearly useless, no matter why
you might be inclined to do it. No matter what is in a file,
written by a BASIC program, or anyone else, coming from disk,
down a wire, or right out of the ether.

The practicality of using OPEN for INPUT is severely limited by

The Blue Book About GW-BASIC and QuickBASIC - 121 -

what happens when we do INPUT or LINE INPUT or INPUT$ into a
string variable. The cruncher is, any form of INPUT works like
LET, which burns up string-space like we owned stock in the
companies that make memory chips. (See Chapter 4. It is this
little "gotcha" that, perhaps, motivated the observation that
sequential files are slower than....)

Outgoing data can be shipped, after doing an OPEN for OUTPUT,
with no hidden performance impacts. PRINT to a file is an easy
method for generating variable length strings of bytes that are
terminated by a 13/10 pair of bytes. If that is desirable.

That other byte generated by BASIC, whether we like it or not,
is a code-26 (&H1A) when a CLOSE is done. It is the last byte
written onto the tail end of a file that was opened for OUTPUT.
It is what is called in the DOS manuals, a "Control-Z code". (It
is amusing, but offensive, to see DOS manuals turn caret into
a verb, as in: "... a careted character.")

This perquisite is an inheritance. In the early days of CP/M,
which was the father that spawned DOS and its intermediates, a
code-26 was needed as a sentinel to mark the end of a sequential
input stream. The file directory mechanics in CP/M could not
afford the space needed to know how long a file was, in terms of
the number of bytes it had in it.

CP/M knew file lengths in terms of sector-bunches. (Which,
incidentally, is the root cause of why the default record size
in BASIC is also 128. Which was, also, the size of a sector in
the earliest days of flexible disk technology.) DOS knows how
many bytes a file has in it, no matter who wrote the file, in
whatever language was in use, at the time the file was last
written-to (and successfully closed by) DOS.

Because DOS knows exactly how many bytes are in a file, the old
code-26 is no longer a demand of DOS, and therefore, it is no
longer needed by BASIC, either. An end-of-file will be flagged
when reading sequential files, by any program running around in
the wonderful world of DOS, whether the file has a code-26 tied
to its tail, or not. By definition, then, that archaic guard
byte that BASIC still tacks onto sequential files when CLOSE is
done is not needed, even by BASIC, when it reads its own files.

On the other hand, you get ejected from the DOS carrousel when
a code-26 is spotted halfway around, or anywhere else, be it
the end of a file or not, if you are reading serially from a

The Blue Book About GW-BASIC and QuickBASIC - 122 -

file that was opened in "ASCII mode" (DOS meaning).

Now, reread the DOS definition of its COPY command, and glean
what the slash-A and slash-B options really mean. And, from
whence their need has been perceived. Their use of the terms
ASCII and binary are as ambiguous as they are in BASIC books.
Of course, we need no reminder that DOS and GW-BASIC manuals
were written with pens dipped in the same ink well.

Save for the BASIC-only peculiar fondling of commas and quotes,
we can summarize nearly the whole subject of sequential files
as being akin to what DOS calls ASCII files. Although they
take liberal tradecraft license with our native language, the
BASIC manual could simply say that if you understand the argot
of DOS, OPEN for INPUT and for OUTPUT works just like DOS says,
when it talks about using DOS commands such as COPY, and SORT,
and EDLIN.

To me, with my penchant for the simple, nothing could be more
straightforward than relative files. We can GET any byte we
want to, and PUT one wherever we want, whenever the mood comes
upon us, without worrying about which codes are likely to upset
the apple cart.

Some would seem to revel in the sublime. Internally, BASIC has
its own scheme for storing numeric values. (Chapter 5 pounds
that pretty hard.) Because the technique that is used is very
efficient for storing great big numbers in a minimum number of
bytes, it is easy to understand why the manual brags that BASIC
stores data in relative files "...in a compressed format."

Bragging is one thing, but they carry on with obfuscation about
using MKD$, CVD, and their kin. Which need not have been said
at all. Whether you opt to use those functions in conjunction
with processing data stored in disk files is totally dependent
upon what you perceive you ought to do. Which, in any event,
has nothing to do with the fundamental concept of storing data
in files that are to be processed on a relative basis. It is
even possible, and practical, and a pretty good trick once in
while, to PRINT #1,MKD$(A), for example. The choice, in any
event, is yours; do not be misguided by a scribe that makes a
living writing manuals, rather than by writing programs.

The quintessential aspect of relative files in BASIC is FIELD.
When a GET is done, a string of bytes is copied from a DOS I/O

The Blue Book About GW-BASIC and QuickBASIC - 123 -

buffer into a BASIC buffer. The "standard way" to gain access
to those bytes is via string variables that have been declared
to be for that purpose. They are declared in FIELD statements.

The naming of variables in FIELD statements does five things:

 1. The name-pointer is now aimed up into a file I/O buffer.
 (String variables normally point to literals in the body
 of your program, or, down into so called string-space;
 q.v. Chapter 4.)

 2. The structure of what is expected to be in records, in
 this file, is described (to yourself) by the order in
 which variables are named, and the field size stated
 with each name.

 3. Each named string variable is explicitly defined as a
 fixed-length string of bytes. They enjoy a substring
 posture (of the total string that represents a record),
 relative to the order in which they are stated in FIELD.

 4. In concept, GET is like using LET several times: Each
 variable named in a FIELD statement will contain an image
 of what was read from a disk, as a substring of that
 contiguous string of bytes then in the file I/O buffer.

 5. When a PUT is done, the entire buffer is passed back to
 DOS, so that it can overwrite the area of the disk from
 whence this "record string" came from. While data is in
 your buffer, whichever fields (variables named in FIELD)
 you opt to fool with, will be "updated" on the disk. See
 that the content of variables that you do not change go
 back to the disk, just as they were.

My attempt to describe what you probably already know is not
as succinct as could be done by a pro author, but it is much
more correct than the opening verses about files in the BASIC
hymnal called the "User's Guide".

Whether you prefer the argot of the manuals or my awkward stab
at using conventional English is unimportant. Communication
is, however. There are a number of things that are not said
at all in the manuals. The whole truth needs to be known if
they actually expect us to make intelligent use of what is,
actually, a powerful language product.

The Blue Book About GW-BASIC and QuickBASIC - 124 -

It is unlikely that a gun manufacturer would be guilty of not
describing safety features of his product. Misuse of BASIC is
not likely to cause you to accidentally shoot anybody. There
is a real risk, however, that a badly written file processing
program could cause an operator to want to strangle you.

In the interest of filling in the voids, here are some more
notes compiled from the scratches penned in the margins of the
pages in my manuals.

 OPEN: Do not use the archaic form of syntax, the one where
 you use letters like "I" and "O" and "A" to declare a file
 access mode. It does not behave exactly as does the modern
 form of syntax, despite the manual's promise. Re: You can
 OPEN and CLOSE a file (number) as many times as you want to.
 No you cannot. If the old fashioned form of OPEN is used, an
 error may be provoked on the 16th attempt to execute OPEN.
 This bug is wobbly, and crops up only at certain times, but
 it does not really matter when. There is no good reason to
 dredge up dying bugs.

 LEN: State it explicitly, even if 128 is the desired number.
 An error trap will occur if this number is larger than that
 specified with a slash-S when GW-BASIC is loaded. If not
 stated, an error is not flagged until a FIELD statement is
 encountered that attempts to exceed 128, or, the global size
 maximum specified when BASIC is jump started. It is better
 to have an OPEN fail, than to crash later, leaving possibly,
 a fractured FAT on your favorite disk. (PS: QuickBASIC has
 no counterpart to the slash-S option.)

 LEN: The scribe that said you could specify 1-32767 never
 tried it. If you try to start GW-BASIC with /S:32767 it will
 not work. Even if you also specify /F:1, you will still get
 a DOS message: "Out of memory". Even if you have a couple
 of million bytes of RAM sitting empty. The practical limit
 for LEN is about 8kb, which will leave you enough room in
 BASIC's 64kb program-bucket to run a few lines of code. Bear
 in mind well, whatever slash-S option is specified, it will
 apply to all files once the interpreter is loaded.

 FIELD: A variable-name may be used more than once in the
 same statement. Example: FIELD 1,3 AS X$,4 AS W$,2 AS X$.
 In this case, X$ is 2 bytes, beginning at position eight,
 counting from the left. The first X$ is similar to FILLER in
 COBOL. The reason for doing this in BASIC is to obtain the

The Blue Book About GW-BASIC and QuickBASIC - 125 -

 desired alignment of name-pointers into a buffer, without
 concocting artificial names that are not going to be used.
 (Chapter 3 explains why we should coin no more variables than
 are actually needed.)

 FIELD: String-array elements can be named just like discrete
 variables. In fact, this is great for updating records with
 FOR/NEXT loops. There are a few pesky points to ponder,
 however, when opting to go this route:

 + If an array subscript named in FIELD is larger than 10,
 a DIM must be done before this statement is attempted.

 + It is the individual elements of an array that are named
 in a FIELD statement that are associated with a file
 buffer, not the entire array. Looping logic that whacks
 string arrays must take care to not abuse subscript
 positions sacred to a file. (It is not altogether a bad
 technique to have one array do double duty, where, some
 spots are "normal" strings, and some equate to fields in
 data records.)

 + In the magic kingdom of the compiler, all fielded names,
 and the data they point to, are abandoned on CLOSE. This
 has a side affect, in the case of string arrays, of being
 similar to an ERASE, but of only those array positions
 specifically named in a FIELD statement.

 + ERASE and DIM work as would be expected. If FIELD uses
 array names and discrete variables, also, the pointers
 into the buffer for the simple variables maintain their
 relative position; the substrings previously pointed to
 by array declarations are "logical gaps". ERASE does not
 "erase" the data contained in the I/O buffer. Naturally,
 DIM done again for the same array means that all of its
 subscripts now point into string-space, notwithstanding
 whether some may have previously been aimed into a file
 buffer.

 LOC: If you GET 1,5 (or PUT 1,5) then LOC(1) will report 5
 as the current record pointer. Just like the books say. If
 you GET 1,32767 the LOC(1) report is correct, but GET 1,32768
 will cause LOC(1) to report -32768; and you cannot PUT to a
 negative record position. If you GET 1,65536 then LOC(1)
 comes up zero, and you cannot PUT to zero, either. Worse
 still, GET 1,65537 followed by PUT 1,LOC(1) will overwrite
 record number 1, not record number 65537. Annotate your

The Blue Book About GW-BASIC and QuickBASIC - 126 -

 manual in red: LOC is an integer inside the interpreter. It
 is automatically reset to 0 each time you pass 65536, and,
 reports negative complements of 65536 for records in the
 range 32768 through 65535. Meaning: LOC is pragmatically
 useless (dangerous) for a lot of files.

 LOC: In QuickBASIC the above paragraph does not apply. If
 you go to the extremes necessary to solve the LOC problem for
 an interpreted program, all that work is for naught if you
 later use the compiler. The simplest solution is to adopt a
 habit of maintaining your own GET/PUT counter; use either a
 single or double precision variable, depending on the growth
 anticipated for a given file, and not worry about LOC limits.

 LOF: The length of a file is always reported as the number
 of bytes in that file. To equate this to how many records
 are in a file, divide LOF by the LEN argument used in OPEN.
 That advice in the manuals is valid and accurate. Make it
 a habit to use the forward-slash in the division expression.
 The back-slash is used in BASIC for integer division; the
 compiler will not tolerate this for an expression involving
 LOF. (The compiler thinks it is smarter than you. You know
 the answer is going to be small enough to fit into an integer
 variable, but the compiler designers assume that mere peons
 cannot possibly know something that they do not know.)

 GET: Works just as expected, just as advertised. It is not
 intuitively obvious what happens when you GET farther than
 you have ever PUT, however. In a new file for example, if
 the first PUT is to record number 10, what is in records 1
 through 9 may be anything; even, leftovers from yesterday's
 lunch. Logically, records that you have not explicitly PUT
 with known values have to be treated as if they contain
 garbage.

 PUT: See GET, above, then remember that PUT merely sends a
 record to DOS; it DOES NOT mean that it will go to disk, now,
 eventually, or ever. (If you OPEN a file by two different
 numbers concurrently, do not assume that GET on one will look
 like what was PUT to the same file known by a different file
 number. Caveat, Jose.)

 CLOSE: Believe it or not, you can CLOSE files that have never
 been opened. Funnier still, you can CLOSE file numbers that
 can never be opened. (CLOSE is tolerated with any value of
 from 0 to 255. Anytime.) The manual says that CLOSE also
 writes the final buffer of output for sequential files. What

The Blue Book About GW-BASIC and QuickBASIC - 127 -

 it does not say is that there is no way of knowing how many
 relative file records have not yet been written to disk. You
 may have logically updated dozens of records. The fact that
 you closed a file means nothing. Updated records may still
 be floating around in DOS buffers; DOS sends them to disk
 whenever it takes a notion unless it is told to do it right
 now. And the only way to get BASIC to tell DOS to unload its
 cargo immediately is to issue a RESET command. Unfortunately,
 you cannot RESET files by number. Which means you may have to
 do another OPEN, even for read-only files that have not been
 changed.

 RESET: The reference manual says to always do this before
 removing a diskette: "Otherwise when the diskette is used
 again it will not have the current directory information
 written on the directory track." Small advice from small
 minds, for small disks. In the event of a power failure,
 for example, even if your program had already done a CLOSE on
 all files, the FAT on a hard disk (which you cannot remove)
 is apt to have been clobbered. (The File Allocation Table is
 what CHKDSK looks at. When it reports broken chains, it is
 not unusual to find that a BASIC program broke them.)

 RESET: Issue CLOSE, then RESET. As a habit. This will save
 you a lot of grief, on those days you opt provide an operator
 the option of sending data to a printer or a disk (by the
 simple expedient of using "LPT1:", or a file name, in an OPEN
 statement).

My notes above stem from things found out the hard way. This
list should be longer. It is very time consuming, and not very
productive, to have to reconfirm or refute this knowledge by
trial and error, every time we are forced to upgrade to a new
release of software.

It is also possible that you know of many things that could
have been illuminated here. My knowledge is derived from the
way my programs work, and from the experience gained when some
did not work as anticipated. And that experience makes me gun
shy. A number of things have been added to BASIC in recent
years that I make no use of and therefore do not know, or care,
how accurately they are described.

QuickBASIC changes are so anachronistic no mere prophet can
anticipate what it is apt to do next. Once you have mastered
most of its nuances, stay with that release as long as you can.

The Blue Book About GW-BASIC and QuickBASIC - 128 -

Unlike GW-BASIC, you have to keep "old" compilers around the
house forever, to be able to recompile old programs. Either
that, or suffer the burden of having to make a lot of otherwise
unnecessary changes, just because of some whimsical change the
compiler writers thought was a good idea.

Although changes to GW-BASIC are somewhat infrequent, because
it, and QuickBASIC, are so closely tied to DOS, it is DOS we
have to try to keep up with. And it changes rather frequently.
When they added path commands to BASIC, like CHDIR, it was not
intuitively obvious that the potential advantages for using it
would offset maintenance headaches if some future change in DOS
invalidated an application program's internal logic.

 Note: The upgrade force-factor cannot be avoided altogether.
 Clients buying new computers cannot buy outdated releases of
 operating software, even when older versions would be fully
 adequate to their needs. We cannot simply give them a copy
 of our old versions without violating copyright restrictions.
 Catch-two-two.

It is the sum of hard-won lessons learned that causes me to
suggest the following "attitude" to adopt about doing file
processing in BASIC: Do what needs to be done with the content
of files, inside your program. Do disk maintenance, general
file mapping, and systems configuration tasks externally, with
DOS batch files, or whatever. And refuse to have anything to
do with "networking", in any language, unless you have a key
to Fort Knox, or have a client that does. File sharing ideas
help sell iron; it is a lousy concept for responsible systems
analysts to echo. Especially on DOS-based machines.

Even if you buy this advice at face value, you can still get
badly burned. Here is a very recent history lesson that shows
why it is better to be conservative, rather than risque.

 VDISK (alias RAMDRIVE): The initial state of all records in
 files on a symbolic disk (in memory) is all zero-bytes. How
 long we can count on that, is unknown. It might be best to
 not have blind faith. Right out of the clear blue, DOS 3.3
 changed the name of VDISK to RAMDRIVE. We have not fully
 recovered from that nasty trick, yet.

 There is no way of knowing for sure how many CONFIG.SYS files
 are going to flip-out when an unsuspecting user decides to

The Blue Book About GW-BASIC and QuickBASIC - 129 -

 "update" his DOS. A program you wrote may run for hours
 before you have need to hit the soft disk. Then you crash.
 It never even crossed your mind that DOS would take away
 something that has been there for a number of years.

 Hint: Now my CONFIG.SYS files attempt to load both VDISK and
 RAMDRIVE, betting that one or the other will be there, and,
 betting that DOS will continue to merely display an error
 message and proceed blithely on, fast enough, that nobody will
 notice the file-not-found message during boot-up. (Or that
 one of them will flash an "Incorrect version" message because
 the user simply file-copied new DOS files over the top of the
 old ones, causing both to now be resident because their names
 are different.)

Enough of the grit, gripes, gloom, and doom. It is time for
some real fun: Indexed files. This is where your creative
instincts can really come to the fore. Especially if you want
to obtain maximum performance with the least effort and risk.

The first requirement to ponder is whether an indexed file ever
needs to be processed sequentially, in sorted order, based on
their keys. Most do, sooner or later.

ISAM--Indexed Sequential Access Method--is a concept as old as
computers. This acronym has been in my vocabulary so long I
cannot remember from whence it originated, but the meaning has
always been essentially thus:

 1. Keys are maintained in an ordered sequence. Often, for
 example, in ascending alphabetical order.

 2. A find-attempt--such as when an operator enters a customer
 account-code--hands up that target record if an exact match
 is found for the requested key.

 3. If a requested key is not found, the record for the next
 higher key in sequence, is targeted. (Whether or not it
 should be shown to an operator depends on why they are
 wandering around in a file in the first place.)

 4. Sequential reading of a file is possible (from any point
 in an index) by simply stepping forward through the index.
 Thus: Customer lists can be output in sorted order, for
 example, with no need to do a preparatory sort job.

The Blue Book About GW-BASIC and QuickBASIC - 130 -

A byproduct benefit of ISAM can be that it makes it easy, and
quick, to preclude duplicate keys. Occasionally an application's
needs dictates that duplicate keys must be allowed. That can be,
of course, but it is a real bear to program for. In the absence
of specific demands to the contrary, everybody will be happier
if you design so as to prohibit duplicates, i.e., all records
have a unique key in the index.

To this point, ISAM is a classical scheme, in any language, on
any computer. In fact, add-on packages can be purchased that
can be "called" from BASIC, to do all of this, and more, and
they do all of the housekeeping necessary to maintain even
multiple indexes, and alternate-key accessing mechanisms.

In many cases such add-ons (purchased or homemade) are as
inefficient as those that are built-in in other languages or
operating systems. Because of "parameterability". They spend
a lot of execution time doing the equivalent of IF. And they
spend a lot of time running around the disk looking for your
records.

By reducing an application's requirements to specific needs,
and by coding explicitly to that end, even interpreted BASIC
programs can perform more efficiently than some "generalized"
software, no matter what language it is written in.

This does not mean we have to reinvent the wheel every time
we write a new program. By having a library of subroutines
for different "functions" associated with file I/O, they can
easily be merged into new programs on an as-needed basis, and
quickly parameterized, specifically, in-line, in the code
itself.

Here is a list of functions needed to manage indexed files by
my definition.

 Find: This subroutine searches the keys-index for a file.
 On return, it points to an exactly matching key-entry, or,
 to the next one down, in sequence. If the requested key is
 "larger" than the last one in the index, the pointer is set
 to the end of the index, plus one.

 Add: This subroutine inserts a new key into an index, at its
 proper position, according to the logic that governs how keys
 are supposed to be ordered. And it shifts all of the keys
 that follow this one, down by one position.

The Blue Book About GW-BASIC and QuickBASIC - 131 -

 Delete: This subroutine deletes a key from an index, and
 moves all of those that follow it, up by one position. It
 may also move the one deleted to the bottom of the index and
 mark it "deleted". The pointer tied to this key can be an
 easy way to be able to reuse obsolete records, to curtail
 unnecessary growth of highly volatile files.

 Move: This subroutine calls Delete, then Add. This is done
 to resequence keys that are being changed, i.e., the record
 is being kept on file, but the spelling of its key is being
 changed.

The key to managing keys with this functional approach is the
Find subroutine. It can be called to merely locate a record,
and it can be called by Add, Delete, and Move, as needed, to
find relative positions in the index itself, for doing index
maintenance.

Typically, Find uses some variation of a binary-search. The
exact technique to use has to be based on how keys are ordered
in an index, of course. Many excellent books can be found that
describe various searching and data ordering schemes. Few can
be found that address problems specific to doing tasks like
this in interpreted BASIC, in DOS, however. Chapter 13 contains
some specific solutions for this.

Two things that deserve special attention in our world is the
overhead burden suffered by BASIC programs on each reference to
a variable, and, the double-buffering of records in memory that
is done by GW-BASIC running under DOS. Chapter 3 describes the
variables-search problem. The other major concern, about how
records are held in memory, once they have been read from disk,
is appropriate to this chapter. It is apropos to all relative
file processing, but emphatically so, when designing routines
for managing indexed files.

Working from the bottom up, so to speak, DOS disk mapping and
record buffering, then how records are buffered by BASIC, then
how the interpreter works internally, then an application's
requirements have to be weighed, before a method can be chosen
to get the job done efficiently.

On a GET, a lot of bytes get moved from one location in memory
to another, even if an OPEN specified LEN = 1. Like this:

The Blue Book About GW-BASIC and QuickBASIC - 132 -

 1. Application program tells BASIC to GET one record.

 2. BASIC tells DOS to GET one sector.

 3. DOS tells the adapter which sector to read, and where in
 memory to put a copy of that sector.

 4. DOS tells BASIC where in memory that sector's image is.

 5. BASIC copies that portion of the sector that represents
 your record into its file buffer.

 6. Your fielded variables now point to fields within your
 record, in the interpreter's file buffer.

On a PUT, all of this is reversed. The interpreter copies your
record back into its corresponding position in the DOS buffer,
and tells DOS to send that sector back to disk. (DOS does it
when it takes a notion, remember, which may only occasionally
coincide with when you said PUT.)

My newest DOS manual says: "Feel free to experiment with
different buffer settings...." This innocuous quotation is a
NOTE on the page describing BUFFERS, following another that says,
a number between 10 and 20 provides the best performance for word
processors.

Certainly we can feel free to experiment. We own the machine,
and we paid for DOS. Reminding us of our consumer's rights
provides little help. Telling us to experiment is ridiculous,
also. What we need to know is how DOS makes use of all of
those 512-byte buffers, whatever number we opt to try. (Our
memory cost is 528 bytes, per buffer, notwithstanding the 512
stated in the books; 512 is for the data, and 16 more bytes are
used, per buffer, for keeping track of which file each buffer
belongs to, and its usage indicators.)

The underlying queuing theory of DOS record buffering seems to
be FIFO: First In, First Out. None of my manuals ever describe
any of this, however. Probably because it is not apt to be the
same for any two versions of the software. (Viz, the onerous
trick they pulled in Release 3.3 when they changed the number
of default BUFFERS. Programs that used to work may no longer,
because all of a sudden you are out of memory; at least until
you recode CONFIG.SYS to specify the "old" BUFFER default.)

The Blue Book About GW-BASIC and QuickBASIC - 133 -

Here is my perception of how FIFO buffering works in DOS, on
this Friday afternoon, anyway.

 + On any program's request to READ, an image of the sector to
 be read will be placed in the next available buffer that is
 thus far unused.

 + After all buffers have been filled, from then on the "next"
 buffer to be used is the one with the "oldest" contents.

 + In the event something has been changed in an "old" buffer,
 it will be written back to disk, from whence it came, just
 before that space is overwritten by the latest request to
 fetch a different sector.

 + In the event a READ request is for a sector that is already
 in a buffer, no disk I/O is performed, but this request is
 treated as the "most recent" by the little gremlin that is
 keeping track of which is the "oldest" inactive buffer.

Add to this jungle savvy: DOS uses these buffers too. Like for
reading disk directory information and FAT fiddling. And where
some wag came up with the idea that word processors run better
with lots of buffers is inexplicable. (Of my three WP programs,
none seem to work better with two buffers, fifty, or any of the
numbers in between.) My older DOS manuals are even more obtuse.
They predict "data base" applications work better with lots of
buffers. (I hope that writer get "lots of" pay.)

What all of this really boils down to is, sequential reading or
writing of large chunks of disk data benefits not a whit from
multitudes of buffers. Nor does GET and PUT activity involving
but a single file. Nor does GET and PUT for many of the files
that may be open concurrently, if one is constantly hogging the
show by being hyperactive. Which is a typical characteristic
of those known as indexed files.

Now we are ready for another unadvertised piece of lore for the
folks using BASIC. Double buffering. This has been alluded to
already, but see it now for its performance implications. With
pieces of disk-data sitting in DOS buffers, and chunks of that
sitting in your GW-BASIC program's own buffer, and maybe some
of that parceled out to different variables for interim uses,
it is going to take some time, sometimes, to put it all back
where it belongs. Which brings us to the point of thinking
about the program we are about to write.

The Blue Book About GW-BASIC and QuickBASIC - 134 -

The first thing to decide upon when analyzing an application's
technical requirements is: Record sizes. The very worst thing
we can do is pick an odd number (other than one, maybe).

Consider the implications of a record size of 513 bytes. The
odd byte, the one after 512, means that for every GET, two
sectors will have to be read from disk, which will use two DOS
buffers. And every PUT will have to unload two buffers, if the
field you "updated" crossed the magic divide. And see that 255
is just as bad as 513. Or maybe worse. Yet, in GW-BASIC, the
maximum length permitted for a string variable is 255. (This
restriction applies equally to variables named with FIELD. The
sum of the sizes of the several fields described with a single
FIELD can be greater than 255, of course--up to the total
specified with LEN, on OPEN.)

So, design rule number one has to be: Record sizes should be
a number evenly divisible into 512. Preferably, no record
should be larger than 512, either, if that file is going to
be open continuously, and experience GET and PUT activity on
a sporadic basis.

Not all record-size requirements are easily forced to conform
to this advice. So, round upward to the next higher increment
that will adhere to this rule. Even, if you wind up with a few
bytes tagged as "reserved", just like the big boys do. They
may come in handy, anyway, when your client suddenly remembers
something he forgot to tell you about his needs, originally.

The other choice for forcing record lengths that will be some
figure that will preclude spanning across sector boundaries is
to opt for "compacting" one or more data fields. Here, the
trade-off has to consider the processing time required for
packing and unpacking such data, and the frequency with which
it must be done.

The next decision to be made, for indexed files, is the one
likely to have the greatest impact of all: Where to keep the
index itself. One of the obvious possibilities, of course, is
inside the related data file. At the top, or at the bottom, or
as "pages" interspersed among blocks of real records.

Many indexed file schemes, in a lot of systems and languages,
keep the index for a file at the front of that same file. It
is obvious, also, why most such schemes dictate uniform key

The Blue Book About GW-BASIC and QuickBASIC - 135 -

lengths, and why, the maximum length of a file (plus its index)
must be specified at the time a file is first created.

An alternative that easily permits variable length keys, and
unlimited file growth is to keep the index in one file, and the
data records in another.

Any scheme other than one that prewrites an arbitrary block of
sectors at file-creation time has to anticipate performance
degradation will be experienced sooner or later, because of
that old DOS Nemesis known as fragmentation.

One of the best methods that can be used to achieve superior
performance for indexed files is MRI: Memory Resident Index.
This is another old-timer's term, dating from so far back its
origin escapes me. It was good technique back when, and it
still is today.

On start-up, load a file's index into memory, then close that
file and open the real data file. At the end of a run, if the
index has been changed, dump the updated index back to the
disk.

A chief advantage to this scheme is that no disk thrashing will
occur while you are wandering around in the index; all I/O done
during a live performance is done for the benefit of paying
patrons. A disadvantage to this is, the auditorium must be large
enough to hold the entire index, backstage. Still, this trick
should not be discarded too quickly. See this:

 DEFDBL A:DEFINT I 'define data types
 DIM A(2000),I(2000) 'A = keys; I = pointers
 BLOAD "keys.ndx",VARPTR(A(0)) 'load the keys
 BLOAD "ptrs.ndx",VARPTR(I(0)) 'load their record pointers

Total memory needed for a 2000-record data file is just a tad
over 20,000 bytes; 2000 times 8-bytes for the keys, and, 2000
times 2-bytes for the LOC-pointers into the real file. Yes,
this works for "alpha keys", also, of up to 8-bytes each, by
using MKD$ and CVD on each of the slots in the double-precision
A-array.

Using BLOAD to grab the index, and BSAVE to unload it is very
fast. Even an impatient operator will not know when you did
it, especially if it is being kept on a hard disk.

The Blue Book About GW-BASIC and QuickBASIC - 136 -

Another crafty alternative is to COPY a file's index from disk,
to VDISK, before a run begins, and to COPY it back to disk at
the end of the run, if the index has been modified. Which is
one more argument in favor of keeping a file's index in a file
separate from the one that has the real records in it.

Last, but not least, do not discount too quickly the easiest
scheme of all: A no-index, indexed file. It is so simple to
do, it needs no acronym by which to remember it as a concept.

Simply maintain the records in a file in sorted-order, and use
a binary search, or whatever, to find a desired record. My
previously described functional approach is valid here, too,
but see that only the one, real data file is involved.

In the final analysis, files with upwards of two or three
thousand records can be "sorted" fast enough today, to not
irritate the operator in a lot of applications. Especially at
the speeds we are enjoying now, on "modern micros". Limits
like 3000, for files that experience infrequent additions and
deletions, are forever being extended by faster clock times,
increased data-bus bandwidths, and speedier disk drives.

In fact, it is past time for DOS to consider dispensing with
the whole crazy business of BUFFERS. Once upon a time it was a
software bridge for overcoming slow mechanical devices. Just
as "virtual memory" was once a clever, but highly complicated
substitute for high-priced core memory.

How sweet it will be, when the disk finally spins full circle,
and PUT will do what it did on the first generation of micros:
Update our disk data, right now, at our command.

Meanwhile, we have to continue to worry about what happens if
a failure occurs. If we update an index first, and a failure
occurs before DOS gets around to updating the real record, the
logical consequence is crap-O. If we update the real data file
before we update the index, the result may still be a big mess.
Worse still, if we succeed in doing both, but a failure occurs
before DOS fiddles its FAT, everything on the disk may be one
big-a-bunch-a-crap-ola. (Again, Chapter 13 gives several CYA
solutions for this problem.)

My wonderful wife of thirty years, our five grown-up offspring,

The Blue Book About GW-BASIC and QuickBASIC - 137 -

three lovely daughters-in-law, and three precious granddaughters
all have faith that this old man has figured all of this out
correctly. When they close my file, hopefully my sins will be
remarked as having been no worse than, an irreverent view of the
software that fed a lot of us, a lot of years. My legacy to my
peers is in these pages. May you avoid some of the pratfalls I
have taken, processing data files on DOS disks, in BASIC.

The Blue Book About GW-BASIC and QuickBASIC - 138 -

Chapter 9 = STRANGE

It is a fact that, if that is what the computer says, it must
be so. Ask anybody. Everybody knows how accurate computers
are. Similarly, if the manual says, if you do such-and-such,
the machine will do so-and-so.

Both of us know better. Our ability to write programs (in any
language) depends on our understanding of what the manuals say,
and, the extent to which our experience says those books are
right, almost right, ambiguous, or in fact, wrong.

Both of us know there are bugs. In the software we write, and
in the software we buy. And in documentation, theirs and ours.
Known bugs we can all learn to live with. Unknown gremlins,
however -- in documentation or software -- can cause more head
scratching than a colony of fleas on a mutt. And make us just
as sore. And cost us time and money.

My outline for this book presumed that various "facts" could be
presented at appropriate points in each of the chapters dealing
with specific subject areas. As the meat hit the grinder it
soon became obvious that not all that has been learned could be
dished out that way. Some phenomena defy all attempts to offer
a structured presentation. This catchall chapter was squeezed
in, to cover the gaps.

Elsewhere my remarks reflect my cynicism about a misnomer or
inadequacy in the manuals. Here, the truth (as I perceive it,
as a research staff of one) is meant to be helpful when you too
experience strange encounters: When, what you see is not what
is supposed to be.

In some cases the mystery is because of a bug. Perhaps. Many
times it is simply because that is the way it works. Whether
that is the way it was supposed to work, or not, is not really
important. What we need is to be able to solve such mysteries
only to the extent that we can continue to program with a sense
of confidence in ourselves: That we know what we are doing
and, what our program will do in the event of.... The notes
that follow list some strange encounters in my time on this
planet.

In any programming language, we would expect that movement of

The Blue Book About GW-BASIC and QuickBASIC - 139 -

data from one variable to another would produce an exact copy
in the target of what was in the source. By inference then,
when the target and the source are one and the same, what we
would expect is, effectively, no change. Thus A = B causes A
to have the same content as B. And, A = A should cause A to
not be changed, at all. BASIC is consistent with this age-old
principle of languages, with one remarkable exception:

 1000 DEFSTR M-Z
 1010 X="0123456789"
 1020 Y="0123456789"
 1030 MID$(X,3)=X 'repeats 1st 3 char for LEN(string)
 1040 PRINT X
 1050 MID$(X,3)=Y 'overlay 1st 3 char of another string
 1060 PRINT X
 RUN
 0101010101
 0101234567

Notice that line 1030 above names X as both the target and the
source. In line 1050 X is the target, Y is the source. For a
given expression, we would expect consistent results, no matter
what variables are named.

Now we can illuminate our manual with this peculiar trait of
MID$ and keep on trucking, with one of two attitudes: Be alert
while debugging; what we thought would work may not. It is
also possible that this "undocumented feature" can be used now
and then to our advantage. If, for example, a string is needed
that contains a repeated sequence of characters, we can use a
trick modeled after line 1030 above to generate a longer one
automatically, using merely the few characters we want to have
replicated.

Speaking of attitudes: There is an attitude reflected in most
software manuals that says, effectively, if you opt to take
advantage of any "undocumented feature", you do so at your own
risk. What they mean is: Bugs exist in the software and the
manuals. Someday we may fix them.

This particular bug (my definition) is an omission in the BASIC
manuals. The software has worked this way since the "upgrade"
from MBASIC to GW-BASIC. It is also the way QuickBASIC works.
It is unlikely they would change the way the language itself
works now because it has been this way for so many years. It
would be nice if they would at least update the manuals to tell

The Blue Book About GW-BASIC and QuickBASIC - 140 -

it like it is, however, and document this undocumented feature.

Here is another anomaly. It ought to be fixed. It is common
to both GW-BASIC and QuickBASIC. No good use can be made of this
bug, but, it can cause some strange encounters if you are not
aware that it exists.

 SOUND 0 'is supposed to be illegal, but is ignored

 SOUND .49,99 'is supposed to be illegal, but clicks

 SOUND .5,99 'is equally illegal: it will cause an ERR = 5

By definition, the first argument used with SOUND can range
from 37 through 32767. So the manual says. My reading of that
says, anything less than 37 should cause an "Illegal function"
error.

If my understanding of law is similar to Perry Mason's, it can
be argued that nowhere was it promised that if we do something
illegal, we will get caught by an error trap. Having read the
manuals from front to back many times over the years, however,
my inference is: We are supposed to be able to depend on the
language processor to trap any errors we make that violate the
rules of the language. Included in this assumption are things
like getting an ERR = 5 if we use any argument anywhere that
is not within the range permitted for a given function or
statement. Oh well.

Philosophically, an interpreter or a compiler should be adept
at catching syntax errors. In BASIC they both do, although
they are not equally consistent in determining what constitutes
errors in spelling or grammar. This is not hard to live with.
Sooner or later, presumably, we can find all of our errors of
that type, with or without their help.

We should code in such a way as to preclude trying to make use
of "data" that exceeds the ranges permitted for various types
of expressions. No argument. We are encouraged to depend on
the language processor to "trap" our run-time errors, however.
Numerous examples are given in the manuals that do this. It is
their "recommended way" to detect when we have reached the end
of a file, for example.

And that is bad advice. My advice is to do everything that you

The Blue Book About GW-BASIC and QuickBASIC - 141 -

can to avoid being caught in an error trap for any reason. To
ignore this advice is bound to bring on some strange encounters
sooner or later, if you want to do a RESUME NEXT. It is an
"undocumented feature" of GW-BASIC that, it is hard to predict
just where NEXT is.

The manual says RESUME NEXT means the program will continue at
the first statement following the one that caused a branch to
your ON ERROR GOTO address. That prediction is wrong, as shown
in the following examples.

 3030 ON ERROR GOTO 3040 : GOTO 3050
 3040 C = E : E = ERR : RESUME NEXT

 3050 IF 1=1 THEN ERROR 101:PRINT 1
 3060 IF 1>1 THEN PRINT 2 ELSE ERROR 103:PRINT 3
 3070 PRINT E 'output = 1 103

Here, ERROR 101 in line 3050 did resume at the next statement
after the error, as would be expected. If RESUME NEXT worked
as the manual says, however, we should also see a 3 because of
the PRINT following the ERROR 103 in line 3060. In this case,
RESUME NEXT after an error following an ELSE means go to the
next line, not the next statement.

This one is even harder to fathom:

 3100 IF 1>1 THEN PRINT 4:PRINT 2 ELSE ERROR 103:PRINT 3
 3110 PRINT E

Output: 2 103. In this case NEXT went to the last statement
to the left of the ELSE in line 3100, although the error itself
was the first statement to the right of ELSE. There is only a
small difference between lines 3100 and 3060. One has but one
statement preceding THEN, the other has two.

Now the plot thickens. Using the same error handler above:

 IF 1>1 THEN PRINT 4:ERROR 102:PRINT 5 ELSE ERROR 103:PRINT 3

followed by PRINT C;E will print 5 103 102, indicating that the
ERROR 103 caused RESUME NEXT to hit PRINT 5, by backing up one
statement to the left of ELSE. Because there was also a static
error inside the THEN-clause NEXT effectively backed up one more
statement and trapped that error. NEXT after that one came back
to the next line (otherwise a second 5 would have printed because
that is what is next, following the most recent error).

The Blue Book About GW-BASIC and QuickBASIC - 142 -

Even Dame Christie's Hercule Poirot would have trouble with
that little mystery. And this next one, as well:

 IF 1>1 THEN PRINT 0:X:PRINT 4:PRINT 5 ELSE ERROR 103:PRINT 3

The "X" after PRINT 0 is an obvious syntax error. This line
will cause 4 and 5 to print, notwithstanding that the truth of
the IF expression should skip everything after THEN, and run
straight into the error that comes after ELSE. But it never
gets that far in this case.

The next two examples are enough to make the point: Compound
and complex conditional expressions merely serve to compound
the mystery of just where NEXT is, when errors are imbedded in
lines such as these. For the sake of easier eyeball tracking,
these two lines are stacked as they might be in QuickBASIC:

 3190 IF 1>1 THEN PRINT 2
 ELSE IF 1>1 THEN PRINT 2
 ELSE ERROR 103:PRINT 3

 3200 IF 1>1 THEN ERROR 7
 ELSE IF 1=1 THEN ERROR 103:STOP
 ELSE ERROR 8:PRINT 3

Both of these lines end up printing 103 when we say PRINT E.
That code was saved in E by the E = ERR in the error handler.
RESUME NEXT goes to the next line, not the NEXT statement. The
STOP in line 3200 is never even seen, although the error does
immediately precede an emphatic command to go no farther.

Here is my attempt to condense the above empirical examples
into a meaningful definition of RESUME NEXT:

For any error in a simple line, NEXT does mean the next thing
following that error. Errors in lines that have conditional
expressions disrupts the interpreter's lexical parsing of THEN
and ELSE clauses. Errors after an ELSE will RESUME NEXT to the
next line (not the next statement), unless there are multiple
statements between THEN and ELSE. If so, RESUME NEXT is to the
first statement preceding ELSE. All of which presumes there
are no "static" errors preceding THEN or ELSE.

The distinction about static errors is important. Because the
interpreter scans left-to-right, on a given line, an error may

The Blue Book About GW-BASIC and QuickBASIC - 143 -

or may not be seen following an IF. If the truth of an IF
indicates everything after THEN should be bypassed, it will be
skipped if the interpreter's byte-pointer does not run afoul of
what is logically expected following a given token. (Chapter 2
describes the mechanics of parsing a program line in memory.)

On the other hand, "Illegal function" or other types of dynamic
errors that could be provoked inside a THEN-clause that is not
being executed will remain unnoticed. The upshot of all of this
is, NEXT, for RESUME NEXT following errors that occur in lines
that contain THEN and ELSE is sensitive to the type of error
involved, the construction of conditional clauses, and whether
more than one error is present, or potential, on that same line.

A literal translation of this evidence could be: Do not use
IF-THEN-ELSE. Or, if you do, make no mistakes. In real life,
the pragmatic rule should be: Code no I/O statements after an
ELSE. If done after THEN, do no ELSE, or another IF-THEN on
that same line.

This pragmatic philosophy is based on the fact that we have to
depend on an error handler to trap I/O errors. There is no way
to find out if an OPEN, GET, or PUT or similar things are
successful until they are attempted. If after the fact, one of
these does indeed fail, we must react accordingly.

The logical choice in most cases is to pass an I/O error-code
back to the routine in charge via a RESUME NEXT. Doing so, it
is imperative that the IF that tests for a failure has a chance
to respond. By always coding it on the line that follows an I/O
attempt, and by keeping the I/O command-line itself as simple as
possible, we will have a pretty good idea of just where NEXT is,
on a RESUME NEXT.

Not being aware of how RESUME NEXT does in fact work, you are
in fact likely to experience some strange, strange encounters.

Now none of this confusion exists in QuickBASIC. It does as
the book says: RESUME NEXT is always to the next statement
following an error-trigger, no matter where it is encountered.
But their skirts are muddy in another way: Not everything that
can be error-trapped in GW-BASIC is possible in QuickBASIC. At
the same time, ON ERROR in that language will trap some that
GW-BASIC chooses to ignore.

There are two reasons for this, but none of the BASIC manuals

The Blue Book About GW-BASIC and QuickBASIC - 144 -

openly admit it. The two languages are not identical in terms
of the semantics of the language. The permitted range of the
arguments that can be used for many things are different; that
can be seen, true enough. Although it is not conspicuous, we
can deduce how this can affect logically coping with ERR = 5
errors. The other reason for some differences is that calls
to DOS are not handled in exactly the same way in all cases.

A simple example of a difference that should produce the same
results was mentioned in Chapter 6: WIDTH 40 is illegal on any
machine with a monochrome adapter. GW-BASIC will do ON ERROR
and give an ERR = 5. QuickBASIC simply ignores this type of
error, and your program keeps right on humming as if nothing
untoward had been attempted.

Even when we are alert to the potential for strange encounters
caused by differences in the way these two language products
interface to the outside world, we must know more. The manual
for the compiler touches lightly on the differences about how
ERL testing works, and how ON ERROR GOTO is supposed to work.

None of the manuals tell us that there are differences in what
will trap, and what will not, however. In fact, they all say
simply that ON ERROR GOTO works for any error that can be
detected; never do they give us a list of what the detectives
actually look for. All of which brings to mind stories about
folks like J. Edgar Hoover and the FBI.

Strange encounters and unsolved mysteries are stories of one
kind. This next one is in a class all by itself: Weird. It
will put to rest that myth about "Seeing is believing...."

 1000 PRINT "hello" 'a
 1010 PRINT "and" 'tiny
 1020 PRINT "bye" 'program
 RUN
 hello
 and
 Ok

Before we explore why this tiny example did not print "bye",
imagine what it is like to have this happen way down deep in a
real program. There you are, testing with gusto, and something
like this happens. Seemingly, a line just does not execute. It
seems the interpreter simply "jumps over" a line of code, and
continues execution with the next line down.

The Blue Book About GW-BASIC and QuickBASIC - 145 -

Here is the same program again. In this case it seems like the
interpreter has gone crazy.

 10 PRINT "hello" 'a
 20 PRINT "and" 'tiny
 30 PRINT "bye" 'program
 RUN
 hello
 bye
 Syntax error in 0
 Ok
 Undefined line number in 0
 Ok

Both of these perplexing puzzles are caused by the same thing.
After the remark in the second line ('tiny) there is an extra
byte that cannot be seen. It is an FF in hexadecimal, code-255
in decimal. That is why we cannot always believe what we are
seeing. In the standard PC-character set, code-255 looks like
a space-character. When seen with LIST, it cannot be seen at
all.

To duplicate this aberration, put a remark at the end of any
line, hold down the Alt-key and index 255 on the numeric key
pad. When you let go, that blind byte will be there, believe
me.

If the next line is numbered higher than 255, as in the first
example above (line 1020), that line will be skipped over. In
the second example, with small line numbers, line-30 triggers
that crazy pair of error messages about line-0, which does not
even exist. Equally crazy, it says Ok, twice.

Oddly enough, it is the not-so-Ok, Ok that may have caused the
problem in the first place. That, or some of the other stuff
the interpreter dumps on us from time to time.

Most messages like "Syntax error", "Ok", and so on, are output
with a trailing, but invisible, 255-byte. When we are editing,
there is a risk of picking up that unseen byte inadvertently,
while typing over the interpreter's own garbage.

Yes, this happens only on rare occasions: When inserting and
deleting characters, and so on, and the line in question just
happens to have a trailing remark, and the length of the line
is about 80-characters, or so, and the next line down on the

The Blue Book About GW-BASIC and QuickBASIC - 146 -

screen was output by the interpreter, and.... But, when this
does happen, you will not see it, and when some crazy things
happen, you will think you are going crazy because what you can
see, you cannot believe. And that is weird.

The moral to the above saga is, at the point in a program where
a strange encounter pops up, look at the preceding line. If it
has a remark, chop it off. And if this solves your unsolved
mystery, get out your Voodoo dolls and pins and concentrate on
that faceless character that litters your screen with invisible
characters.

To confirm that crazy 255-byte's existence, SAVE the suspected
program then use DEBUG or some other tool to look at the file.
(Chapter 2 describes what is in a tokenized program file.)

There is another kind of strange encounter that can occur that
can really tighten the old rectum: Corrupted program files.
Most high quality language products provide at least a modicum
safeguard for this one. GW-BASIC makes no attempt whatsoever
in this regard. (To be completely fair, it has never been
touted as being of particularly high quality, anyway.)

Here is a scenario that can happen. If you have never yet seen
something similar, keep bowing down to the East, or whatever it
is you do that makes you so lucky.

LOAD "mycrap". LIST. The first hundred lines or so are just
what is expected. All of a sudden, garbage hits the fan, from
right out of nowhere. This little gotcha is the reason CHKDSK
was added to DOS a few years ago. Hopefully you have a recent
back-up copy of your favorite program. The alternative to a
rewrite can sometimes mean nearly as many hours will have to be
spent trying to determine which disk sectors are interspersed
with your program files. If you are really lucky, the clusters
that contain the rest of your program have not already been
overwritten by some interim process.

Far, far worse than this instance is one where you RUN or CHAIN
in an ongoing production environment, where the consequence of
an unnoticed garbled program just happens to have a few bytes
that resemble the BASIC token for something like KILL, or POKE,
or PUT, or SHELL, or whatever. An autopsy is hard to do without
a cadaver. It is equally hard to do on a disk that has a badly
mangled FAT.

The Blue Book About GW-BASIC and QuickBASIC - 147 -

A traditional software engineering technique that is often used
to give at least some assurance that the sanctity of a file has
not been violated is based on a hash-total scheme: Merely a
longitudinal summing of the values of the bytes in a file, from
one end to the other. By storing this total inside the file
itself, it can be compared with another count, done each time
that file is loaded. Any difference found can be used to warn
somebody that something may be very wrong. Chapter 13 shows
some specific tricks that can be used to guard against these
strange encounters of the worst kind when writing in BASIC.

One more strange encounter needs to be documented. It portends
no system safety risks. For those unaware, however, there is a
risk that faulty observations can be made. And that can lead to
making incorrect design decisions. None of the manuals in my
library mention that TIMER only occasionally produces duplicate
answers. When probe coding to determine which techniques are
the fastest, be very cognizant that TIMER is a little strange.
See this:

 1000 FOR J=1 TO 50
 1010 B=TIMER
 1020 FOR I=1 TO 4000
 1030 NEXT
 1040 PRINT TIMER-B,
 1050 NEXT

 2.023438 1.976563 2.03125 1.984375 1.984375
 2.03125 2.039063 2.03125 1.984375 2.03125
 2.03125 1.96875 1.976563 2.023438 2.03125
 2.039063 2.023438 2.046875 1.984375 1.976563
 2.03125 2.03125 2.023438 2.03125 2.03125
 2.03125 1.984375 1.984375 2.039063 2.03125
 1.984375 2.039063 2.03125 1.976563 1.96875
 1.976563 2.03125 1.976563 2.03125 2.039063
 2.03125 1.976563 1.976563 2.03125 1.984375
 2.03125 2.03125 2.03125 1.984375 1.984375

The output shown here was produced by this little program when
it was run with GWBASIC.EXE 3.2, DOS 3.3, on an 8088 rated at
8 MHz. Obviously, different machines and different releases of
software will produce different results. The TIMER's answers
themselves, that is. Even the proportional differences can
vary with different hardware. The point to be noted is, a
variety of answers will always be produced by TIMER.

The Blue Book About GW-BASIC and QuickBASIC - 148 -

To use TIMER as a tool for doing performance studies, tests
should be repeated at least fifty times, or so. An average of
those results will be reasonably useful, although, still not
precise.

For those that are curious, here is another output listing from
this same program, run on the same machine, under DOS 3.3 but,
as an in-memory compiled program generated by the QuickBASIC 2.2
compiler with the DEBUG switch on, and with all event trapping
switches off.

 2.914063 2.90625 2.914063 2.914063 2.914063
 2.851563 2.851563 2.914063 2.859375 2.859375
 2.90625 2.914063 2.90625 2.914063 2.90625
 2.859375 2.859375 2.921875 2.851563 2.84375
 2.914063 2.90625 2.921875 2.867188 2.90625
 2.90625 2.851563 2.90625 2.914063 2.859375
 2.859375 2.90625 2.859375 2.851563 2.84375
 2.914063 2.921875 2.90625 2.914063 2.90625
 2.851563 2.90625 2.914063 2.859375 2.859375
 2.914063 2.90625 2.851563 2.90625 2.90625

One slight change was made to the program before it was run for
this listing. Line 1020 used a limit of 4000 for the loop that
does nothing when it ran with GW-BASIC. For the QuickBASIC run,
that limit was set to 8000.

It is interesting to note also, to do nothing twice as many times
took longer with the compiled program vs. the interpreted one.
One is tempted to think from this test that compiled programs run
nearly twice as fast as interpreted ones. Almost. Maybe.
Sometimes.

More than once a strange encounter has been experienced because
it was assumed that a compiled program would run faster than an
interpreted one. Usually they do, that is true, but not always
very much faster. Chapter 11 suggests several considerations
needed when designing programs in BASIC, including some factors
that need to be considered when choosing between GW-BASIC and
QuickBASIC.

Those in the know are always skeptical of magazine ads. It is
strange that anyone can believe some claims. Yet, even with
what we know, we can still have some strange experiences. It
would not happen as often, perhaps, if our systems manuals were
more informative than they are.

The Blue Book About GW-BASIC and QuickBASIC - 149 -

The micro boom was responsible for many cultural changes. One
that is never alluded to by industry scribes is typified by
that very reluctance: The shifting of that fine line that
demarcates honesty.

All software has bugs. Professionals on the big machines have
always known that. When someone pays a million or two for a
computer, they expect, and get, truthful systems documentation.

For decades all new software releases were delivered with a
list of "restrictions", up front. An honest admission that not
everything worked as intended, and explicit advice to not use
this or that feature.

Such admissions did not hinder the growth of that industry. In
fact, it was essential to mere survival. Large data processing
operations that cost thousands of dollars a day to run could
ill afford to find out what worked and what did not by trial
and error.

In that world, decisions about which vendor's products to buy
depended on those with technical acumen. Experts confronted
experts across the table when the buyers and the sellers sat
down to wheel and deal. Hogwash and technical incompetence
were neither one tolerated--any of either could kill a deal.

The PC industry is a different world in a lot of ways. Most
purchases are made by end-use consumers that have virtually no
technical expertise. My loathing of general allegations like
this does not dissuade me in this case. It is inexplicable to
me how some of what we have to put up with manages to flourish
in the market place, year after year, save to presume that the
buying public is gullible.

Unless Nader's Raiders or the folks that champion causes like
truth in lending laws come to the fore, it appears that we will
have to contend with what we have: The companies with the most
bucks behind them set the stage on which we have to act.

Hopefully my little show here will enhance your productions. It
is certainly possible that I may be found guilty of an error in
commission, but recognize my honest attempt to not be accused
of dishonesty by reason of omission.

May some of your strange encounters in the future seem not so
strange after all, after seeing what I found to be strange, at

The Blue Book About GW-BASIC and QuickBASIC - 150 -

one time or another.

The Blue Book About GW-BASIC and QuickBASIC - 151 -

Chapter 10 = STYLE

 "Programming involves both art and science."

That observation does have a nice philosophical ring to it, and
that may be one of the reasons we hear it echoed from time to
time. Admittedly, it falls softly on the ears of my ego, too.

There is another observation about programming that ought to be
made, but it is seldom seen in print; it has a crap-cutter edge
to it, useful for soul searching, but it scratches eyes, ears,
and egos.

 "Programming involves both intuition and luck."

A smooth utterance in my favorite Webster's defines intuition
as: "The power of knowing, or the knowledge obtained, without
recourse to inference or reasoning...." Fifty some-odd pages
later, the definition of luck begins with: "That which happens
to one seemingly by chance...."

Eloquent word working can sometimes make intuition palatable.
Luck is a tougher pill to peddle to programmers that embrace
"logical reasoning ability" as a personal virtue.

A respected teacher once helped me grasp how intuition impacts
what we do: "Experience causes us to mentally tag that which
works well, and to log that which does not with a different
type of tag. The monotony of the mundane in our daily labors
soon causes these memories to form mental habit patterns by
which we intuit how to do similar things, with no strain on
the brain."

Hopefully, the good and the bad were tagged correctly when
first filed in our memory banks. This thought is mine, on
reflection, and is one of the reasons for my contention that
luck is a factor in the overall definition of what makes all
programmers tick.

Remembering further remarks of my esteemed teacher, she also
told me that what she could not teach was experience. The best
she could do was to try to instill good habits early on. Her
definition of good, was, "... a distillation of experience of
those who already had it". Once more my thoughts conjure up
an element of luck. Hopefully the one distilling the brew uses
the right recipe, and the ingredients that are used have come

The Blue Book About GW-BASIC and QuickBASIC - 152 -

from a preferred source.

Presumably you have been programming long enough that your own
habits have already developed strong roots. This chapter is
not meant to be presumptuous; in no way do I presume my habits
are the best, nor even, any better than someone else's. By
dissecting my habits of style on paper, however, along with an
honest attempt to recollect their roots, perhaps some will be
useful seasoning to add to your own brew.

A popular theme of the seventies was "structured programming".
Many books can be found on that subject, with many definitions
of what it is, and how to do it. None attempt to use BASIC to
illustrate their concepts. Probably because of GOTO.

One nickname for structured programming is GOTO-less coding.
That is awkward to do in BASIC. In fact, it is a bad idea in
many cases, if we want to run in the fast lane.

Fanatics from the structured programming schools have caused a
lot of inbreeding among programming languages. The concept of
"block structures" was grafted onto BASIC, even, back about the
time Pascal was all the rage on the West Coast. Knowing a tad
of that history helps us see why we have, what we have.

Pascal was invented by N. Wirth, in Germany; it showed up first
in the U.S. at UCSD in California. Professor Wirth gave us
what he thought would be a better "teaching language". When
Pascal hit the micros, it was initially an interpreted language,
similar to how BASIC worked in those machines. But Pascal did
have "blocking statements", and that was popular, from coast to
coast. So much so that those whose first language of love was
Pascal had very little empathy for old-timers that had courted
many languages in our youth. None could understand how anybody
could ever have dated a dog like BASIC.

The idea of "block structures" as an inherent feature of a
language came from ALGOL, originally. It was supposed to be
an international programming language, equally suitable for
documentation purposes. It has a strong flavor of FORTRAN
about it. So does PL/1, which has about everything, including
an admixture of FORTRAN and COBOL. ALGOL and PL/1 both came
out of IBM labs. IBM was (and still is) a big name on college
campuses. General Electric was too, although GE computers were
never manufactured in as many numbers.

The Blue Book About GW-BASIC and QuickBASIC - 153 -

BASIC began life on a GE computer at Dartmouth College; it was
intended to be useful as a poor man's version of FORTRAN. It
ran on only very big systems that offered time-sharing via
telephone hook-ups. A user did not have to own a computer; he
merely needed a cheap terminal and pay charges for system use
only while on-line. And pay the phone bill, of course.

A primary contention of the inventors of BASIC--Professors
Kemeny and Kurtz--was that, it could easily be learned by
non-computer-oriented mathematicians and engineers. "Beginners
Algebraic Symbol Interpreter Compiler" was a contrived phrase,
probably, to justify an acronym that resembled an English word.
That not-so-subtle double entendre caused BASIC to grow up with
an inferiority complex. Beginners, in the beginning, however,
were mostly well-educated college graduates.

The micro boom moved BASIC lower on the social scale. By the
time the word beginners included grade school students, it was
considered as demeaning by upper class folks. Many new-hire
programmers considered BASIC unbecoming to their sense of
professional dignity. They simply ignored the fact that, many
of us had already earned substantial salaries writing large
scale business applications in BASIC, often requiring levels
of expertise some of those neophytes would never attain in
any language.

Meanwhile, visionaries at the helm of the companies that made
our machinery ignored campus love affairs between students and
programming languages. It seemed to them, if BASIC could have
a common definition to all, they could all sell a lot of cheap
iron. A million of anything at a dollar was almost as good as
a single, any one thing that cost a million per copy.

Customers that could afford to spend millions were expensive to
court. To sell to those who could afford only small capital
outlays, they needed a simple language. BASIC was touted for a
number of years as being good for first-time users--it was
invented for beginners, after all. Far more importantly, it
could be built into machines with small memories. Initially,
anyway.

The half-hearted attempt by ANSI to standardize BASIC probably
hurt us more than it helped. The heavy-weight vendors like
IBM, NCR, and DEC insisted that the ultimate language should

The Blue Book About GW-BASIC and QuickBASIC - 154 -

include features peculiar to their own dialects. My input to
the X3J standards committee (as an NCR contributor) argued
vehemently against things like OPTION BASE and RANDOMIZE. As
feared, those that later bragged they fully conformed to the
standard also gave us bigger, more cumbersome, and slower
running interpreters.

Now we have BEEP and SOUND. An obvious redundancy. Things
like SOUND, PLAY, and DRAW had not even been invented when the
standard was written. GET and PUT were infants. Fortunately,
ANSI shied away from trying to standardize any I/O commands
beyond the simpler ones like INPUT and PRINT.

Having watched it happen, it is no mystery to me why most of
what is in "standard BASIC" are the things we use the least.
That which rigidly conforms to the standard is also that which
is most often inefficient, slow, and many times, pragmatically
useless. That old saw about a camel being a horse put together
by a committee is typified by BASIC as we see it today. Dummy
arguments needed in functions like POS(1) truly are dumb.

It is odd that a language which was originally compiler based,
and thought by many as dumb, wound up as the staff of life in
interpreted form, burned into the memory of what so many people
think the word computer itself means.

BASIC imparted intelligence to machines that had an IQ of zero.
PCs still resemble terminals, and are often used as such, but
most are powerful enough today that they can be programmed in
virtually any language, with compile speeds approaching, and
sometimes surpassing, that of their granddaddies.

Although BASIC was originally a perverse dialect of FORTRAN,
its early compilers were actually heavier than those for its
big brother. Because BASIC had a line-at-a-time orientation,
it was easily adapted into micros with small memories using a
software interpreter that "translated" what a program was
supposed to do, as it ran. Now the wheel has gone nearly full
circle.

BASIC has evolved to the point that it looks more like its
cousins, than like its grandfather. Even to the point that,
line numbers are no longer needed when using compilers like
QuickBASIC. Branching can now be done to "line names", which
are managed by the compiler in the same fashion as is done for
variable names. (The original idea of "paragraph names" is a

The Blue Book About GW-BASIC and QuickBASIC - 155 -

hallmark of languages like COBOL. GOTO, to a line-name, goes
all the way back to stone-age assembler languages that roamed
the earth about the middle of this century.)

This constant migration of structural concepts among languages
has caused a lot of side affects, not all of which are truly
beneficial: Especially for some things, like WHILE and WEND,
which experienced ramifications similar to FOR and NEXT, in
interpreted languages like GW-BASIC. (FOR and NEXT suffered
first from the ANSI impact. Having paid that price, it was
relatively easy to inject WHILE and WEND, in an attempt to
rejuvenate enthusiasm for BASIC. At one time, some feared it
was in jeopardy of being supplanted by Pascal.)

Today, nearly all languages have a WHILE and WEND counterpart.
Most also have some form or other of CASE-statements. GW-BASIC
does not have CASE yet (thankfully), but its QuickBASIC sibling
does. None of these additions were really needed in any BASIC,
especially not in interpreted BASIC. What follows are a few of
my opinions on how much we should allow "structured programming
concepts" to influence our style of coding in this language.

WHILE and WEND are useful, and efficient, if used in a very
limited fashion. Rule number one: Keep them close together.
On the same line, preferably, as in this example.

 I = 0 : WHILE I<1000:I=I+1:WEND

When the interpreter bumps into WHILE, it immediately takes a
trip, looking for WEND. Then it sets up stack-pointers to
keep track of where the block begins, and ends, and the "if"
needed to terminate the loop. Then it begins doing whatever
it is supposed to do inside the loop, if the implicit-if has
not already been satisfied.

This same thing is done today with FOR/NEXT loops. This was
not always so. Before ANSI got involved, a FOR/NEXT loop would
always run at least once in most dialects of BASIC. A basic
concept of source-code interpreters was to ramble along, doing
whatever is encountered next, one step at time. In those days,
it did not matter where NEXT was; the interpreter simply made a
mental note when it hit FOR, presuming that it would eventually
run into NEXT and would remember where it had seen FOR, before.

Today FOR/NEXT works differently. Because nothing inside the
loop is done until the bottom of the block has been located, it

The Blue Book About GW-BASIC and QuickBASIC - 156 -

is possible to not do anything, i.e., to ignore everything
inside the loop if the TO-limit is less than the FOR starting
argument.

When the interpreter examines FOR and realizes that nothing is
to be done, it simply runs ahead, looking for NEXT, then keeps
right on trucking from that point on. Which is why you can
have all kinds of errors inside FOR/NEXT and WHILE/WEND loops
that go unnoticed by the interpreter; errors that are always
flagged by a compiler, even if what is inside a loop may never
get a chance to perform. (Chapter 12 suggests how to use the
compiler as a programming tool, even for programs that are
going to be used only in interpreted form. And vice versa.)

See the difference. A compiler examines everything, in every
line of a program before an "object program" is produced, i.e.,
the program that will actually be in memory at run-time. An
interpreter loads all of a "source program" into memory, but it
has no idea what it is going to run into. It simply takes
things as they come, one step at a time. At least that was an
original concept of a source-code interpreter. Today, the
side excursions that GW-BASIC takes when it hits WHILE, or FOR,
are an expensive contrivance that can impact performance if we
are not mindful of how the interpreter does it.

Because a compiler gets a preview of a program, and it can
"hard code" where things are, like block boundaries, in the
run-time code, it does not matter how big a block is. Or how
many there are, or how deeply they are nested.

Rule number two for interpreted BASIC: No nesting. At least,
keep it to the absolute minimum. And keep the innermost blocks
as short as possible. Remember, for every iteration of an
outer loop, the depth of an inside loop must be determined all
over again. Every time the interpreter takes that trip, you pay
for its vacation. All the while it is stumbling along, scanning
each line, looking for the end of a block, your mission is in
limbo.

Another reason for using "blocking statements" conservatively
is because the interpreter momentarily forgets what you are
doing while it is off sightseeing. See this, which is a short
loop coded with one statement per line.

 1000 WHILE CVI(Q$) = 0
 1010 MID$(Q$,1) = INKEY$

The Blue Book About GW-BASIC and QuickBASIC - 157 -

 1020 WEND

 This is good technique, but, it can also cause some funny
 experiences. Sometimes BREAK will cause an ERR = 8. This
 happens if the interrupt is sensed while the interpreter is
 fooling around, pretending it is a compiler, as opposed to
 actually executing statements inside the loop.

With an awareness of what goes on inside the interpreter, it
can be seen why GOTO is a preferable alternative to using
WHILE and WEND. The performance advantage is proportional to
the frequency of use of a specific piece of logic. A "block"
that is executed only once need not be a concern, but, see why

 2000 GET 1 : IF LOC(1)<LOF(1) AND R$<>" " THEN 2000

is a better programming style when lines like this are buried
deep inside loops that must be executed thousands of times. At
a point, when to use which becomes an intuitive decision.

There are times when we should take our brain off autopilot
and revert to manual reasoning. When coding inside a loop,
that is nested inside a loop, that is inside another, and so
on, performance considerations may dictate that we ought to
return to old fashioned coding styles. A girdle may improve
appearance, but it is seldom comfortable.

As an element of style, the issue of naming FOR-variables after
every NEXT can be argued about forever. My habit is still, to
always use a generic NEXT, because of the performance issues
enumerated in Chapter 3.

Many will contend that NEXT should always rename the control
variable that was used with its FOR as a visual aid. Perhaps
that is a good idea when FOR and NEXT are miles apart, and when
considerable nesting has been done. The visual-aid argument is
weak for my loops, where the distance between FOR and NEXT is
kept as short as possible, and very, very little nesting is done.

Once again, coding conventions should be decided upon, on a
global basis. We should not adopt "rules" one at a time.

Structured programming preachers had a lot of followers that
did not fully understand the religion. Some of those souls

The Blue Book About GW-BASIC and QuickBASIC - 158 -

spread the gospel so well, interpreter users can end up with
a heavy cross to bear--a burden that can be lightened if we
heed our instincts and do our own thing, even when it is not
popular with the multitudes.

Not all of the gospel should be ignored, however. Some of it
is very good advice. One of their favorite tenets is often
called the "single entry, single exit" rule. It is a favorite
of mine now, adhered to with fervor and zeal. No longer can we
do things like this:

 1000 GOTO 2000
 1010 LOCATE 12,1 : PRINT I;J; 'a commonly needed function
 1020 NEXT : RETURN 'a single, catch-all NEXT

 2000 FOR I = 1 TO 10 'outside loop
 2010 GOSUB 1010
 2020 FOR J = 1 TO 10 'inside loop
 2030 GOSUB 1010
 2040

It is nice that we are no longer so memory-bound that we have
to resort to tricks like that above, just to save a few bytes.
It is not so good that zealots have been allowed to pass along
a cost factor for what our natural inclinations would likely
have been, anyway. All "loop-blocks", in any program of mine,
have but a single exit.

The end must follow the beginning, physically, whether we like
it or not. Because the interpreter is trying hard to mimic a
compiler, it scans in a forward direction only when looking
for the bottom of a block. To be able to do it as fast as it
can, it concentrates strictly on finding a WEND or NEXT that it
supposes is further down the page. In its head-long rush it
ignores everything but what it is looking for, including GOTO
and its kin.

As an adopted discipline, an element of my style goes beyond
what is dictated. Conditional tests may be done on any line
within a block of procedural statements but, if they want out
early, they must force the "if" that will satisfy a NEXT or
WEND, then branch to that line at the bottom of the block.
Never, ever, GOTO out of the middle of a FOR/NEXT or WHILE/WEND
structure. As a matter of habit, do it thus:

 1000 FOR I = 1 TO LEN(X$) : E = I
 1010 IF MID$(X$,I,1) = " " THEN I = LEN(X$) : GOTO 1090

The Blue Book About GW-BASIC and QuickBASIC - 159 -

 1090 NEXT

Another of my natural inclinations has always been to arrange
all chunks of a program into functional blocks: Procedural
tasks are organized as function-oriented subroutines. Any
GOSUB that calls a task must always be aimed at the same, first
line of that block. The last line of all tasks contains nothing
but RETURN, and, it is the only line that is allowed to do a
RETURN. Thus, by my definition, my style does resemble
"structured programming", as exhibited in this example:

 1950 'sort
 1960 FOR E = -1 TO 0
 1970 FOR I = F TO L-1
 1980 IF A(I)>A(I+1) THEN SWAP A(I),A(I+1) : L = I
 1990 NEXT
 2000 E = L<I
 2010 NEXT
 2020 RETURN

The "name" of a task is a REM (coded with an apostrophe for
aesthetic reasons) that helps me remember what that subroutine
is for. That short identifier is the only thing on the first
line of any subroutine; it is the line that any using GOSUB
must be aimed at. The reason the remark-name must be kept
short is because it is dead code, remember. (As described in
Chapter 2, when the interpreter hits a remark, it has to bump
along, one byte at time, until it finds the start of the next
line.)

So, single entry, single exit: Subroutines begin on the first
line and end on the last. Because the entry point is a no-op
line, and the only way out is the final RETURN, they always
have a logical, physical, and visual, block-like appearance.

Because they look like blocks, they are easily seen as such
when scrolling or strolling through the code. Because each
begins with a short nickname, it is easy to remember which
block is for what.

A physical advantage to this scheme is that changes can be made
easier. Something that needs to be added up front can be
inserted just after the do-nothing name line. Last-act changes
can be added where RETURN was, and a new RETURN can follow the
addition. Because all internal early-exits were always aimed

The Blue Book About GW-BASIC and QuickBASIC - 160 -

at this single exit point, there is no need to go back through
the block to ensure nobody skips task clean-up chores.

The logical advantage to the one-front-one-back-door idea is
important for real blocks--WHILE and WEND, FOR and NEXT--and
for subroutine-blocks. If always done as a matter of habit,
stack overflow errors should never happen.

Without a doubt, the meanest bug you can hatch is the one that
causes an "Out of memory" message (ERR = 7) when it is because
the interpreter's "stack" has been blown. This stinker pops up
most often because of a bad branch somewhere; somebody escaped
from a block without going through the bottom. Chapter 12
describes some methods for finding the line that is guilty of
this sin (and how to avoid use of the two most useless words in
BASIC, e.g., TRON and TROFF).

When GOSUB, WHILE, FOR, or any of the trap-triggers like ERROR
are encountered, the interpreter does a PUSH of pointers onto
its stack. RETURN, WEND, NEXT, RESUME, and similar statements
do POP for a corresponding number of times. If more pushing
than popping goes on, at some point the stack will be full and
the whole show screeches to a halt. The most comprehensive
error handler cannot cope with this.

Because ON ERROR has to use the stack, if it is full it cannot
remember where to RESUME to, even if that seems like a good
idea. It is probably better to forget the whole thing and just
crash, as gracefully as possible. Any program that blows the
interpreter's stack is a borderline psychopath in dire need of
diagnosis and treatment. It should not be allowed to run amok
and cause someone irreparable harm.

Whether thought of as style, technique, method, or whatever,
this seems an opportune point to mention some closely related
bad habits to avoid. Emphatically, in my school, we never do
a RETURN to-a-line-number, or a RESUME to-a-line-number.

It is amazing that RETURN-number showed up in BASIC in the same
era that WHILE and WEND creeped in. One seems to me, to be a
direct contradiction of the philosophy of the other. Granted,
it does take a little effort to design for event-trapping logic
such that, after the event, the continuity of whatever was
happening previously can continue so as to not circumvent the
single-exit rule for the bottom of the block that was in motion

The Blue Book About GW-BASIC and QuickBASIC - 161 -

when a trap does occur.

There is nothing wrong at all, of course, with doing a GOSUB
from within one block, to another block. This presumes, of
course, a called-block will always end in RETURN, bringing
control back to the block from which the GOSUB was done, which
will allow that block to exit through its own back door. Doing
a RETURN to a specific line number is anathema to me, and, to
all advocates of structured programming.

This advice has greater significance for ON ERROR GOTO. To not
RESUME-number, we have to RESUME NEXT. There is an old bug in
BASIC that looks like a centipede because it has so many legs.
It is defined at length in Chapter 9, but a simple description
is all that is needed here: Just where NEXT is, is not easily
reckoned sometimes.

Although the manuals say RESUME NEXT will cause execution to
continue at the next statement following the one that triggered
the ON ERROR jump, the interpreter often loses track of where
it was when an error was encountered in complex or compound
conditional expression (e.g., those using THEN and ELSE).

So, our coding style must cover for this old bug, just so we
can stay alive in this business. Which has nothing to do with
history, religion, or getting an A in school. Several rules are
necessary for survival; a couple more are necessary to keep your
bugs from interbreeding with those buried in the interpreter.

Rule-1 in the book of ON ERROR: One error-handler. It too
should be constructed as a "block". Its single-entry point is
defined once, by a single ON ERROR, up front in the program.
The bottom of an error handler is a single RESUME NEXT.

If ON ERROR is turned off (with a zero), or reinitialized to
this same address, or some other, no RESUME can be done other
than to a specific line. If you RESUME to a line you may cause
the interpreter to blow its stack at some point. Which will
likely cause you to blow your stack immediately thereafter.

As the manuals say, but without elaboration, only one ERROR
can be coped with at any given point in time. If that trap is
taken--which is conceptually like a GOSUB--a second error cannot
be tolerated until a RESUME is done. In software engineering
parlance: An error trap (and a subroutine) cannot be recursive.

The Blue Book About GW-BASIC and QuickBASIC - 162 -

A call to one's self is not permitted in BASIC.

Rule-2 in this book: Do as little as possible while trapped
inside an error handler, and get out of there as quickly as you
can. Set a flag, or something, and RESUME NEXT. Let the guy
who triggered the error take care of the situation. This does
mean, of course, that procedures elsewhere must anticipate that
a return from the error handler can come back waving a flag.

Rule-3 should maybe have been the first rule: Do not do any
I/O to mechanical devices while inside an error handler. (My
ideas about logging errors is covered in Chapter 11 along with
other design issues. Here, we are contending with the matter
of how our coding style has to anticipate that errors can occur
anytime.)

The simpler causes of errors--our coding mistakes--can be found
and eliminated (eventually). Because we cannot have blind
faith in those over which we have little control--like DOS, and
even, high priced disk drives--we have to anticipate that they
do malfunction sometimes. It is best to not allow them an
opportunity to confuse us with another error while trying to
cope with the one that caused us to be trapped inside an error
handler in the first place.

Once our code is fairly clean--only the naive believe they can
write bug-free programs--the most likely trip to an error trap
will be triggered while doing I/O to mechanical devices. It can
happen anytime. So, do not do any input or output after ELSE.
In fact, if it is done after THEN, do not do an ELSE on that
same line. This rule should be followed throughout, in any
program that has an error handler that uses RESUME NEXT.

Because the interpreter gets confused about where next is, on
any line that has THEN and ELSE in it, the above rule must also
prohibit deliberately provoking errors with ERROR-number on
lines that include THEN and ELSE.

For a number of years my programs often used ERROR-code to tell
the operator about keying mistakes. The error handler had all
the overhead for doing BEEP, LOCATE, PRINT, and the like, and,
displayed selected messages from a tank, based on the value of
the number used with ERROR. (In the strictest sense, output to
the tube is I/O, but "Device I/O error" and the like were rare
enough that it seemed practical to bend the rule about not
doing I/O in an error handler, for a non-mechanical monitor.)

The Blue Book About GW-BASIC and QuickBASIC - 163 -

Two things have caused me to forsake the use of ERROR-number
as a cheap substitute for GOSUB. The rigid self-discipline
needed to avoid an unpredictable return from RESUME NEXT
became tiresome. Trying to remember where an ERROR would come
back to, in conditional expressions that involved both THEN
and ELSE was harder than the simpler alternative of assigning
a code to a variable, then doing a GOSUB to a general-purpose
"message subroutine". The idea that monitor I/O errors were
not likely, is not as valid as it used to be, either.

Output to a monitor, using conventional BASIC commands like
PRINT, invokes BIOS calls. (Chapter 7 dwells on this.) The
continued proliferation of new types of monitors and adapters
increases the risk that sooner or later one of them, or DOS,
will change its mind about the signals it sends back to BASIC
indicating the results of output requests.

Even if we suppose that "Device I/O" errors are still unlikely
on a monitor, there is another overall design issue that must
be considered. Once upon a time, all that a general purpose
message routine had to remember, and restore, was where the
cursor was before the jump occurred. Today we have to contend
with color, cursor-on or cursor-off, the cursor's size, display
pages, and on and on. Today it is usually simpler to move this
overhead to specialized subroutines geared to different screen
modes. Error message output to a monitor in an error handler
should be limited to "emergencies" as a matter of habit.

Having reasoned why our coding style must be cognizant of the
risk of errors occurring between THEN and ELSE, the use of IF
itself needs some thought when speed is worth worrying about.
IF is about the slowest thing you can do in interpreted BASIC.
Almost any alternative is usually faster.

Heeding this advice, see also why WHILE should not use multiple
implicit "ifs". WHILE A>B AND C<D AND E>F is the equivalent of
doing the same thing with an IF, each time WEND is encountered.
Reconsider this old-fashioned alternative:

 1000 IF A>B THEN 1040
 1010 IF C<D THEN 1040
 1020 IF E>F THEN 1040
 1030 'exception logic
 1040 'otherwise

The Blue Book About GW-BASIC and QuickBASIC - 164 -

The authors of some textbooks encourage us to stack IF-lines
like this so that the condition most likely to occur is tested
first, the next most likely second, and so on. This author
agrees with the reasonableness of that thinking, but offers a
suggestion to consider as superior to that: Do not use IF at
all when there is a practical alternative.

One such alternative is ON GOTO (or ON GOSUB). This has always
been to BASIC, conceptually, what CASE is to other languages.
Hence my inference that we should vote against CASE in BASIC.

CASE originated in languages that had nothing comparable to
ON GOTO. Chances are, if it was added to BASIC, it too would
not be very efficient because of the artificial contrivances
that are patched into the interpreter when it tries to adopt
any type of structure that is foreign to what was, and still
is fundamentally, a line-at-a-time language.

The following example is a rewrite of the one shown earlier.
This one uses ON GOTO as an alternative to IF.

 1000 ON ABS(A>B AND C<D AND E>F) GOTO 1020
 1010 'exception logic
 1020 'otherwise

Not only is this shorter, it is a faster alternative when the
various IF-conditions enjoy an approximately equal chance of
happening. It is the faster alternative only when no heavy
arithmetic is needed in the ON-expression, however. Contrast
this with the following one that produces different addresses
for each of the conditions being tested:

 ON ABS(1*(A>B AND C<D)+2*(A<B AND C>D)) GOTO 2000,3000

which is equivalent to:

 IF A>B AND C<D THEN 2000
 IF A<B AND C>D THEN 3000

As with any advice from a book, this has to be eyeballed for
what it is worth in given situations. Before your thoughts
turn argumentative: Yes, IF and THEN are easier to read than
ON la-de-da. My thoughts about how coding style and program
maintenance issues can be judiciously balanced are offered a
little later. My admonishment here is, adopt nothing out of
context of the whole of this subject to avoid being labeled

The Blue Book About GW-BASIC and QuickBASIC - 165 -

an extremist.

A good example of extremism was APL. It had no IF. (APL came
out of Harvard about 1962; was all the rage for a while on the
old IBM 360 computers; it has steadily declined in popularity
since about 1975.) Virtually everything done in APL has to be
accomplished with algebra-like expressions. George Boole and
Blaise Pascal would have loved it.

APL was good for machines, but it was hard on programmer heads.
In my youth it was fun to develop lines like

 ((A>B)/'G'),((A=B)/'E'),(A<B)/'L'

so that G, E, or L would print, to show the relationship of A
to B as being Greater, Equal, or Less. And this is a simple
example. Compare it to this one for evaluating an algebraic
polynomial:

 3 + (2 x Y) + (9 x Y * 2) + 4 x Y * 3

Believe me, if you wrote twenty lines in succession like this,
in the morning, and did not notice immediately that one had a
mistake in it, you could get a bad migraine trying to find the
error that afternoon. APL was, is, and shall forever be (we
hope) the most cryptic of all languages ever foisted upon us.
Even FORTH was not that obtuse. It too is now a dead language.

Now we come to the issue of living in glass houses and throwing
bricks. There is a difference between a language itself being
cryptic, and our personal choice to sometimes write cryptically
in a language that does not insist upon it. See this line out
of one of my own tricks displayed in Chapter 14:

 3240 E=E*(VAL(LEFT$(X,2))<13)*SGN(VAL(LEFT$(X,2)))

Unlike in APL, we can decide when to use IF in BASIC. And we
can deliberate about when, or when not to be cryptic. In this
line (3240) a "conditional" expression is used to generate a
"flag" in a numeric variable. Obviously, seen out of context,
it is not obvious at all what its purpose is. Programmers that
know BASIC well can easily see what this line will do, but not
why, nor to whom.

Occasionally we still see comments in our junk mail that BASIC

The Blue Book About GW-BASIC and QuickBASIC - 166 -

is an English-like language. The non-programmer scribes that
dump this crap on the public have never tried to "read" one of
my programs. In fact, any program, in any language that can
do more than "See Spot run", is impossible to read one line at
a time.

Even COBOL, which is extremism in the opposite direction of APL,
is not always as "readable" as its proponents vehemently argue,
in spite of its determination to mimic English. You cannot
read one paragraph of a COBOL program, alone, and infer its
reason for being, without reading the whole book.

Argumentative or not, the above paragraphs are offered as the
underlying preamble for my attitude that my programming style
does produce programs that can be cost-effectively maintained.
Which is THE issue by which to argue using tricky techniques
for conserving space or increasing performance vs. those that
are (somewhat) easier to read, for those of us earning our
daily bread as programmers.

Teachers, preachers, authors, text books, and technical tomes
have to try to communicate to the masses. What a real program
of mine looks like, internally, is privy to a very small group
of people; often as not, only three: Me, myself, and I.

The sort routine shown earlier is recoded here, as it would
actually appear in one of my programs, as a model of my style,
for what I call freeze-dried code.

 1950 'sort
 1960 FOR E=-1 TO 0:FOR I=F TO L-1
 1970 IF A(I)>A(I+1) THEN SWAP A(I),A(I+1):L=I
 1980 NEXT:E=L<1:NEXT
 1990 RETURN

The name line is short, and, uses lower case letters to make it
easier to spot when scanning listings or scrolling on the tube.
Notice there are no other remarks. They are not needed by me,
or another programmer wandering around in my code. That is my
assumption.

Freeze-dried code has no need to be artistic or pretty. It
either works, or it does not. Once debugged, it is highly
unlikely this routine will ever have to be changed, hence, it
should be coded so as to be as efficient as possible. The more
compact it is, the better. Conceptually, freeze-dried code is

The Blue Book About GW-BASIC and QuickBASIC - 167 -

like an "intrinsic function". In this example, if BASIC had a
SORT verb, we would never see these lines, nor worry about what
they look like. Our own-code substitute should strive to be as
small and as fast as possible. Effectively, GOSUB-number can be
used as a substitute for your own extensions to the basic, BASIC
language.

To minimize future maintenance efforts, areas in a program that
are likely to have to be modified someday deserve a different
attitude about style: They should be easily found, easy to
read, and illuminated with remarks.

Some of my habits make it easy to find things, like using a
one-word delimiter at the top and the bottom of a block. Most
of the lines inside the blocks are long, multistatement lines.
No single line is ever longer than the width of the screen,
however. All line numbers are always 4-digits. (My programs
always begin with line 1000 and are incremented by ten from
there on, with no gaps. Some additional reasons for this are
cited in Chapter 12.)

A picture is worth a thousand words, so goes an old cliche.
The "image" of a block can be quickly seen, by reason of my
habits of style. Once the picture that is wanted is on the
screen, concentration can then focus on a word search.

Notice my reluctance to use the word module. Text books on
structured programming love that word, but few use a common
definition of what it means. My definition: Not more than a
screen full. LIST is tiresome. The cheapest word-processing
programs can scroll text forwards, and backwards. The editor
in GW-BASIC cannot scroll in either direction.

Dense code runs faster, and, it enhances productivity. After
the labor of getting a chunk of logic on the screen, we want to
see all we can. To relate to a part that is not visible, our
mind has to shift gears to fetch another picture. By then, it
is hard to remember how that information corresponds to what we
were looking at just moments ago.

With this pair of motives in mind--optimum performance of man
and machine--a few more of my habits need to be listed.

 Restrict all lines to a maximum length of 80: The blanks

The Blue Book About GW-BASIC and QuickBASIC - 168 -

 following lines that do a wrap-around contain little useful
 information. Continuity of perception is disrupted at the
 point of overflow, and, when scanning down the left margin
 looking for line numbers.

 Omit all "optional" syntax: In CLOSE #1, for example, the
 pound sign is not needed by man or machine.

 Condense conditional expressions: IF I-1 THEN is shorter
 and faster than IF I<>1 THEN.

 Use DEF-type, and omit variable-typing appendages: Having
 said DEFSTR M-Z up front, all of those tiresome dollar signs
 can be left off of all string expressions, and save a lot of
 space. And shift-key usage.

 Use short variable names: One or two characters is the rule.

Way back when, a variable name in BASIC could only have one or
two characters, plus a data-typing appendage. And it was that
way for a lot of years. At a point, names could be longer, but
only the first two characters were used to discriminate between
names. Today we can have names up to forty characters long,
and all of them are used in doing name comparisons. Big deal.

Before they gave us so much, and slowed us all down whether we
liked it or not, we had already learned to live with what we
had. Those methods are just as viable today. Conversely, the
advantage to be gained by longer names is not enough to make
this old dog learn new habits. Here are some of my old tricks
of the trade, and why change is resisted.

 DEFINT C-L : DEFSTR M-Z : DEFDBL A

This is done once, only, at the beginning of any program. It
is extremely rare that this allocation of the alphabet ever has
to be different. The unstated B is, by default, for single
precision variables. Of all of the expressions in a program,
few need to use floating point variables. A and B, followed
by other letters, or numbers, will provide for up to eighty of
each type. (The full range for either is 164; 82 simple names
and 82 arrays, including the use of the single letter itself,
and allowing for one name to use a period as a second letter.)

Most of the "computing" that is done in all BASIC programs is

The Blue Book About GW-BASIC and QuickBASIC - 169 -

for the benefit of counting and making decisions. Most of that
can be done with integers, and it is definitely faster to do
so. Hence, the use of C-L for integer names.

Data file processing, especially, uses a lot of strings. The
M-Z half of the alphabet is sufficient for that, and all other
string manipulation tasks whether file-related or not.

Once adopted as a habit, a consistent allocation in the use of
the alphabet makes it easy to see and read names without any
trailing data-type appendage. It also causes us to develop
strong preferences for the use of certain names in a similar
way, for a long time, in a lot of programs.

A name beginning with the letter Q, for example, always has
something to with keyboard activity in my programs (e.g., Q
is for Query). Similarly, my first choice for a FOR/NEXT
loop is always the letter I, stemming from thousands of lines
of code written in FORTRAN. (In that language data typing was
enforced upon us; early FORTRAN compilers gave us no choice;
certain letters were pre-designated as being the ones we had
to use to reference certain data types.)

Another benefit of short names, used the same way over a long
period of time, goes way beyond the obvious advantage of our
ability to easily remember what they are used for: When
merging code from one program into another, far less work is
involved than would be the case if all of the names had to be
changed. And, this also reduces the risk of editing mistakes.

Chapter 3 presents arguments about declaring all variable names
up front in a program. Add to that advice, this is also the
place to make notes about what variables are used for. Here
is a short segment of the front end from such a program:

 1190 I=0:J=0:K=0:D=0:E=0:F=0:G=0:H=0:A=0:B=0 'local
 1200 L=CSRLIN:C=POS(0) 'global
 1210 BM=&HB800 'BaseMonitor
 1220 CM=0:CQ=0:CP=15 'CursMon:CursQkey:CursPrt
 1230 C4=0:L4=0 'Col4:Line4 limits
 1240 DQ=0:EQ=0:GQ=1:KQ=0 'DoQ:EditQ:GetQ:KeyQ
 1250 ME="GenFont2.E00" 'MaskEdit
 1260 MH="GenFont2.H01" 'MaskHelp
 1270 Q1=CHR$(0):Q2=MKI$(0) 'Q1key:Q2key

Self discipline can produce many side benefits from habits like
these. While coding, if a new name has to be invented, look first

The Blue Book About GW-BASIC and QuickBASIC - 170 -

at the start-up names list to preclude accidental conflicts.
By always adding new names to this list before they are placed
into use, they will not be forgotten, neither the names, nor what
they are used for. This scheme also helps keep the list short.
The possibilities for using some variables at different times
for different purposes can be more readily seen in this way.

As a general rule, single character names are always local; two
characters are used for global names. Meaning: After a GOSUB,
do not depend on the contents of single-letter variables. Names
with two characters have values that are global in nature, either
in the sense of the program overall, or among just a few routines,
even. In some cases, as in the example above, C and L are used
throughout as global names by this particular program. It is
one that uses LOCATE a lot. To keep those lines short, these
two single-letter names were declared global in this program
as an exception to the usual rule about single character names
being subject to capricious use inside any subroutine.

One more habit needs to be mentioned as a matter of style.
My overall attitude about remarks can be seen in many places.
Those shown with variables in the earlier example are typical:
Short, terse, and somewhat cryptic. Given my habits, however,
and an awareness of what that program does, they are as useful
to me as they would be if they were each a paragraph long.

Down in the bowels of a program proper, my remarks tend to be
scarce. They are usually used for annotating logic-flow, as
opposed to explaining how something works. Knowing BASIC, it
is not too hard to decipher mechanics, but it is not so easy
to see why a GOSUB is jumping off to somewhere. The following
one-line example solves this type of problem at a small cost.

 3440 IF I THEN GOSUB 1030:GOSUB 1110 'sort:save

This line is from a program that had a subroutine called "sort"
and another called "save". A short REM coded on the tail end
of any line that says GOSUB should duplicate the same nickname
that is at the top of a called subroutine. This habit, adhered
to with Teutonic discipline makes it easy to "read" a program.

Most often when we are looking at old code--even that written
only a few days ago--we are usually trying to track its logical
flow. Once debugged, the grit in the middle of expressions is
like sand when what we are really looking for are boulders. Our
blunders at this point are more likely to be errors in logic, in

The Blue Book About GW-BASIC and QuickBASIC - 171 -

linking major blocks together, rather than picky errors inside
the blocks themselves. (Chapter 11 provides some ideas about how
to decide what blocks are needed. Chapter 12 describes in more
detail how and when to best build, and debug, the pieces of a
program.)

This chapter should not be read as an attempt to thwart the
advice of wiser heads than mine. Nor should any motive be
perceived to contradict what may be considered by many as
"good programming practices."

Pretty code vs. dense code often stimulates heated debates. My
closing argument is invariably the same. Pretty code is most
often the preference of those that get paid to program. Those
of us that program for profit tend to lean the other way. The
matter of style, inside a program, is a personal decision.

Programming may involve artistic talents but a program itself
is seldom seen in an art gallery. With deliberate effort we
can develop a style of coding that is efficient and easy, based
on an awareness of how the interpreter itself works. Adopting
habits encouraged by "experts" in other languages, and those
with no practical experience in any programming language makes
no sense in a profession that depends on our ability to reason
logically.

At given moments in time we all vary our inclination, left or
right, depending on the pressures of a particular programming
problem. With a little luck we will have been found to have
leaned in the right direction in a majority of cases.

Hopefully, some of this will enhance your inclinations. What
has been displayed here was not learned in school. It has been
my style, for quite awhile, reflected in a lot of programs
written in interpreted BASIC. Programs that have paid for a
lot of biscuits, even though some would not likely score a
passing grade in a classroom.

The Blue Book About GW-BASIC and QuickBASIC - 172 -

Chapter 11 = DESIGN

What a program should look like is covered in Chapter 10. How
to build programs quickly and easily is in Chapter 12. Chapter
13 suggests some coding techniques for implementing various
aspects of a design. In this chapter are some ideas on how to
first decide what a program should contain, where, why, and
even, how many programs are needed to satisfy the requirements
of a complete application.

The four subject classifications--style, design, method, and
technique--are somewhat arbitrary, but chosen to minimize
redundancy, and to permit concentration on one theme at a time.
None of these can stand alone, however. They are all tightly
interrelated. It is the sum of these ideas that make it
possible to generate custom application programs cheaply, in
BASIC, that work efficiently and safely.

Efficiency, as a design subject, has at least seven parts:

 + Run time performance of a given program.

 + The time involved in switching between programs in a total
 application set.

 + Usage task-times, i.e., the proportional amount of time
 spent doing things like file maintenance, posting business
 transactions, printing reports, changing printer forms and
 making back-up copies of software and data files.

 + The manhours involved in building and debugging programs.

 + The probability of costs for diagnosing failures and making
 fixes.

 + The labor-risk for making future modifications because of
 changing requirements.

 + Operator training and documentation updates.

Safety, as a matter of design, has at least four parts:

 + Hardware failures; namely disks, disk drives, and all kinds
 of electronic breakdowns.

The Blue Book About GW-BASIC and QuickBASIC - 173 -

 + Programming bugs; yours, the interpreter's, DOS, and its
 hodgepodge of parts.

 + Corruption caused by "foreign programs".

 + Operator foul-ups of all kinds (also known as "OFU").

Nearly all of this book to this point has been concerned with
obtaining maximum performance for a given program while it is
executing. A fundamental theme has been: The fastest running
programs are those written with a full awareness of how the
GW-BASIC interpreter works.

Most full-scale applications are made up of several programs.
Getting from one to another, efficiently, is often a critical
function of design. Poor design choices here can sometimes
cripple programs that would otherwise run like racehorses.

All efforts for attaining efficiency, in both the man and the
machine sense, can be obviated entirely if a hasty design does
not fully consider safety issues. Mangled disk files will make
any user unhappy. When it happens, they will be in no mood to
compensate you for the time required to diagnose the cause of a
failure, even when you can "prove" that the fault was theirs,
an act of God, Mother Nature, a chip maker, or some other
programmer.

Although some of what follows could be applicable when writing
programs in almost any language, the emphasis here is on that
which is peculiar to GW-BASIC, specifically. Little emphasis
is needed about particular types of applications. Payrolls,
games, and toy programs all deserve some thought about design.
Only the amount of time should differ, not the quality of what
goes into such intellectual exercises.

Nearly all programs have to access disk-based files of one type
or another, sooner or later. To do so quickly, and safely,
consider the ideas listed here, and the rationale on which they
are based. At design time. In that interval of deliberation
before coding is begun. Coding errors can cost a little time
to find and fix. Design errors on the other hand, can bankrupt
computers, others, and you.

Whole stacks of books can be found in the libraries regarding

The Blue Book About GW-BASIC and QuickBASIC - 174 -

software development projects. They invariably propose writing
a lengthy functional requirements document, a project plan, and
an installation and testing plan. Different authors choose to
communicate their ideas in various terms. Some break the whole
into different pieces. Having studied many such books, and
having practiced their advice to one degree or another over the
years, with gangs of coding coolies, and in lone-star efforts,
here is my synthesis of it all, in this environment.

 Build menus first. This does two things. Menus are a "list"
 of what functions an operator must be able to do. They also
 provide an "outline" of the major functional tasks that must
 be programmed for. Hence, this work approximates what would
 go into a requirements document, but it is also an end-use
 product, not just reams of paper.

 Build data entry and display masks next. Concentrate here on
 record layouts, field sizes, and the like. Thought has to be
 given at this point for reporting requirements so that what
 will be needed eventually, will have been captured somewhere.
 This effort also relates to a "requirements definition", but
 it too results in end-product usable output.

 Build skeleton programs next. These are really dummies; the
 only one that has a modicum of intelligence is the one that
 provides for menu selections. The others merely display the
 various screens that will be seen by an operator, and give
 an impression of how "friendly" the final product will be.

 Build a few help screens next if on-line help is a basic
 requirement. (If not, resort to an abbreviated piece of
 written documentation.) The subject emphasis here is on how
 installation will be done, and the interrelationship of this
 application to others in the same system domain.

The sum of all efforts to this point is akin to what is alluded
to in many textbooks as a "prototype design". You now have a
demonstration tool for interacting with the intended user to
ascertain that all of the bases have been covered. And you
have a "plan" that outlines what "modules" will be needed. (It
is from this that estimates regarding schedules and costs can
be made, also.)

Now see how the above suggestions relate to BASIC: The menus,
entry masks, and help screens are built and used with BSAVE and
BLOAD. Chapter 6 contains some technical specifics about this;

The Blue Book About GW-BASIC and QuickBASIC - 175 -

Chapter 12 suggests some ways to do it easily; here we consider
some pertinent design issues.

 The use of LPRINT can cause problems sometimes in programs
 that also do BSAVE and BLOAD. The obvious solution is to
 OPEN the printer as a device and PRINT to that "file". Read
 this another way: Forget the word LPRINT.

 The disk space needed for BSAVE/BLOAD text files is double
 what would be needed normally, e.g., 2-bytes per character
 rather than one.

 BSAVE (and BLOAD) can only address a DOS file name. And
 always, an entire file. In monoadapter machines this means
 every screen, or partial screen, is a file. Multiple "pages"
 can be saved and loaded as a single file with color adapters,
 but BLOAD always loads an entire file (all pages that were
 saved in one file). A lot of screens can mean a lot of file
 names, which can have a negative impact on the time required
 for directory searches for all file names, including those
 for programs and data files.

 CGA machines "flicker" when you do a BLOAD into video RAM
 areas. While this is not a tremendous problem, it is a fact
 of life (and difficult to explain to an operator, even though
 it is often only a minor annoyance.)

 BSAVE to a flex disk is very slow; BLOAD is a little faster,
 but the screen appears to be painted in "chunks". (A floppy
 sector is 512 bytes; DMA transfers are done one sector at a
 time.)

 For systems that have only floppies, if the operator removes
 the disk with BLOAD screens on it, PRINT will have to be used
 as an alternative means of communication in error situations.

 BSAVE and BLOAD work from point-A to point-B as continuous
 and contiguous strings of bytes. In practical terms, partial
 screens can only be done as consecutive, full-width lines;
 pop-ups and pull-downs must be designed as screen-wide blocks.

As with all design issues, there are trade-offs, of course. A
significant advantage to the use of BSAVE and BLOAD screens is
that programs themselves are much smaller. And much faster.

Because character attributes are saved (and restored) along

The Blue Book About GW-BASIC and QuickBASIC - 176 -

with text, and lines and boxes, there is far less need for a lot
of nitty gritty lines that do LOCATE, COLOR and PRINT. And the
text itself is outside of the program, freeing-up even more
space better used for "intelligent procedures" and working
storage areas.

BSAVE screens can also be used to cheaply pass along information
to other programs. Suppose an operator selects a report option
from a menu, then the menu program chains to a general purpose
report writing program. Just before the chain takes place, mark
the operator's selection on the menu and BSAVE it. When the
report program starts running, it can examine the menu to see
what it is supposed to do. (The use of COMMON and other
inter-program communication techniques is explored later, but
remember this example of a simple alternative.)

Now it can be further seen why this chapter on design began
with a focus on using BSAVE and BLOAD screens: A decision in
this regard can be significant in how an application is mapped
overall, especially in terms of how many individual programs
will be needed, and what they will each do. Typically, because
of the use of "screen files", more intelligence can be built
into a single program than would otherwise be the case.

In GW-BASIC we have to always keep in mind that we have to live
and work within a 64kb bucket. Oddly enough, this is usually
ample; seldom does it have much influence on how an application
is best divided into component programs, assuming you agree with
the following attitudes:

 + For performance reasons, short variable names are used, and
 all variables are reused, to the maximum extent possible.

 + For both performance and labor reasons, dense code is best.

 + For labor and space-saving reasons, screen files are easy
 and economical.

 + Once the interpreter is loaded, the big drag is over. An
 end-use program can be RUN-loaded or CHAIN-loaded pretty
 fast if individual tokenized program files themselves are
 fairly small.

 + Program files will naturally tend to be small if their
 bulk is mostly procedural code and not a lot of "text".

The Blue Book About GW-BASIC and QuickBASIC - 177 -

Assuming concurrence with this background, how many programs,
and what each will do can align with what the user wants to do.
A simple example can be used to convey this idea; of all of the
different types of business data processing applications, the
simplest one that comes to mind is a stand-alone General Ledger
accounting application. The basic functional requirements for
this one comprises a small list.

 Master file: Small records, one per account number.

 File maintenance: Operator needs to be able to create new
 accounts, delete obsolete ones, and make minor corrections to
 static descriptions and the like.

 Transaction file: Each accounting entry is a "record".

 Posting operations: Accounting entries are debit and credit
 adjustments to an account balance. The current balance is
 maintained in the master record; each posting line is tacked
 onto the tail end of a transaction file.

 Reports: Two kinds, essentially. Journals are listings of
 records in the transaction file. Profit and Loss Statements,
 Trial Balances, and the like, come from the master file.

Ignoring mechanical details for the moment, see how this simple
list can be expanded to embrace almost any data processing
problem. The others are simply more of the same, no matter how
sophisticated their overall requirements are. Because of this
view, a general-purpose design template can be described.

 Master file maintenance: One program for each file. It will
 OPEN its master for both reading and writing. For ISAM file
 situations (q.v. Chapter 13) two files may be involved--the
 real data file, and its associated index. In sophisticated
 applications, master-file maintenance programs may also have
 to OPEN ancillary files in a read-only mode for validating
 operator entries, or for merely providing visual references.

 Posting program: Only one (usually). In concept, this is a
 data entry program. It is also the guts of an application.
 This is where it all happens in terms of what a "program"
 can do. At various points in this process most all master
 files must be open; some for reading and writing, some for
 read-only. Output is to at least one file; sometimes to more
 than one. The output from posting invoices, for example, may
 be an intermediate file to be used to drive another program

The Blue Book About GW-BASIC and QuickBASIC - 178 -

 that prints forms and updates accounts receivables balances.

 Report program: Maybe one, maybe many. A distinction must
 be made between those that only read-and-list, and those that
 list information and do concurrent updating of master file
 records on the fly (or at the end of the report run).

While the above is not a radical view in any language, on any
computer, it is especially apropos to BASIC and DOS. The three
types of programs--file maintenance, posting and reports--are
a natural definition of separate programs for at least three
reasons: Performance, space, and safety.

 Performance: The need for speed is different for the three
 major types of tasks that an operator does. File maintenance
 and posting are both operator paced, but differently so in the
 sense of key-thumping burst rates and entry rhythm. Reports,
 on the other hand, run largely unattended once initiated.

 While doing file maintenance, little paper shuffling goes on.
 With the exception of creating new records, not much time is
 spent on any one record. Emphasis here should be on fast
 record access, and rapid displaying of entire records on the
 screen.

 During posting an operator's eyes are focused on input source
 documents far more than they are on the screen. Although a
 lot of disk accesses may be needed for each transaction line,
 little of that data is actually displayed. Because of an
 operator's natural inclination to see-a-line and post-a-line,
 it is best to echo each columnar entry quickly, and do all
 cross-file validation checking at the end of each line.

 Reports are typically printer-speed paced. This is still
 often true today in business operations, notwithstanding the
 popularity of large capacity "buffers", and the sometimes
 supposed advantages for things like spooling and so called
 "background multitasking". For many "reports" like invoices,
 monthly statements, and paychecks, further data processing
 cannot be done until those runs are fully and successfully
 completed, and backed-up, no matter how it is done. Design
 emphasis here must center on efficient coding of printer
 output sequences.

 Space: The mapping of an application into separate programs
 on the "natural basis" suggested here often causes the best

The Blue Book About GW-BASIC and QuickBASIC - 179 -

 fit automatically in terms of the 64kb maximum space limit
 per program.

 File maintenance programs, for example, need to fully define
 all record fields. Large chunks of procedural code are often
 needed to let the operator move around in a record, and for
 thoroughly checking all keyboard input. This program is also
 the one that must do full index maintenance for ISAM files.
 Nearly all of these functions often require large sequences
 of rote code that are unneeded in other programs within the
 same application set.

 A bookkeeper sees a debit and credit as two different things.
 Programmers see them as essentially the same; only the signs
 are different. With small effort, a single set of procedures
 can accept input for either an invoice or a credit memo. Two
 different entry masks, with different "headings" will benefit
 the operator. By designing them so that columnar alignment
 is the same for both (or nearly so), only a single set of
 subroutines are needed internally.

 No matter how it is done, a program that prints a report is
 mostly rote procedures, but seldom very lengthy. It is here
 however, that memory constraints can sometimes impact the
 design of arrays for accumulating totals and intermediate
 subtotals. In some, large "lists" must be constructed and
 sorted in order to provide output in a required presentation
 sequence.

 Safety: Updating disk files is a risky business. Updating
 existing relative file records is the least risky--only
 that particular file's contents is in jeopardy at any given
 moment. Adding new records to a relative file is akin to
 sequential file output as far as DOS disk-mechanics are
 concerned. And so is creating any kind of new file. If a
 failure occurs while DOS is fiddling with the FAT, an entire
 disk may become totally useless in a pragmatic sense. The
 onus is on us to deal with these risks. Buck passing stops
 here; we have to cover fully for the sins of DOS, clumsy
 operators, and all "cheap" programs allowed to run in our
 machine.

 Because master files are relative files, invariably, file
 maintenance programs must contend with both record updating
 risks, and those inherent to file-stretching operations.

 Posting programs do not normally have to stretch master files,

The Blue Book About GW-BASIC and QuickBASIC - 180 -

 but, they do have to update existing records and continuously
 add-on to the end of transaction files, be they of either type,
 relative or sequential.

 Report programs present the least systems integrity risks
 if they are of the read-and-list variety. A failure while
 reading records is unlikely to harm anything on a disk, save
 for the usual risks of physical damage caused by electronic
 or mechanical breakdowns of the drives themselves. When it
 is necessary to store report accumulations in temporary work
 files, or do batch updating of data records, that program
 must contend with file and systems integrity issues with the
 same sense of responsibility as any type of data processing
 program.

Having now decided how many user task-oriented programs will be
needed, and what each must be responsible for, it is time to
decide how to hook them all together.

As a matter of habit, my preference tends to be to do all menu
selections from within a single program. For several reasons.
To you, and an operator, a menu program can be seen as a table
of contents. But from slightly different perspectives.

From a menu an operator can choose what type of work they want
to do next. When finished with an operation they can return to
the menu for another task-oriented selection. Menus provide a
condensed definition of what an application can do, and, serve
as an "office manager" for enforcing procedural discipline.

The menu program can also serve as an "application manager".
It is the logical place to do global housekeeping chores so
that task-oriented programs need not have to contend with the
mundane. Having solicited today's posting date, for example,
the menu program can simply pass it on to other programs, so
they can assume they will receive only valid data. This is
also an obvious place to do nuisance chores like converting
dates to Julian, if that format is needed by several other
programs as a static value.

Another type of "global chore" suitable for a menu/gateway
program is usage logging. An operator's menu selection can be
"logged" before the called-for program is loaded. By causing
all programs to exit to this common program, success or failure
status indicators and activity counts can be passed back to a
single routine responsible for maintaining a log of who did

The Blue Book About GW-BASIC and QuickBASIC - 181 -

what to whom, and when--an indispensable aid for doing fault
isolation and diagnostic work.

Another reason for favoring a single gateway concept for an
application's basic architecture is that it is a good place to
take care of configuration idiosyncrasies. Once this program
determines how many disk drives are available, for instance, a
mere status indicator can be passed to other programs so that
they do not have to duplicate unnecessary procedural tedium.

A similar but often more laborious task can be accomplished
once, in this one program. Modern printers have memories of
their own. To ensure that a printer has not been left in an
unpredictable state by an interim process, the menu/gateway
program can arbitrarily reinitialize all printer options just
before a call to any program that makes use of that device.

The above not only precludes redundancy in all programs that
print, it also localizes into one area all of those eight ball
codes that are likely to be different for various printers.
The obvious payback here comes when a user opts to upgrade his
printer, i.e., only one program will have to be "updated".

Now for the clincher: Application and system integrity. When
an application is first started, the "menu program" should do
a thorough check that all is Ok before any type of processing
is allowed. (If not, a RESTORE should be enforced.) Assuming
all of the programs within the set are well behaved, subsequent
(but simpler) checks can be made on each return to this single
program to ensure that nothing went haywire while its back was
turned.

By making the start-up gateway process responsible for making
sure that all programs, screen files, and data files are in
fact resident and ready, discrete programs can be written so
as to make a number of assumptions without having to contend
with every conceivable eventuality.

Obviously much of the foregoing would be an equally valid set
of considerations no matter what programming language is used.
Before we begin slapping up code in GW-BASIC, however, there are
several perversities that must be reckoned with as design-level
issues.

Although the manuals devote but a few sentences to describing
how RUN and CHAIN work, there are tremendous differences to

The Blue Book About GW-BASIC and QuickBASIC - 182 -

consider in choosing one vs. the other. Those factors will be
enumerated shortly, but there are fundamental problems to
consider about how to get back and forth smoothly from DOS to
BASIC in the first place.

There are five sizing assumptions built into the interpreter.
Those default values may be altered by the use of "switches",
when GWBASIC.EXE is loaded. Whatever those values are--the
default values, or your own--they remain constant for all
programs that run from then on. The only way to alter these
values is to reload GWBASIC.EXE; the only way to do that is
to exit all the way back to DOS command-mode level. And that
takes time, especially for the reload of the interpreter.

Suppose at least one master file in an application has records
of 512 bytes. Suppose a posting program has to open six files
concurrently. We might launch the application with a command
line similar to this:

 GWBASIC AR-MENU /S:512 /F:9

My latest manual says each F-number costs 194 bytes, plus the
size of the S-number, for each one. I have not yet figured out
how to make accurate use of that advice. Using GWBASIC.EXE
version 3.23, the difference reported by FRE(0) in this case is
5772 bytes, vs. what it would be for a "default load". (54528
vs. 60300, with no program in memory.) It would appear from
this that each file costs 642 bytes. If we increase the number
of files to 10, the amount of memory reported is 760 bytes less
than for /F:9, but 9 times 760 does not equate to 5772. On the
other hand, 512 (my file size) less 128 (default size) is 632.
And 632 times 9 is 5688, which is pretty close to 5772, really.

 Note: The manuals also say that the S- and F-switches are
 ignored if we do not also specify an I-switch. Ignore that
 tidbit. To the best of my recollection, slash-I itself has
 been ignored by all versions of the interpreter since about
 1982, or so. Slash-I has no influence on anything at all,
 today, as far as I can see.

When doing design estimates my rule-of-thumb is:

 R = Maximum record size, plus 130
 N = Maximum OPEN-data-files requirement, plus 3

then R times N is the approximate constant memory cost for all
programs that run after the interpreter is once loaded. (The

The Blue Book About GW-BASIC and QuickBASIC - 183 -

plus-3 for N, by the way, is for the keyboard, monitor, and
printer; even if we do not plan to open them explicitly, the
interpreter itself implicitly anticipates need for them, as
mentioned in Chapter 6.)

At the risk of kicking a bent bucket: All of the sizing
options specified when the interpreter is loaded are fixed
overhead costs for all programs, whether we opt to use those
built-in, or, explicitly nail them down ourselves.

Now given that we know how many programs are involved, and how
big our run-time bucket is, we can decide on a design strategy
for getting from one program to another. In BASIC there are
basically two choices: RUN and CHAIN.

Of these two, RUN is nearly always a best first-cut choice. At
a conceptual level, CHAIN has but one advantage: "Information"
can be passed from one program to another (via COMMON, or CHAIN
with ALL). If we opt to use RUN, we must use alternatives for
passing "application parameters" from one program to another.
Although it may take a little time to store such items with one
program, and retrieve them in another, that time may actually
be less than would be the consequence of using CHAIN to pass
"common variables" to a called program.

 Common? My heritage is, "... the common folk". That is,
 without refinement in language or manners. Some wag chose
 COMMON as a word denoting data (in variables, in memory)
 that belongs to a community of programs. The first, most
 simplistic definition of this word, according to Webster,
 would seem to make it a good programming language key word.

 Dictionaries and BASIC manuals use about the same number of
 words to define COMMON; in the latter case it is not nearly
 enough, because, there is so much that is not commonly known.
 In fact, COMMON, in BASIC, also lacks refinement in language,
 and its manners are often deplorable.

Chapter 3 describes how variables are stored, and searched for,
by the GW-BASIC interpreter. It also made passing reference
to the potential performance impact of using CHAIN and COMMON:
Variables passed to a second program will be at the top of the
stack in the chained-to program. Variables declared in that
program (that are "uncommon") will be slower to reference; a
chained-to program may run slower as a consequence. A long

The Blue Book About GW-BASIC and QuickBASIC - 184 -

list of COMMON variables (or the use of ALL) deserves some long
thought if optimum performance is desired.

The order in which COMMON names are named has no significance.
Nor does it matter if they are named in one or several COMMON
statements. Nor if several such statements are placed one
after another, or scattered throughout the declaring program.
Although COMMON statements do not have to be "executed", they
cannot, in fact, be conditionally executed.

When CHAIN is executed the interpreter scans the entire program
then in memory and looks for COMMON declarations. It makes no
difference where they are located, unless they are on a line
following THEN or ELSE, in which case they will be ignored
altogether.

It does not really matter how many different COMMON statements
there are, or if some of the variables they name are duplicated
in different places, or even twice within a single declaration.
Sometimes. Read on.

In a simple context, here is what the interpreter does when it
hits CHAIN:

 It scans the program looking for COMMON statements (unless
 CHAIN specifies ALL).

 COMMON statements will be recognized as such in any line that
 could be "executed", even if in fact, program flow never hits
 that line, or gets that far.

 If COMMON is inside a FOR/NEXT or WHILE/WEND block it will
 be "processed" when it comes time to CHAIN, even if such
 blocks of procedures are bypassed during execution because
 their "conditions" are never met.

 If COMMON is contained in any IF statement, that declaration
 will be totally ignored. (Although the conditional logic
 itself will otherwise seem to work just fine.)

 As each variable is encountered in a (recognizable) COMMON
 statement, that name is located in the variables storage
 area, and tagged. If a name was declared to be COMMON, but
 never actually used anywhere, it too is effectively ignored;
 nothing will be passed along, not even the name.

 When the scan for COMMON statements is finished, all of the

The Blue Book About GW-BASIC and QuickBASIC - 185 -

 variables that were tagged are "compressed" into a block,
 still stacked in the same order as they were declared while
 this program was running.

 If a variable is effectively empty--a zero, or a null
 string--the name will be kept in the block of variables to
 be moved, notwithstanding there is no "data" to be conveyed.

 If a variable points to a string literal, that text is copied
 at this time, from up inside the program statement, down into
 string space. Grrr. This can be a beast. (Re: Strings in
 Chapter 4.)

 Variables named in FIELD statements--that are also named in
 COMMON--are also preserved in the block of variables to be
 passed on. At that point, the address pointers for those
 names are aimed into record buffer areas, as they still will
 be after the CHAIN takes place, notwithstanding whether their
 associated file has been closed, or left open. Carefull....

 Both simple variables and arrays may be declared as COMMON.
 Both "tables" are passed as two distinct blocks of bytes; the
 simple variables are on top, followed by the arrays. Recall
 that arrays are passed en masse; it is not possible to pass
 subsets of an array.

 If CHAIN with ALL is specified, no preliminary scan is done;
 the presence or absence of COMMON anywhere is effectively
 ignored.

The above description of how COMMON works is merely an enhanced
version of what can be gleaned from the manuals (save for that
about COMMON not working with IF, which can only be learned the
hard way). Nowhere is their enough detail provided to enable
us to make design decisions. Much more must be known. A poor
choice at this point may not become evident until a lot of coding
has been done. To reverse our strategy that late in the game
can cost a lot of hours of hard work.

IF variables named in FIELD statements are carried forward via
COMMON, their data will be passed along also. This is true even
if you CLOSE a file before doing the CHAIN. (CHAIN does not
close files; they will still be OPEN in the chained-to program
unless you explicitly CLOSE them.) If you do CLOSE a file then
CHAIN, the data pointed to by all FIELD declarations is still
that contained in buffers associated with their file number. In

The Blue Book About GW-BASIC and QuickBASIC - 186 -

the called program, if that file number is reused for the same
or a different file, the data associated with the original FIELD
statements are effectively lost.

And remember from Chapter 3 that arrays are stacked in working
storage after all simple variables--the naming of new simple
variables in a chained-to program will cause a slight delay while
the interpreter shifts the arrays downward to allow for insertion
of newly named simple variables in the upper table. And it does
it repeatedly. If the incoming program names ten new variables,
the arrays get moved ten times. If several arrays are involved,
and especially if they are large, the "delay" can be a lot more
than "slight".

The manual says a given variable cannot be named in more than
one COMMON statement. The interpreter does not check to see if
we make a "mistake" in this regard, however. You can violate
this "rule" and get away with it. Seemingly. In the case of
simple variables, there is no noticeable penalty for such
infractions. In the case of duplicate declarations of arrays,
the penalty is akin to capital punishment.

If an array is mistakenly named twice in one, or in different
COMMON statements, things really slow down, although it may not
be noticed until the chained-to program begins running. But,
run it does not. In fact, it will not even walk very fast. It
will barely crawl along, actually.

The lethargy contracted by making a duplicate declaration of an
array to be COMMON is amazing. Until you try it, you would not
believe your computer could run so slow. Even LIST will merely
dribble across the screen. Worse yet, there is no known way to
overcome this malady, save for canceling the whole show. Once
infected, the interpreter will thenceforth limp along, no
matter what you do short of going all the way back to DOS and
reloading GWBASIC.EXE.

The above malady can be avoided if we are careful and play by
the rules, of course. Unfortunately, the rules are not very
well defined. Nor enforced.

There is only one tidbit of advice in the manuals about COMMON
statements: "... it is recommended that they appear at the
beginning." Rationale for that little gem is not intuitively
obvious. (Recall that the entire program must be scanned to find
all COMMON statements, be they up front or scattered hither and

The Blue Book About GW-BASIC and QuickBASIC - 187 -

yon.) We would be far better advised if they had used this
space to tell us the real consequence of opting to CHAIN with
COMMON, or, CHAIN with ALL:

Garbage clean-up is done of free-string space, even though it
may not be needed, really, before CHAIN is actually executed.
Chapter 4 describes garbage, and the costs for it, and how to
avoid it. There is no avoiding an implicit FRE("") however,
for CHAIN with COMMON, or, with ALL. Trap this bee in your
bonnet lest you be stung later by a decision to use CHAIN in
lieu of RUN as a design strategy.

At a glance, CHAIN may seem to be an easy way to accomplish
interprogram communication of global information. Sometimes
it is practical. Perhaps. From one program, to one more, on a
one-time basis. As a rule of thumb, that is my advice. For any
application that is designed as a set of programs that must be
called recurrently, RUN is a far better choice than CHAIN. No
garbage clean up is needed, or done, on a RUN.

Because no garbage clean up is done on a RUN, it lends itself
to very good use for more than simply calling another program
into memory. A simple RUN statement followed by no arguments
is an effective way to restart a program already in memory.
Obviously. It is an effective way to clean up the garbage in
string space without suffering the cost of a FRE(""). A trade-
off has to be made, however, for the time needed to "save" what
may have already been "computed" before a re-RUN can be done.
Of course. (Which is effectively no different than what must
be done in any case of using RUN to switch programs, be it the
one already resident, or not.)

A more subtle design use can be made of RUN to a line number:
Multiple programs bound together as a single load module. This
is often a handy trick for achieving maximum performance.

 + A given program should use the fewest variables possible.

 + Variables should be declared in prioritized order, based
 on which ones are used the most.

 + Once a prioritized stack of variables has been built, there
 is no practical way to re-order that stack.

 + Many variables needed in one phase of a program's operation
 may not be needed later on. And vice versa.

The Blue Book About GW-BASIC and QuickBASIC - 188 -

If we design a given program as really two, and go from phase-1
via a RUN aimed at the first line of phase-2, we can optimize
both phases to their own best ends. By mapping the phase-1 and
phase-2 blocks of code so that they are physically one program,
they can both be brought into memory with a one-time RUN. (Also,
obviously, subroutines can also be shared by multiple phases,
thus saving space by minimizing redundant coding.) Thus, RUN
to a line number can be used for achieving greater efficiency
in several ways.

We come now to the issue of how to best do what is often called
interprogram communication -- the fancier term for what COMMON
was intended to be used for. A small preamble will provide the
background for several suggestions.

Back about the middle of this century the concept of overlays
became a popular concept in machine language programming. When
there was not enough room in memory to hold all of a program, a
small chunk of memory was set aside for transient portions of
coding. If a needed segment was not already resident, it would
be "overlaid" on top of whatever was already present in the
overlay area.

 Note: As recent as 1980 or so, we often had to fit our BASIC
 programs into as little as 4kb of usable coding space. So,
 CHAIN with MERGE was invented. It is as clumsy today as it
 was back when it was first conceived. It is unfathomable to
 me that any professional programmer has ever made use of this
 gadget. So many superior alternatives exist, CHAIN/MERGE
 deserves no real contemplation as a designer's choice.

The subject of overlays has been introduced because that is
in fact what all interpreted BASIC programs really are: The
interpreter itself is a program; it pre-allocates a 64kb work
area to contain address pointers, counters, I/O buffers, and,
your program. When we RUN or CHAIN, the incoming program will
overlay whatever (BASIC) program is already contained in that
portion of the interpreter's working storage space set aside to
hold our programs. A GW-BASIC program is a "data area overlay"
managed, by the real program that is running, i.e., GWBASIC.EXE
itself.

Given this perception of what a GW-BASIC program is, and by
knowing where things are in memory, some obvious opportunities
can be seen about where things can be put so that they may be

The Blue Book About GW-BASIC and QuickBASIC - 189 -

passed along to subsequent processes. Here is another short
definition of how the interpreter's working-storage area is
mapped. It is an abbreviated version of the five subdivisions
described in Chapter 4.

 Block-1: Interpreter's own parameters and your I/O buffers.

 Block-2: Tokenized BASIC program.

 Block-3: Variables storage area.

 Block-4: String space (so called free space).

 Block-5: Interpreter's run-time stack.

Bearing this simplified map in mind, remember that blocks-1, 2,
and 5, are static in size while a program is running. Block-3
grows downward. The space in block-4 is used from the bottom
up. An incoming BASIC program is an overlay; it does not wipe
out anything in block-1 or block-5.

When we use CHAIN or RUN to cause a program to be brought into
memory from disk, it goes into block-2. At that point, if we
had used CHAIN to communicate some variables, they would be
shifted into block-3 so as to end up immediately following the
procedural code in block-2. In the event strings are passed
along also, they would be compacted at the bottom of block-4.

In the event we use RUN in lieu of CHAIN, the incoming program
still overlays into block-2, from the top downward, but the
interpreter simply reinitializes its variables-pointer to the
top of block-3, and its string-space pointer to the bottom of
block-4.

Notice the similarity: What needs to be overlaid, is, and,
the interpreter's pointers are adjusted accordingly. Areas
that are not overlaid by incoming procedural code, or by any
variables passed along, are not "erased". Logically, those
bytes that are not overlaid are merely residue insofar as the
interpreter itself is concerned. Thus, obviously, we can cause
that residue to contain whatever we want, deliberately. When a
subsequent program first begins, it can then sneak a quick PEEK
at the litter left behind by a previous process.

This is a cheap trick for passing along a few parameters from
one program to another. No doubt. This is neither the time or
place to deliberate sacral issues. The foregoing is not meant

The Blue Book About GW-BASIC and QuickBASIC - 190 -

to offend anyone's sense of what constitutes "good programming
practices". But, by golly, it does work. And it is an easy and
efficient way to make use of RUN, and avoid the inefficiencies
of an ill-bred CHAIN.

One of the more meager things that we sometimes need to do,
when we RUN to another program, is to name the line number that
execution should begin on. Hard-coding that line number in the
calling program is the last thing we want to do, obviously.
(If we renumber the lines in called programs, the callers may
have to be modified as well--a real pain in the pocket).
Textbooks and teachers would have us pass a parameter in a
variable to be examined by called programs so they can GOTO or
RUN-to an appropriate line number known unto themselves.

Knowing what the interpreter still knows, that which it already
knew after another program is loaded, however, we can make use of
its own memory without creating artificial intelligence of our
own. The following suggestion is a simple example, but slightly
less risque than the one previously offered. Yet, it too depends
on an awareness of an "undocumented feature" of GW-BASIC.

ERR and ERL are two parameters that the interpreter keeps track
of in its own working storage area (up in block-1). ERL will
always be set to zero by any form of RESUME, and by a RUN, or
a CHAIN. ERR, on the other hand, is never actually reset; it
is merely updated when an error occurs. Meanwhile, it contains
the code-number of the last error that did occur, however long
ago that was. And it still will, after a RUN or CHAIN takes
place, although, this is not mentioned in the manuals.

See the possibility: Do an ERROR 101, or ERROR 102, then a
RUN, for example. The incoming program can then look at ERR to
decide where it should GOTO on the basis of the code in ERR.
Another quick, cheap, and not particularly risky trick, even if
it is not a particularly handsome one.

Oftentimes only a very small amount of information needs to be
passed from one program to another. Like, for instance, a
"switch", or a menu selection indicator. Here is another trick,
especially attractive in such cases. Sometimes. Use a few bytes
in the system's Interrupt Vector Table.

Low order memory in DOS machines--beginning at address 0:0--
contain (mostly) segment and start addresses for routines that

The Blue Book About GW-BASIC and QuickBASIC - 191 -

are accessed via BIOS and DOS functions: "interrupt vectors".

This table is organized as word pairs, two bytes per word, thus
each interrupt number is a 4-byte offset from zero. By reason
of "PC compatibility standards", certain ranges of interrupt
numbers are reserved for special uses. The software interrupt
numbers ranging from 20h-3Fh, for example, are reserved for
DOS. Interrupts 60h-67h and F1h-FFh are "reserved" for "user
programs". In theory then, we can store addresses or codes, or
anything we want to in those bytes pre-allocated for "us users".

To pass a menu-letter then, for example, do a DEF SEG=0, and
POKE 384,ASC(Q$), assuming Q$ contains the letter we want to
pass to another program. And 384 is 4 times 96; 96 in decimal
equates to interrupt 60h; multiplying by 4 gives the physical
offset into the interrupt vector table for that interrupt.

In a follow-on program, DEF SEG to zero and PEEK(384) to get
the value stored by the previous program. Yea! Very fast,
and very easy. However: You are a "user", but so is anyone
else not on the payrolls of the folks that write BIOS and DOS
software. Like the people that supply TSR--Terminate and
Stay Resident--software. Like pop-up calendars and clocks
and notepads, and the like. They too can use these addresses
reserved for all of us "users". Caveat.

Purists will tend to like purer forms of interfacing: Store
global application information in interprogram communication
files, data files specially contrived for just that purpose.

This is obviously a clean way to do things, especially when
what needs to be communicated must survive the big gap: When
it is necessary to quit BASIC and return to DOS, even if only
for a short interlude. Which brings to mind also, one of the
most awkward design problems that has to be contended with in
the dizzy world of DOS and BASIC: Intertask communications
with DOS itself, or other "packages" written in any language.

One very serious consideration that must be made at design time
is avoiding unnecessary disk fragmentation. Special files used
for interprogram communication are typically pretty small, but
highly dynamic. If we manufacture them on the fly, and delete
them frequently, while also creating and stretching real data
files, we will also compound that old DOS Nemesis, disk space
fragmentation. Before we opt to devise "extra overhead files"
we should consider if some of those needed for other reasons

The Blue Book About GW-BASIC and QuickBASIC - 192 -

can do double duty as interprogram communication vehicles.

No intellectual feats are needed to see some obvious choices,
but here is a short check list to keep from overlooking the
more mundane.

 DOS BAT-files themselves may be "read" by a BASIC program to
 obtain system configuration data. REM lines in BAT files can
 be deliberately devised, easily, for just that purpose.

 DOS BAT-files may be modified by a BASIC program (or even,
 manufactured from scratch). A clean trick for interfacing to
 custom-created batch files is to put a "stub" in the one that
 starts the BASIC ball rolling in the first place. A stub of
 this type may merely be the name of a BAT-file that may or
 may not already exist. Obviously, a generic name-stub can be
 used as an alias for a variety of batch procedures that can
 be generated on an as needed basis by any BASIC program.

 A simple variant of this second idea can be to pre-code a
 set of batch files to cover various situations. Then, in
 BASIC, merely rename the one needed at a point to have the
 same name as that already implanted as a stub-alias in the
 BAT-file that controls the whole show.

 To preclude a BASIC program from attempting something that is
 not obviously impossible, the prevailing CONFIG.SYS file can
 be examined. Obviously. In a few far-out cases it may even
 be reasonable to custom manufacture a CONFIG.SYS on the fly,
 and artificially stimulate an automatic reboot.

The design thrust of the above ideas center on avoiding having
to create separate, "special files" for the exclusive purpose
of achieving interprogram communication. There is yet another
file that can be read, and modified, for pre-conditioning how a
program runs: Program files themselves.

This is an especially effective way to automatically "install"
an application: An installation program can be written to OPEN
each of the programs in a set and implant "option switches" as
needed. The obvious advantage of this trick is that those
programs will run smoothly from then on, without having to do
any external research every time they are run. (Chapter 13 has
some specifics for doing this; here we are simply looking at
various design choices before coding commences.)

While some of the above ideas may offend the sensibilities of

The Blue Book About GW-BASIC and QuickBASIC - 193 -

those dead set against programs that modify themselves, such
tricks may often be far less risky than "conventional coding"
alternatives. Like making use of DOS environment strings, for
example, or using systems service calls, or PEEK, to see what
DOS knows, or thinks it does, about what is going on outside
your BASIC box.

Only a small counter-argument is offered here for those with
platonic ideals: Who do you trust the most? Those who have
blind faith in DOS, or rely on undeserved faith in BASIC (or
any language product) may not be blind, but chances are, they
have not had to suffer many "upgrades" of successive releases
of either.

There is probably nothing more exasperating than having to
modify old programs that no longer work just because something
was changed in a recent release of systems software. Even when
such changes may prove eventually to have been a good idea.

When we design programs so as to be dependent upon our own
devices, we are merely susceptible to our personal genius or
ineptitude. In either case, faith in ourselves should prove
more worthy of our trust in the long run. The more we know
about how DOS and BASIC work, and the longer we use them, the
less we are apt to trust either of them at all.

In all events, we are ultimately responsible for not only our
end product application, but for the continued integrity of a
user's system: A responsibility that must be kept in mind at
all times. When confronted head on at design time, thoroughly,
the burden becomes less onerous while writing the programs that
will actually get a job done.

While some of what has been suggested here is not encouraged in
many schools, distinction must be made between getting good
grades, and getting paid. Uncouth compromises are frequently a
real life fact in commercial endeavors.

Those last thoughts bring to mind one more design consideration
that can cause us to rethink the whole problem. We may need
to take a slow look at QuickBASIC before we commence coding:

 The 64kb memory paging considerations for BASIC programs has
 dramatically different, but larger boundaries.

 It is virtually impossible to predict with any accuracy how

The Blue Book About GW-BASIC and QuickBASIC - 194 -

 large a given compiled program will ultimately be.

 Because QuickBASIC is an in-memory compiler, it is nearly
 impossible to anticipate when you will run out of memory.
 There is a risk with large programs that a maintenance update
 in the future will necessitate completely revamping some or
 all boundaries between programs and subprograms.

 COMMON rules are so different it is nearly impossible to use
 it in GW-BASIC programs that are to be compiled some day.

 CHAIN differs only slightly from RUN--the pragmatic choice
 is to design for RUN, and forget the word CHAIN.

 Compiled programs are complete programs; when we RUN or CHAIN
 from one to another, an incoming program completely replaces
 its caller.

 The only practical choice for interprogram communication is
 via disk files; unconventional tricks used in a GW-BASIC
 program simply will not work in compiled programs.

Having digressed slightly, and perhaps provoked some rethinking
about overall design strategies, a final attitude is offered on
the themes of trust, faith, and ethical compromises. When we
use GW-BASIC we may be compelled to use some nefarious tricks;
when we use QuickBASIC we are vulnerable to tricks they play on
us. Because they change so many things so often, with no hint
of what is coming next, if we are designing for the benefit of
others, GW-BASIC should be an automatic choice.

In the final analysis, it is better to trust what we know than
to take chances on the unpredictable. What has been listed in
this chapter are the major thoughts that flit through my mind
when designing new applications. Whether you agree with what
my experience tells me should be considered, few can argue that
serious premeditation is needed before new programs are born.
Hopefully my list provides some food for thought; it is a diet
that has enabled me to raise a lot of healthy programs.

The Blue Book About GW-BASIC and QuickBASIC - 195 -

Chapter 12 = METHODS

The order of presentation of subjects in this book is backwards
compared to that of most other texts. On purpose.

The "user's guide" portion of manuals is always up front. It
tells you how to SAVE and LOAD and EDIT. The reference section
of manuals is arranged like a dictionary; it assumes you know
how to program, but occasionally need to research the syntax
or semantics rules for specific key words.

Textbooks that teach how to program usually begin with problem
analysis and proceed with how to organize work tasks. Rarely
do they broach the subject of what is efficient in the context
of how the internals of a language actually works, nor to the
extent that such considerations should influence our decisions
about choosing one technique vs. another.

The order of presentation of subjects in this book was chosen
on the assumption that you already know how to SAVE and LOAD
and EDIT. And that you already know most of the key words of
GW-BASIC and how to use them. And that you already know what
an application's functional requirements are, and can perceive
how those problems might be solved with a computer.

Given these assumptions, this book began with a look at how the
interpreter works, with clarification of what does work as the
manuals say, what does not, and why some things are more or
less efficient in the mechanical sense.

The reason my essay describes BASIC from the inside out has but
a single motivation: Efficiency. We are bound to write better
running programs if we know how the interpreter translates a
program. Hence the arrangement of Chapters 2 through 8. And
Chapter 9 deals with strange encounters that would have been
too far afield from the gristle presented elsewhere.

All of the preceding is fundamental rationale for suggestions
about programming style in Chapter 10. That, plus my ideas in
Chapter 11 on design are culled from experience in producing
applications that do run efficiently. This chapter and those
that follow are about how to do programming chores efficiently.

This seemingly backward presentation is logical on reflection.
Turned around, we might achieve personal efficiency, but wind up
with inefficient programs. Being driven by an awareness of what

The Blue Book About GW-BASIC and QuickBASIC - 196 -

produces the best performance, we can develop methods that are
also efficient, without adversely affecting the quality of the
end product. In fact, much of what has been suggested before
lends itself toward this second objective: Getting the most,
and the best, with the least effort.

Chapter 1 contends that it is possible to generate more useful
code, cheaply, in BASIC, than in nearly any other programming
language. Three arguments are fundamental to that contention:

 + GW-BASIC is the oldest high level language in the PC world;
 primitive algorithms written even ten years ago still work
 today, usually just as is.

 + It is likely today's programs will still work for a few
 more years, i.e., as long as GW-BASIC gets moved forward
 onto next generation hardware.

 + New programs can be assembled quickly by merging together
 pieces taken from old programs.

One probable reason for the long-term stability of GW-BASIC is
because of neglect. The multitudes seem to want the latest and
greatest whatever; interpreted BASIC has become an orphan by
default in the fast moving world of PC gadgetry.

It would be inappropriate to enumerate the merits of other
languages here. Little counterargument can be offered that
several require far fewer lines of code to achieve a desired
end (for some types of programs). Most have superior editors,
as well. Some also have impressive lists of tools. Few lend
themselves easily to the idea of reusing fragments of existing
programs to create new ones, however. And, many of the newer
languages are so young that there cannot yet be very many "old"
programs in anyone's personal library.

The very fact that there has been little clamor for GW-BASIC
enhancements actually works to our advantage. The more we use
it, the better we are able to use it. For those of us whose
income is directly related to our output, we make more by using
what we already know: Time spent learning what's new can only
be offset by improved productivity at some future date. In the
PC industry, what's new happens so often that the future remains
forever elusive. By the time we master what is new today, much
of that experience will be obsolete.

The Blue Book About GW-BASIC and QuickBASIC - 197 -

There are really three ways in which we can take advantage of
the fact that GW-BASIC has not changed much, or often. Not
only can we maximize reuse of old code, our methods can become
ingrained habits. Once again, time spent learning how to do
old things a new way seldom produces immediately realizable
profits. The mere fact that we must forget how something used
to work is proof positive that what we did learn once must now
be seen has having been, really, a waste of our time.

The third advantage to working with a "mature language" is that
our own-code tools seldom need updating. By comparison, time
spent developing a source code generator, for example, for some
languages, may never actually be compensated because of having
to constantly revamp such tools to stay abreast of changes in
the language itself. Every hour spent writing or overhauling
tools must be recouped twice, through improved productivity, to
justify having fooled with the tool at all. For languages that
are subject to frequent changes, it is risky to take time away
from paying projects to develop new tools.

It is with these thoughts in mind that the following ideas are
offered. None are revolutionary, nor are many even innovative.
Perhaps some will lend themselves to your repertoire. In any
event, see how concepts for producing efficient code can also
relate to producing code efficiently.

Coding: It is unfortunate that many students are still taught
to write programs with a pencil, first. It is understandable
that logistics is sometimes a factor; homework assignments for
those that do not own a computer have to be reckoned with. It
is not so understandable that how to do live coding properly
is seldom stressed. Old fashioned notions that coding on the
fly is synonymous with "spaghetti code" is still preached in
some schools. Live coding is the way we all do it today. When
we adhere to time-tested disciplines, well organized programs
are a natural byproduct of our methods.

Line numbering: All programs are numbered beginning with 1000,
in increments of 10, from there on. While editing, additional
lines can be inserted using the low-order digits from 1 to 9.
When the need for more space arises, RENUM 1000 is done.

RENUM 1000 is a constant and frequent habit; it is always done
just before a SAVE. RENUM is itself a handy quality assurance

The Blue Book About GW-BASIC and QuickBASIC - 198 -

tool; obviously it is an easy way to detect "unreferenced line"
errors. Equally obvious, it is more efficient to resolve such
errors immediately, during coding, rather than at run time.

For those reluctant to renumber a program, because you prefer
to memorize GOTO and GOSUB addresses, consider the coding
disciplines suggested below. They require no brain strain at
all. And, they support being able to RENUM often. As we shall
soon see, these methods simplify code swapping among programs
as well.

 The first line of a program (1000) is always, and only, a
 remark line. It contains a full-text version of the name of
 the program (i.e., the phrase from which the acronym-form
 of the file-name was derived). The release date and version
 number for this program is also maintained up-to-date on
 this top line. This is also where copyright notice is given,
 when applicable, to conform to the rules about submitting
 listings with copyright applications.

 The second line of a program (1010) is always (and usually
 only) a GOTO, to the logical beginning of the program itself.

 The third line of a program (1020) is always (absolutely) a
 SAVE statement with the file name of the program hard-coded
 as a quoted literal. This SAVE statement is immediately
 followed by a LIST-1020.

Here is a real-life example of what has just been described:

 1000 'Payroll Ops W-2 1.0 08/22/89 (c) ACT-1,Inc. 1989
 1010 GOTO 1200
 1020 SAVE "POPW2":LIST-1020

The subtle advantage of line 1020 deserves explanation. While
editing, SAVE is done very frequently to guard against time
losses due to failures. (Mine, and the power company's.) It is
easy to make typing mistakes. Every time we type SAVE, with a
name, we increase the odds of unwittingly creating a second
file with a slightly different name. Far worse, it is all too
easy to accidentally overwrite another program with the one now
being worked on.

So, once a program's name has been hard-coded into the program
itself, from then on, merely typing RUN 1020 prevents spelling
mistakes. The follow-on LIST stops execution, and it provides
visible feedback, and a reminder that the release date or

The Blue Book About GW-BASIC and QuickBASIC - 199 -

version number may need updating. (Even the truly lazy that
like the editor's function-key scheme can use this trick; just
substitute RUN 1020 for one of those several useless strings
we get for free.)

Line 1020 has a second purpose: Semi-automatic back-ups to a
second disk drive. Immediately after a RUN 1020 the cursor
will already be in a handy position. Cursor up one line, hit
the space bar four times, and tab twice. If the program's
name is properly positioned, we need to merely hit the insert
key, then type in a drive letter and a colon, and hit enter.

Obviously, your own inclination may be to arrange the contents
of the first few lines of a program differently. Notice the
advantages, however, of version-control information up front,
and, a built-in SAVE-name line always coded on a line number
forever dedicated to just that purpose.

Before rambling on, see my inclination for depending on habits.
This permits concentration on program logic; the mundane can
depend on our automatic reflexes. This theme permeates all
of what follows as well. Having said it once, here, it is no
longer necessary to repeat what is so patently apparent.

The first three lines of a typical program from my library were
shown above; what follows is a continuation of that same one.
Notice that lines 1030 through 1190 are merely a branch table.
And they are a table of contents. This table is also a modules
map giving the current entry point into each module. The end
of a block can also be easily discerned; it is the number of the
line immediately preceding the first line of the next block of
code, i.e., that line number minus 10.

 1030 GOTO 1310 'trapE ERR error handler
 1040 GOTO 1400 'openQ 1 keyboard & init Q-vars
 1050 GOTO 1460 'Qpick get menu selection
 1060 GOTO 1790 'Qmask display menu or help pages
 1070 GOTO 1970 'openM 2 monitor & init M-vars
 1080 GOTO 2120 'Mread get empl ID into M(1-8)
 1090 GOTO 2260 'openY 4 payroll files & init Y-vars
 1100 GOTO 2440 'Yread get employees into ssan-tank
 1110 GOTO 2580 'openV 5 Vdisk prep & init V-vars
 1120 GOTO 2670 'openW 6 W2 flex disk output
 1130 GOTO 2780 'Wline write output line/record
 1140 GOTO 2820 'Acode transmitter = 1A & 2A
 1150 GOTO 3010 'Bcode authorization = 1B & 2B

The Blue Book About GW-BASIC and QuickBASIC - 200 -

 1160 GOTO 3210 'Ecode employer ID = 1E & 2E
 1170 GOTO 3420 'Wcode W2 wages = 1W & 2W
 1180 GOTO 3800 'Scode supplemental = 1S & 2S
 1190 GOTO 3830 'Icode intermediate totals = 1I
 1200 'begin

Once again, there is more to be seen here than is conspicuous.
Much more. The simple use of LIST-1200 is an obvious and easy
substitute for memorizing where things are. When a RENUM is
done, this table of contents is automatically updated. Even as
new modules are added. Line 1010 always tells us how far to
LIST, to see this map, and where the program actually begins.

There are several more advantages to be derived from the above
scheme, but, we should first dispense with a couple of side
issues. One concerns run-time efficiency; the second considers
presentation incompatibilities between interpreted and compiled
programs.

 Performance: One module can only call another via GOSUB. It
 always refers to the GOTO-line for that block, in the branch
 table (like the one shown above). No branching is ever done,
 directly, to another block's physical address; only logical
 addressing is permitted. GOSUB, ON ERROR and the like, must
 do indirect addressing via the branch table.

 As described more fully elsewhere, GOSUB triggers a stack
 entry so the interpreter can remember where to RETURN to. On
 the first instance of any line-referencing statement, a search
 is made for the target line. Then, once found, that line's
 actual address in memory replaces the hard-coded line number
 in the referencing statement. And that is pretty efficient.

 The use of a branch table is not purely efficient, obviously.
 It causes the interpreter to have to do two searches instead
 of just one. Plus, it effectively takes two statements to do
 what could be done with only one.

 Because line searching has to be done only once per RUN, the
 overall performance impact on an otherwise efficiently coded
 program is pretty small. The time-cost for a back-to-back
 GOSUB/GOTO--once physical addresses are in place--is so small
 it would be hard to measure on even older and slower micros.
 The sum of all of this is small enough to be ignored in favor
 of the greater benefits to be derived from a well structured
 program. This is true for those of us that do not appreciate

The Blue Book About GW-BASIC and QuickBASIC - 201 -

 being called spaghetti-coders, anyway.

 QuickBASIC: As we well know, compilers are ignorant of the
 logical intent of programming statements beyond what they
 can discern from static semantics. They must depend on how
 lines are physically presented, whereas an interpreter can
 follow logic-routing paths. By quickly reviewing what has
 been suggested above, we can see that nothing was said that
 is contrary to either.

 The suggestion for hard-coding a SAVE in line 1020 is one
 minor nuisance when moving from GW-BASIC to QuickBASIC. The
 compiler does not understand SAVE, or LIST, but neither will
 it ignore them. The obviously simple solution is to convert
 that line to a remark just before attempting compilation;
 merely insert an apostrophe between the line number and the
 word SAVE.

 Because the initialization section of a program is always the
 first block of statements immediately following the branch
 table, the compiler has no problem with "processing" all of
 those GOTO statements before it gets to the real meat of a
 program. The compiler simply builds tables for procedural
 addresses, internally, similar to those for data addresses.
 Because the rest of a program is physically located beyond
 the initialization block, which comes physically just after
 the branch table, everybody is happy. We can easily read our
 programs, and, so can either the interpreter or the compiler.

With those side issues now aside, we can revert to the major
advantages of using a branch table in the first place: Cut and
paste tricks, and simplified debugging. Both of these relate
to other methodologies as well, so, the business of swapping
code is dealt with first, completely. How the branch table can
also serve as merely one of several debugging aids comes later.

On occasion, MERGE is one obviously useful facility for splicing
and grafting code segments. But, it is slow and cumbersome to
use. Consider as a first choice an easier alternative of using
SAVE, LOAD, RENUM, and line number editing tricks. Like this:

 Use RENUM to open-a-gap where a paste-up from another program
 should be physically implanted.

 SAVE the current program. (Remember, RUN 1020.)

The Blue Book About GW-BASIC and QuickBASIC - 202 -

 LOAD the program that contains the piece of code wanted.

 LIST the inclusive lines desired.

 LOAD the program being edited (the one that was just saved).

 Carefully edit the line numbers of the piece of code still
 shown on the screen. Be sure to hit Enter after each line
 number is changed; be sure to not hit Enter until a line's
 number is in fact changed to correspond to its intended
 location in the program currently in memory.

Now see the reason for a uniform scheme of line numbering in
all programs: All line numbers are always four digits. It
makes editing easier, and, it benefits changing internal
references once pasted-up lines have been stored by the use
of Enter. (Because of the discipline of always doing RENUM
before any program is saved, it is easy to see what adjustment
is needed for internal line references in new paste-ups.)

 PS: Four digit line numbers is sufficient, even when always
 incremented by ten. No single program in my library ever
 gets close to exceeding a thousand lines.

Chapter 10 mentioned two aspects of coding style that should
be looked at again here. One dealt with having, effectively,
a "table" of variables because they are all named in the
initialization block of a program; that table should be kept
current, on the fly, as coding proceeds. In a similar fashion,
the branch table should also be kept up to date. (See how one
habit tends to reinforce the other, also.)

When a new block of code is built, by whatever means, its table
entry should be inserted at that same time. Now, RENUM takes
care of everything else, automatically.

That other suggestion about programming style was: Include the
nickname for a block, as a remark, at the end of any line that
addresses another block. Notice that nicknames are also a
feature of the branch table (and also reflected in the first
line of a block), and, see how all of this relates to keeping
track of where things are. And how RENUM is a mechanical tool:
Line numbers are a physical issue, only incidentally related to
the logical make-up of a program.

It should also be obvious by now what the real advantage of

The Blue Book About GW-BASIC and QuickBASIC - 203 -

a branch table is, beyond that of its aesthetic worth: Blocks
can be moved in a program, and between programs, easily. If,
on the other hand, calls were permitted to physically address
other blocks of code directly, more time would have to be spent
finding and changing all such references. The branch table
localizes all calls external to any block. Although numerous
calls may be made to a given block, if it is moved or replaced,
changing its call-line destination address in the branch table
will keep all callers happy, automatically, no matter where
they are calling from.

There is one more small trick closely associated with all of
this business about line numbers. Unknown addresses should be
coded as 9999. Often while we are doing live coding, we can
think faster than we can type. (We know a jump is needed, but
we haven't yet written that part, for example.) Another case
that is similar is when we are creating blocks to be merged
into a program in a separate step, later. RENUM will flag all
9999-stubs for us, and tell us where they now are.

A second aspect of reusing old code is renaming variables so
that they conform to current needs. It is somewhat amazing
that GW-BASIC still has no built-in facility for this. (All
other modern language products can do it; even, QuickBASIC.)

The QuickBASIC editor can in fact be used for this purpose, but
so can nearly any word processor. In fact, my preference is
for using my favorite word processing program (PC Write) because
it is a much better editor than QuickBASIC's. In either case,
obviously, SAVE-as-ASCII must be done, and that is always a
tiresome chore.

 PS: One of the simple own-code tools in Chapter 15 is handy
 for at least finding variables quickly so that we can edit
 them manually without jumping in and out of BASIC.

Only a few more notes are needed now about reusable code. My
own argot has crept in elsewhere, but a few terms should be
defined here, specifically.

 Freeze-dried code is a phrase for tightly condensed blocks
 that seldom needs logic modifications no matter where they are
 used. They also tend to avoid any internal GOTO-type of
 statements. And they use the minimum number of variables
 possible; especially those of a global nature. Because they
 do not anticipate modifications, they seldom contain any
 remarks, either.

The Blue Book About GW-BASIC and QuickBASIC - 204 -

 Canned code is a little more liquid than freeze-dried; these
 can mostly be used in bulk, but may require minor alterations
 in logic when reused in different situations. They are best
 constructed such that, even if they resort to internal line
 referencing statements, it is easy to see those connections.
 One or two-space indenting patterns and a few remarks can
 help make it easy to reuse blocks such as this.

 Prefabricated modules are stored in "library programs" that
 are contrived to be simply a repository of reusable tricks.
 Such as those included in Chapter 14 of this book. Notice
 all of those pieces have preamble remark lines that can be
 read for research, but discarded after a module is fully
 transplanted.

 Retread code is the most flexible of all: Code swiped from
 another program, in bulk. Chapter 13 contains many examples
 of this type. They tend to be user-task or technique-driven,
 seldom transportable generic processing algorithms. Even so,
 it often takes a lot less time to edit large blocks of code
 swiped from an old program than it would to recode it all,
 all over again. Equally, far less effort is needed to reuse
 old ideas that worked well before; especially for those that
 are boring, or, undeserving of an intellectual investment of
 our valuable time.

 Transient tools: Chapter 15 contains several of these. They
 are self-contained modules that can be merged into the fabric
 of a program during its development, but deleted from the end
 product. Transients may be generally useful, predesigned
 tools, or small custom creations for use in a single program,
 or for several, in an application set.

Reflecting on all of the ideas suggested thus far about the
overall fabric of a program, see now also the worth of a branch
table during development and debugging: It is easy to reroute
any given branch so that it can temporarily flow through a
transient tool-routine. All that is needed is to insert GOSUB
in the table, in front of a GOTO.

Jumping to a GOSUB-tool before a GOTO (to a target destination)
is a before-the-event trap, of course. For an after-the-fact
trap, simply change the GOTO itself to a GOSUB, and follow it
with a GOTO, to any transient-tool that ultimately ends itself
via RETURN.

The Blue Book About GW-BASIC and QuickBASIC - 205 -

So, spaghetti-writers like TRON and TROFF. We that have more
method in our madness do it differently, and more efficiently.
It is unnecessary to "trace" a well organized program; where
something is done should be self-evident by reason of how the
major tasks are mapped, and accessed. Traps inserted in the
branch table can be routed to transient-tools to take snapshots
of what is in variables before and after, to isolate what is
going on (right or wrong), without affecting what is being
displayed.

The branch table is also a handy place to implant other types
of quality assurance and diagnostic aids: Small watchdogs need
not be full-fledged elaborate subroutines, obviously. STOP is
a natural one, of course. So is FRE.

Recall all of those admonishments in Chapter 4 about coding so
that unexpected time-outs should never occur because of clutter
in your "free" string-space area. After a program has been
fully initialized, insert a LOCATE and PRINT FRE(0) at a choice
place in the branch table and watch that feedback. In a well
behaved program the answer should remain constant; if it does
not, some variable has been used that was not pre-named during
initialization.

Another simple watchdog that can be inserted for a while in the
branch table is a couple of statements that will display usage
counts. LOC is a good one for monitoring file processing; it
is especially useful during early testing phases to preclude
runaways that might inadvertently fill up a disk with junk.

The location of the branch table itself can be a significant
aid. Down in the bowels of a program we know that no GOSUB
should have a "big" line number; they are supposed to jump to
the branch table. Because those lines are at the top of the
program, a GOSUB aimed at a high-order line number may be the
cause of an "Out of memory" error. (Due to a stack overflow,
as described in Chapter 10.)

Because of having localized all jump addresses into a single
branch table, it is also easy to identify who is calling whom,
from where: Simply delete a branch table entry and do a RENUM.
All callers will announce themselves, and where they are coming
from.

The Blue Book About GW-BASIC and QuickBASIC - 206 -

To get accurate feedback, and to keep from having to retype
the table entry in question: Duplicate the table-entry line
number by overtyping the low-order 0 with a 1 (then hit Enter).
Now delete the real GOTO-line. Not only will RENUM correctly
report all lines that contain jumps to the missing branch table
line, the table will be rehealed automatically. (If line 1090
is renumbered as 1091, for example, RENUM 1000 will change 1091
back into 1090 for you, for free.)

Having now seen several ways that RENUM can be exploited as a
programming aid, here is a final tidbit about line numbers: As
the interpreter strums along, it saves the number of each line
that is being executed. By knowing where it is holding this
little gem, we can look at it whenever the need arises.

See this: L = PEEK(47)*256+PEEK(46). The pair of bytes at
decimal address 46 and 47 (and a default DEF SEG) is where the
interpreter remembers what line number is currently executing.
When you STOP, or do a break, the number that is displayed at
that time comes from this location, up in the interpreter's own
working storage area.

When debugging logic-flow problems a simple expression like the
one just shown can be inserted at strategic locations. After a
brief trial run, the trap-variable (L) can be examined as an aid
in determining whether specific lines were ever executed.

Another way to find line-addressing bugs is to use one of the
tools listed in Chapter 15. A complete GOTO-from-where listing
of all line references in a program can be gotten by using the
tool called LXREF (Line Cross-Reference). A variation of that
tool is called LHITS (Lines Hit Selectively).

The LHITS tool lists only those lines that have been referenced
by an in-line statement during execution. By stopping a trial
run at a strategic point, and running LHITS, it can easily be
determined which branch-paths have actually been taken up to
that time.

The other two tools listed in Chapter 15 are useful for solving
problems associated with variables. One simply lists all of
the variables named in a program, and the lines in which they
occur. It is called VXREF (Variables Cross Reference).

The tool called VLIST (Variables List) is especially handy for

The Blue Book About GW-BASIC and QuickBASIC - 207 -

optimizing efforts. Recall how the order of presentation of
variables in a program can sometimes have a significant impact
on run time performance. (Viz Chapter 3.)

After a trial run has been fully initialized, the VLIST tool
will list all of the variable names that the interpreter has
set up in working storage, in table-search order. By relating
that arrangement to what variables are used for, a program can
be fine-tuned to ensure the most frequently used variables are
forced to be near the top of the search list.

VLIST can also be used as a traffic cop. Suppose AZ is not the
name of a real variable in a program. (VFIND can be used to
make sure of this.) In an area where logic-flow seems to be
suspect, implant a temporary AZ = 1. Run the program. Stop.
Run VLIST. Whether AZ is listed, or not, will reveal what was
(or was not) encountered while branching to and fro.

The homemade tools described thus far are used mostly during
debugging exercises. There is another type of tool useful for
similar purposes: QuickBASIC. The interpreter can only help
find programming mistakes in statements and expressions that
it bumps into "dynamically". A compiler, by definition, is a
static code analyzer. It scans everything and can thus detect
some coding errors that the interpreter may never get to see.

When we pour a GW-BASIC program through the compiler it may
erroneously flag many things that it thinks are errors. When
we know the interpreter knows better, we can ignore what the
compiler says. It is sometimes surprising, however, what can
be found by attempting to compile programs written expressly
for use with the interpreter. (It can be humiliating, even,
to have QuickBASIC spot real errors in programs that you knew,
absolutely, were bug free.)

There are times when QuickBASIC programmers can make good use
of GW-BASIC. There is one situation even, that practically
demands the use of the interpreter as a platform for developing
compiled programs: QuickBASIC is a memory hog; it cannot be
used when a large part of memory has been allocated as VDISK
(aka RAMDRIVE).

What has been covered thus far are suggestions about how to
structure a program, and how to easily fabricate programs from
pieces of existing code. And some ideas for debugging, with

The Blue Book About GW-BASIC and QuickBASIC - 208 -

emphasis on using homemade tools. The following tricks from
my bag are more like jigs, than tools. They are useful when
building screens and menus.

The editor in GW-BASIC allows us to wander around on the screen
and type anything, anywhere. It makes no attempt to "read" what
we are seeing until we hit Enter. When we do hit Enter, all
that is looked at is the line the cursor is on at that point.
So, it is possible to draw a picture, and BSAVE it, without
ever having to exit BASIC.

Drawing boxes is tiresome, however, when done with codes and
the Alt-key. And it is not easy to remember all of those codes
for the different box-characters. The following two primitives
are useful for drawing with the cursor arrow-keys. They can be
used as GOSUB-tools, as is. They are also easy to modify for
different screen modes. (They can also be used as a basis for
building a full fledged, customized, mass production screen
editor, PS.)

The first subroutine is for drawing line-boxes. It makes use
of the numeric keypad as a mnemonic template. Seeing those
keys as a square, 7 is an upper-left corner; 3 is a bottom-right
corner. And 5 draws a center-intersection. And 4 for example,
draws a vertical line with an intersection coming from inside
the box. And so on.

The letter-keys S, D, V, and H set or change the "style" of
box that can be drawn. S and D mean single, or double lines.
V means double-lines vertically, but single horizontally; H is
the opposite, double horizontal, with single vertical lines.

The insert-key is a toggle switch. When on, the number keys
(with Num-Lock on) print corners and intersections, and the
cursor keys draw lines in the direction indicated. When the
insert-key is toggled off, the cursor may be repositioned on
the screen without drawing anything. The space bar can be used
for erasing mistakes. Exit is via the Esc-key.

7000 'Ldraw
7010 DEFINT C-L:DEFSTR Q
7020 Q=MKI$(0):L=CSRLIN:C=POS(0):G=0:I=0:D=1
7030 WHILE G-27:LOCATE L,C,1
7040 LSET Q=MKI$(0):WHILE Q=MKI$(0):MID$(Q,1)=INKEY$:WEND
7050 G=ASC(Q):F=ASC(MID$(Q,2))
7060 H=INSTR("SDVH",CHR$(G))+INSTR("sdvh",CHR$(G))
7070 IF H THEN D=H:F=0:G=0

The Blue Book About GW-BASIC and QuickBASIC - 209 -

7080 IF F=82 THEN I=I XOR 1:F=0:G=0
7090 K=INSTR("123456789HPKM",CHR$(F+G))+1:H=SGN(K)*D
7100 IF H=1 THEN K=ASC(MID$(" @AYCE4ZB?33DD",K))+128 'single
7110 IF H=2 THEN K=ASC(MID$(" HJ<LN9IK;::MM",K))+128 'double
7120 IF H=3 THEN K=ASC(MID$(" SP=GW6VR7::DD",K))+128 'dbl vert
7130 IF H=4 THEN K=ASC(MID$(" TO>FX5UQ833MM",K))+128 'dbl horz
7140 L=L+(L>1 AND F=72)-(L<25 AND F=80):IF G=32 THEN K=32
7150 C=C+(C>1 AND F=75)-(C<80 AND F=77):IF F THEN LOCATE L,C
7160 IF G+F*I THEN PRINT CHR$(K);
7170 WEND
7180 RETURN

The following shorty is a simple dupe-key routine. When Enter
is hit, it "captures" whatever character the cursor is resting
on. The insert-key toggles drawing mode on or off. When on,
the cursor arrow keys "dupe" the character that was captured by
Enter, and move in the direction indicated. When drawing mode
is turned off, the cursor arrows work as they normally would.
Again, the Esc-key is the exit key.

8000 'Qdraw
8010 DEFINT C-L:DEFSTR Q
8020 Q=MKI$(0):L=CSRLIN:C=POS(0):I=0
8030 WHILE ASC(Q)-27:LOCATE L,C,1
8040 LSET Q=MKI$(0):WHILE Q=MKI$(0):MID$(Q,1)=INKEY$:WEND
8050 G=ASC(Q):H=G:F=ASC(MID$(Q,2)):IF F=82 THEN I=I XOR 1:H=0
8060 IF G=13 THEN K=SCREEN(L,C)
8070 IF G>31 THEN F=77 ELSE H=K
8080 L=L+(L>1 AND F=72)-(L<25 AND F=80)
8090 C=C+(C>1 AND F=75)-(C<80 AND F=77)
8100 IF I*H THEN PRINT CHR$(H);
8110 WEND
8120 RETURN

The above shorties can easily be used as transient tools. When
editing a program, do a direct-execution GOSUB on a line that
is unused at that point. Draw whatever, then move the cursor
to a position where the "Ok" will not irritate you when you hit
escape. (As we all know, RETURN from a directly executed GOSUB
returns control to the BASIC editor.)

It is sometimes handy to keep the above two subroutines in your
tool kit, even when you have spent time developing a grandiose
screen builder. Consider, for example, a menu program that has
self-maintenance capabilities. Or a report-writer that lets an
operator draw pretty boxes.

The Blue Book About GW-BASIC and QuickBASIC - 210 -

One final shot: Reusable code should be fundamental to our
methods for building programs in BASIC. Programs whose primary
structure is based on a branch table are easily debugged, and,
they can be economically maintained.

Old timers will undoubtedly notice that nothing suggested here
is really new, at all. Branch table concepts date back to the
earliest days of programming. And way back when, we all kept
old decks of punched cards that contained our favorite pieces
of canned code. All that has been remarked upon here is some
ideas on how to bring those old, timeworn concepts up to date.

The iron is dramatically different today, but what we have to
do as programmers is fundamentally the same as it has always
been. A mouse may be a clever device to some, but the essence
of efficiency is a function of our methods, not our gadgets.

Perhaps some will find some of the above useful; it has been
the basis of my methods for a long time, long before things
like a mouse or a monitor were ever invented.

The Blue Book About GW-BASIC and QuickBASIC - 211 -

Chapter 13 = TECHNIQUES

Cleverness is undoubtedly a core personality trait of people
who like to program. We enjoy devising clever solutions to
problems. Ego plays an important part as well; we tend to
think we are more clever than most. Most of the time, anyway.

Having no knowledge of psychology, there is also a confusing
aspect to our makeup: Seldom can anyone else see how clever we
are. Users may favorably comment on our products, yet all they
can see is what we have made visible. Little do they know what
is really happening inside a program.

Compliments from lay operators are meager fuel for our egos.
When they offer criticism, a defensive impulse is triggered.
How can anyone take potshots at what they cannot see, or, when
they cannot even begin to understand the intellectual feats of
our fait accompli.

The above thoughts seemed appropriate preamble, to me, for a
chapter that offers ideas about programming technique. It is
a natural tendency, for most of us, to view rather skeptically
what another programmer thinks is clever. After all, we are
clever too.

While skimming what follows, look for the cream, and excuse any
unintended braggadocio with clenched teeth. You can freely use
any gems deemed worthwhile, with impunity. No one will ever
know that you actually stole an idea from a book. Equally, my
ego is in no jeopardy; whatever you might guffaw at will remain
unknown to me. When you opt to use superior techniques of your
own, savor your cleverness. Either way, what is offered here
is meant to be food for thought. Healthy programs are well fed
programs; it matters little where the beans come from, assuming
they were grown in fertile soil in the first place.

Touch-typists like to keep their fingers on the home keys. The
following menu makes use of initial-letter selection, for just
that reason. And it matters not whether caps-lock is on or
off. Which is good technique.

As programmers, we appreciate the worth of mnemonics. So will
our users. It is obviously easier to remember that S means
Search, for example, than F1 or F7, or something. And few of
us have fingers long enough to reach the function keys without

The Blue Book About GW-BASIC and QuickBASIC - 212 -

exaggerated hand movement.

Because data entry operators have to constantly shift their
eyes back and forth between input documents and the monitor,
we should make it as easy as we can for them to memorize the
keys used for menu selections. Experienced operators do not
"read" menus (nor look at the keyboard). In actual practice,
they seldom read anything on the screen; they merely glance up
now and then to confirm they are in step with what the program
is doing.

Video highlighting is one way to help an operator spot things
on the monitor quickly. Easy pattern recognition is another.
Color-bar highlighting of menu lines can be seen as steps on
a ladder. After a little practice, few users actually read
what is printed on a rung. They merely confirm the step they
are on.

The menu driver that follows is attuned to all of that advice
from the human factors engineers, and it goes one step farther.
It also lets those that prefer, to move the color-bars with the
cursor arrow keys and make selection of a highlighted choice
with the Enter key. And it does it all fairly efficiently in
interpreted BASIC.

Code needed during program initialization:

 2000 DEFSTR M-Z:DEFINT C-L
 2010 Q2=MKI$(0) 'Q2Keys
 2020 Q1=CHR$(0) 'Q1Key
 2030 DM=5 'DoMenu
 2040 BM=&HB000 'BaseMonitor (mono)

A "main menu" display-and-select subroutine:

 2700 'menuM
 2710 CLS:LOCATE 4,1,0:LSET Q1=CHR$(13)
 2720 PRINT ,, " Keys index ";Q1
 2730 PRINT ,, " Name scan ";Q1
 2740 PRINT ,, " SS# search ";Q1
 2750 PRINT ,, " Add record ";Q1
 2760 PRINT ,, " Posting ";Q1
 2770 PRINT ,, " Tax changes ";Q1
 2780 PRINT ,, " Run reports ";Q1
 2790 PRINT ,, " Disk jobs ";Q1
 2800 PRINT ,, " Quit POPS ";Q1
 2810 L=DM*2+2:DM=0 'last DM line

The Blue Book About GW-BASIC and QuickBASIC - 213 -

 2820 DEF SEG=BM 'video RAM
 2830 WHILE DM=0:C=(L-1)*160+57 'col(29*2-1)
 2840 FOR I=C TO C+24 STEP 2:POKE I,112:NEXT 'color 0,7
 2850 LSET Q2=MKI$(0) 'clear kb
 2860 WHILE CVI(Q2)=0:MID$(Q2,1)=INKEY$:WEND 'get a key
 2870 FOR I=C TO C+24 STEP 2:POKE I,7:NEXT 'color 7,0
 2880 LSET Q1=Q2:I=INSTR("HP",RIGHT$(Q2,1)) 'up/down
 2890 L=L+2*(I=1 AND L>4)-2*(I=2 AND L<20) 'cursor
 2900 DM=INSTR("KNSAPTRDQ",Q1)+INSTR("knsaptrdq",Q1) 'letter
 2910 IF ASC(Q1)=13 THEN DM=(L-3)/2 'enter
 2920 IF I+DM=0 THEN SOUND 99,3 'oops
 2930 WEND:DEF SEG
 2940 RETURN

Several variations can be derived from the above. Paint-time
with PRINT is never very fast, no matter how it is done. One
better alternative is to BLOAD the screen. Sometimes. The
keyboard driver above, from line 2810 down, can be used either
way.

See also how a basic technique is incorporated for the menu to
"remember" what selection was made last. By respecting DM as
a global-variable, when a return to the menu is done, the line
that is highlighted indicates where we are returning from. DM
is a number--1 to 9 in this case--that is used initially in an
ON GOSUB as a major-task dispatcher. It can also be used
thereafter for mode testing, in subroutines that may be called
from more than one major task.

There is also an opportunity here to influence an operator's
choice about what to do next, by preloading DM with a default
selection. If they agree with what they see, they merely have
to hit Enter.

Another good technique, at times, for you and the operator is
to anticipate. If the Esc-key is the menu-trigger for example,
a pretest can be done using a compound INSTR expression like
the one in line 2900, to save having to jump to the menu at
all. Which saves you both time. (A la, "hot keys".)

Performance-wise one of the fastest functions in GW-BASIC is
INSTR. It is especially fast when the string to be examined
is a hard-coded literal, as typified in the keyboard driver
above. (Remember the overhead involved when the interpreter
has to search for a variable, viz Chapter 3.)

The Blue Book About GW-BASIC and QuickBASIC - 214 -

Even when three or four variables are involved, INSTR can still
often be a solid quoin for functional structures. See how it
is a keystone in the following routines that are useful for a
particular type of ISAM. (Assumes DEFSTR M-Z and DEFINT C-L.)

3000 'openFV
3010 FV=4:OPEN VI AS FV LEN=250 'VI = index file
3020 FIELD FV,250 AS VB:GET FV 'VBuffer; 1st GET
3030 FIELD FV,10 AS V1,230 AS V2,10 AS V3 'Vfields
3040 IF LEN(V0) THEN 3110 'already initialized
3050 V0=V1:V4=V3 'shift-out buffers
3060 VF=LEFT$(V1,8) 'VFind = search-for key
3070 VG=VF 'VGot = last key found
3080 CV=INSTR(VB,VF) 'ColV = buffer position
3090 LV=LOC(FV) 'LocV = buffer record #
3100 GV=0 'GotV = target record #
3110 RETURN

3120 'Vget
3130 CV=INSTR(VB,VF):IF CV THEN 3180 'in buffer
3140 WHILE VF<VB AND LOC(FV)>1:GET FV,LOC(FV)-1:WEND 'back up
3150 WHILE VF>V3 AND V3>" ":GET FV:WEND 'forwards
3160 LV=LOC(FV):CV=INSTR(VB,VF):IF CV THEN 3180 'exists
3170 CV=1:WHILE VF>MID$(VB,CV) AND MID$(VB,CV)>" ":CV=CV+10:WEND
3180 GV=ASC(MID$(VB,CV+8))*100+ASC(MID$(VB,CV+9))-10100
3190 LSET VG=MID$(VB,CV)
3200 RETURN

3210 'Vchg
3220 GOSUB 9999:GOSUB 9999 'Vget:Vdel; preload VF with old key
3230 LSET VF=Q8 'Q8 is holding replacement key
3240 GOSUB 9999:GOSUB 9999 'Vget:Vadd
3250 RETURN

3260 'Vdel
3270 L=LEN(VB)-10:MID$(VB,CV)=MID$(VB,CV+10,L) 'overlay
3280 MID$(VB,11)=LEFT$(VB,L) 'shift right
3290 PUT FV,LV:LSET V4=STRING$(10,0) 'unload
3300 FOR I=LOF(FV)/LEN(VB) TO LV STEP-1:GET FV,I 'from bottom
3310 LSET V0=V1:LSET VB=MID$(VB,11,L):LSET V3=V4 'shift left
3320 PUT FV,I:LSET V4=V0:NEXT:GET FV,LV 'rewrite
3330 RETURN

3340 'Vadd
3350 LSET V0=VF 'key entry
3360 MID$(V0,9)=CHR$(GV\100+100) 'rcd pointer

The Blue Book About GW-BASIC and QuickBASIC - 215 -

3370 MID$(V0,10)=CHR$(GV MOD 100+100) '2nd byte
3380 LSET V4=V3:L=LEN(VB) 'shift out
3390 IF CV<L-9 THEN MID$(VB,CV+10)=MID$(VB,CV,L) 'make slot
3400 MID$(VB,CV)=V0:LSET V0=V4 'insert
3410 WHILE V3>" ":PUT FV,LOC(FV) 'until end
3420 GET FV:LSET V4=V3:MID$(VB,11)=LEFT$(VB,L-10) 'shift right
3430 LSET V1=V0:LSET V0=V4:WEND 'shift in
3440 PUT FV,LOC(FV):LSET VG=VF:GET FV,LV 'rewrite
3450 RETURN

The above ISAM routines are from a custom accounts payable
application. They do full index management in the program that
provides for operator maintenance of the vendor's file. That
application has the following functional requirements:

 Total active records on file is not expected to exceed more
 than a few thousand.

 Additions and deletions are somewhat infrequent; generally,
 not more than a few of either are ever done at one time.

 Duplicate keys are not permitted, but, the spelling of keys
 that do exist may be changed at any time. (Keys are seldom
 changed in actual practice, however.)

 Record keys may be from 1 to 8 characters, and may be any
 combination of upper case letters, digits, and symbols in
 the code range 32-90, decimal, but a key may not begin with
 a space-character.

The mechanical principles of this ISAM scheme are:

 Keys are maintained in alphabetically ascending sequence.

 New keys are in-sorted when new records are created. Keys
 for deleted records are removed from the index, and the index
 is shortened accordingly, but, the target record remains in
 situ in the master file (for historical reporting purposes).

 The overall length of the index file grows with new additions,
 but only when such additions exceed the original length of
 that file. The overall length of the index file is never
 shortened; space once taken up by keys that are deleted wind
 up as hex-zero strings at the bottom of the index (so that an
 "old" index-entry slot can be reused for future additions).

The system performance issues related to this scheme are:

The Blue Book About GW-BASIC and QuickBASIC - 216 -

 Master file records are large (512 bytes).

 Several other files must be open at the same time.

 To keep disk thrashing to a minimum, the fewer the number of
 accesses needed into the index file, the better.

 By maintaining the overall physical length of the index file
 (and the master) as constant as possible, fewer noncontiguous
 clusters will be used. When compress-type operations are
 done, "old" clusters will be forever contiguous. Meanwhile,
 only the newest clusters allocated will be displaced from the
 rest.

 By reason of the index file being separate from the master,
 and because each index-entry is a mere 10 bytes, up to 51
 entries can be grabbed into a DOS buffer on a single GET. By
 keeping only active-record keys in the index--compressed
 toward the top of the file--key searching and sorting need
 not be hampered by keys associated with dead records.

Implementation of the above code assumes the following:

 Each of the four modules are called on as needed.

 The 9999-stubs in the Vchg (Vendor Change) module must be
 readdressed to point into the branch table, so as to call
 the other subroutines in the order indicated. (Chapter 12
 covers the branch table business in detail.)

 The VF variable (Vendor Find) must be preloaded with the
 key of a record to be found before Vget is called.

 The content of VF must be quality-checked before it is
 passed to Vget.

 VF can be compared to VG (Vendor Got) after a search to see
 if a match was found. If not, VG will contain the key of
 what would be sequentially next, if the search key did in
 fact exist. (And LV and CV are already positioned for a call
 to Vadd, to in-sort a new addition, or a changed spelling of
 an old key.)

 VG will contain the first key in the index, or the last one,
 if the search key is lower or higher in sequence than are
 those already in the index.

The Blue Book About GW-BASIC and QuickBASIC - 217 -

 Vget can be used on a trial basis, to guard against attempts
 to coin new keys that would duplicate already existing ones.

 GV must be preloaded with the relative record number of a
 new master record, and VF must contain its key before Vadd
 (Vendor add) is called. Which also means GV must contain the
 relative record pointer-portion of keys being repositioned
 because their spelling is being changed, when successively
 calling Vdel and Vadd from Vchg. (A not very fast, but,
 cheap technique for a seldom used capability.)

Now see the role of INSTR as fundamental to the above ISAM
subroutines: On a GET, 10 keys are pulled into a 250-byte
string. A simple INSTR can search that buffer, quickly, to
see if it contains a given 8-byte record key. If it does,
the two bytes immediately following the matching key contain
a relative pointer for that associated record in the master
file.

If a search fails, if the key being looked for is less than
the left-most one of the index record buffer, we can walk
backwards in the index file. When the search key is larger
than the right-most key in the buffer-string, a forward search
can be done. Each test is effectively "paging" in increments
of ten; physical disk accesses are thus at least one-tenth of
what they might be, otherwise. Theoretically, at least. (GET
in BASIC only equates to a physical read if a needed record is
not yet in a DOS buffer, as we already know.)

Empirical experience on old 4.77 MHz machines results in an
average find-time in the neighborhood of 75 milliseconds, with
about 1500 active keys stored on a hard disk that claims an
average access time of 35 MS. Not too shabby for a GW-BASIC
program; it can even compete favorably with some of the new 4GL
products that like to denigrate us poor BASIC folks.

The two-byte record pointer that follows each key is specially
contrived to ensure that INSTR does not confuse "binary values"
with characters contained in keys. Lines 3350 and 3360 in Vadd
encode record pointers; line 3180 in Vget decodes them.

Because valid characters in keys are restricted to codes less
than 100 (decimal), adding 100 to each of the two bytes that
represent record pointers ensures that INSTR will always align

The Blue Book About GW-BASIC and QuickBASIC - 218 -

on keys properly. This does mean that the largest relative
record number that can exist in the master file is 15,599. But
it also means that the index file can be looked at as ASCII
text. Like with the DOS TYPE command, for example, while doing
testing and debugging.

A secondary advantage to the way key entries are stored in the
index described above is that the index file may be redefined
for the benefit of other programs. Such as:

 OPEN VI AS 1 LEN = 10 'VI = index file
 FIELD FV,8 AS VK,2 AS VL 'Vendor Key, Vendor Location

During posting, for example, a conventional binary search can
be used in an alternative Vget (Vendor Get) module. Similarly,
during report runs, the index can be read serially, as 10-byte
records. A key beginning with CHR$(0) denotes the end of the
index if LOF has not been encountered. See again how doing
things the hard way, in BASIC, can also make it easy for some
to be done the best way, depending on our needs at a particular
point in time.

An alternative ISAM scheme can be based on MRI (Memory Resident
Index) principles. For short key requirements--of 6 or fewer
characters--a double-precision array can be used efficiently
as the in-memory index tank. That entire tank can be loaded
quickly using BLOAD. If any changes are made (to the index) it
can be unloaded, quickly, at the end of the job with a BSAVE.

The following program exhibits these several techniques. It is
also a "prefab program". Having this program stored as is, on
a disk somewhere, a totally new application can be fabricated
by making changes and additions to this skeleton.

 1000 '6-byte MRI-ISAM skeleton
 1010 GOTO 1070
 1020 SAVE "MRI":LIST-1020
 1030 GOTO 1360 'keyM rebuild key index
 1040 GOTO 1470 'newM add new record
 1050 GOTO 1570 'fixM fix index (del/chg)
 1060 GOTO 1660 'getM locate record
 1070 'begin
 1080 DEFSTR M-Z:DEFINT C-L:DEFDBL A
 1090 I=0:E=0:F=0:H=0 'locals
 1100 CLS:KEY OFF:FOR I=1 TO 10:KEY I,"":NEXT

The Blue Book About GW-BASIC and QuickBASIC - 219 -

 1110 AM=2000 'Absolute MRI
 1120 IM=1 'IndexM - A(IM)
 1130 FM=1 'MasterFile#
 1140 LM=80 'LenMasterRcd
 1150 DEF FNEM=LOF(FM)/LM 'EndMaster
 1160 DEF FNGM=CVI(MID$(M8,7)) 'GetMaster
 1170 M8=MKD$(0):M6=SPACE$(6) 'MRIfields
 1180 MI="testfile.mri" 'MasterIndex
 1190 MF="testfile.dat" 'MasterFile
 1200 DIM A(AM) 'MRItank
 1210 OPEN MF AS FM LEN=LM
 1220 FIELD FM,6 AS MK,2 AS ML,LM-10 AS MD 'MKey,MLoc,MData
 1230 FIELD FM,LM AS MB 'MasterBuffer
 1240 IF LOF(FM) THEN 1270 'master exists
 1250 LSET MK=CHR$(254):GOSUB 1040 'newM
 1260 A(0)=1:BSAVE MI,VARPTR(A(0)),AM*8+8
 1270 BLOAD MI,VARPTR(A(0)) 'load MRItank
 1280 IF A(0)=0 THEN GOSUB 1030 'keyM (or enforce a restore)
 1290 LSET M8=MKD$(A(1)):GET FM,FNGM 'first record

 1300 '**
 1310 '** mainline code goes here **
 1320 '**

 1330 RESET
 1340 BSAVE MI,VARPTR(A(0)),AM*8+8 'rewrite MRI
 1350 END

 1360 'Mkeys
 1370 IF SGN(A(0)) THEN 1460
 1380 A(0)=FNEM 'size index
 1390 FOR I=1 TO A(0):GET FM,I:A(I)=CVD(MB):NEXT
 1400 L=A(0):H=(L-1)/2 'sort index
 1410 WHILE H:FOR I=1 TO H+1:E=1:WHILE E:E=0
 1420 FOR J=I TO L-H STEP H
 1430 IF MKD$(A(J))>MKD$(A(J+H)) THEN SWAP A(J),A(J+H):E=1
 1440 NEXT
 1450 WEND:NEXT:H=H\2:WEND
 1460 RETURN

 1470 'newM
 1480 E=A(0):LSET M8=MKD$(A(E)):LSET ML=MKI$(FNGM)
 1490 IF ASC(M8)=254 THEN 1510 'MK=new key
 1500 A(0)=A(0)+1:E=A(0):LSET ML=MKI$(E) 'stretch file
 1510 A(E)=CVD(MB):LSET M8=MB:PUT FM,FNGM 'on bottom
 1520 FOR I=E TO 2 STEP-1 'bubble up
 1530 LSET M8=MKD$(A(I)):LSET M6=M8:LSET M8=MKD$(A(I-1))

The Blue Book About GW-BASIC and QuickBASIC - 220 -

 1540 IF M6<LEFT$(M8,6) THEN SWAP A(I),A(I-1) ELSE IM=I:I=0
 1550 NEXT
 1560 RETURN

 1570 'fixM
 1580 PUT FM,CVI(ML) 'update master
 1590 FOR I=IM TO A(0)-1:A(I)=A(I+1):NEXT 'shuffle keys up
 1600 MID$(M8,1)=MK:A(A(0))=CVD(M8) 'put on bottom
 1610 FOR I=A(0) TO 2 STEP-1 'bubble up
 1620 LSET M8=MKD$(A(I)):LSET M6=M8:LSET M8=MKD$(A(I-1))
 1630 IF M6<LEFT$(M8,6) THEN SWAP A(I),A(I-1) ELSE IM=I:I=0
 1640 NEXT
 1650 RETURN

 1660 'getM
 1670 H=(A(0)):I=H\2:H=H+1:F=0 'search for MK
 1680 FOR E=0 TO 1:LSET M6=MKD$(A(I))
 1690 IF MK<M6 THEN H=I:I=I-(H-F)\2
 1700 IF MK>M6 THEN F=I:I=I+(H-F)\2
 1710 E=ABS(MK=M6 OR I=H OR I=F):NEXT
 1720 IM=I-((MK<=M6 OR I=A(0))=0) 'ISAM pointer
 1730 LSET M8=MKD$(A(IM)):GET FM,FNGM 'get master
 1740 RETURN

The above program is predicated on several design assumptions:

 Record keys may be from 1 to 6 characters. Any character is
 permitted that has an ASC value lower than 254.

 Duplicate record keys are not permitted.

 Keys are dynamically maintained in alpha-ascending sequence.

 The contents of a key may be changed.

 Keys may be deleted; active keys are kept compressed toward
 the top of the index.

 The maximum length of the associated master file cannot be
 greater than the DIM-argument for its index (but it can be
 less).

 When a master file record is deleted, its key is changed by
 overlaying a CHR$(254) in the first byte, and the index is
 updated by down-sorting that key to the bottom of the index.

The Blue Book About GW-BASIC and QuickBASIC - 221 -

 When new master records are added to that file, "old" deleted
 records are reused, if any exist, so as to minimize unneeded
 file growth.

Calls to the three primary modules must adhere to fairly simple
rules.

 1 - newM: Quality check the operator's "new key", then move
 it to MK and call getM. If M6 and MK are not equal, MK is
 not a duplicate, so, call newM to update the index, and to
 prewrite the associated master file record.

 2 - fixM: This routine does double duty. It shuffles keys
 for both changed-keys, and deleted records. For either, move
 the existing key into MK and call getM. For a change, put
 the new key in MK and call fixM. To delete a record, the new
 key is the old one, modified by MID$(MK,1) = CHR$(254) before
 the call to fixM is made.

 3 - getM: If the key in MK can be found, MB will contain the
 requested record, and IM will point to that key in the index.
 On a "not found", the record fetched (and IM) will be that of
 what would be next in sequence, if the requested key really
 did exist.

Some special advantages can be had with this basic scheme. On
any GET, LOC(FM) should equal CVI(ML)--if it does not, the
master file is probably corrupt. The BSAVE-index file can be
used as an operations-integrity safeguard. On any first need
to "update" anything, move A(0) to a hold-variable, set A(0) to
zero, and BSAVE the index (then restore A(0) as it was). See
line 1280. On every start-up a test is made to see if A(0) is
zero, which would indicate an abnormal termination. (Line 1340
is for a "normal" ending. After RESET purges DOS buffers, the
updated index is rewritten to disk, with A(0) indicating how
many records are currently in the master file.)

That other functional routine included here (keyM) is for
(re-) building an index. This is useful for "converting" an
existing master file coming from some other source, or, for
reconstruction of the index in the event that file has been
clobbered or lost. To use keyM, set A(0) to zero, then jump
to it via a GOSUB.

File integrity must constantly be a concern of any responsible
programmer. Yet, in the wonderful world of DOS, the manuals

The Blue Book About GW-BASIC and QuickBASIC - 222 -

continuously treat this subject lightheartedly. Witness what
the (IBM) DOS 3.3 Technical Reference says:

 "An application program should not concern itself with the
 way that DOS allocates disk space to a file. The size of a
 cluster is only important in that it determines the smallest
 amount of space allocated to a file at one time."

The (MS) DOS 3.3 User's Reference says:

 "You should run CHKDSK occasionally on each disk to check for
 errors."

It is not amusing that the manual for us technical-types says
not to worry, but the manual for "users" says they should (but
no definition is given for "occasionally").

The expensive manual does have a chart showing how to figure
out cluster sizes for floppies. Nothing is provided anywhere,
in the software or the manuals, to aid us in determining the
size of a cluster on a hard disk. The manuals merely say one
cluster is 1 or more sectors; the number of sectors is based
on the size of a disk, and how it is partitioned. No more is
said, however, about how it is actually computed.

Here is one clumsy technique for dynamically determining the
size of a cluster:

 1000 DEFSTR M-Z
 1010 SHELL "chkdsk >junk.one" 'phase-1
 1020 OPEN "junk.one" FOR INPUT AS 1
 1030 FOR I=1 TO 7
 1040 LINE INPUT #1,X
 1050 NEXT:W=X
 1060 CLOSE
 1070 SHELL "chkdsk >junk.two" 'phase-2
 1080 OPEN "junk.two" FOR INPUT AS 1
 1090 FOR I=1 TO 7
 1100 LINE INPUT #1,Y
 1110 NEXT
 1120 PRINT VAL(W)-VAL(Y) 'answer
 1130 CLOSE
 1140 KILL "junk.*"
 RUN
 2048

The seventh line of output from CHKDSK is the one that says how

The Blue Book About GW-BASIC and QuickBASIC - 223 -

many bytes are available on a disk (in DOS 3.3). The first
phase above gives us a starting value. The second creates a
second small file. The difference in the two reports tells us
how many bytes were "allocated" for that second file. A sector
is 512 bytes, thus, in this case, a cluster is equal to four
sectors. (This was done on a DOS-dedicated 20 MB hard disk.)

Because FAT mechanisms are based on clusters, and because DOS
file processes chain from one cluster to another, and because
time lags occur between the updating of FAT, DIR, and data
areas, chains can become disjointed or intertwined. We that
write applications must KNOW when this happens, if we want to
guarantee the accuracy of the data we are being paid to watch
over.

One technique useful for ascertaining the integrity of file
cluster-chaining is to store relative record numbers in the
records themselves (as in the MRI-ISAM routines shown above).
When we OPEN a file, for example, GET the last record in the
file using LOF (divided by the length of one record). Check
the number stored in that record. If it is the same as the
LOF-expression, the end-to-end integrity of the file is Ok.
Probably.

Although there is a minuscule chance that a positive test is
the result of coincidence, if the above test fails, something
is badly wrong. This is at least one definition of what
"occasionally" should mean: Run CHKDSK, now.

And, having stored record numbers in the records themselves,
we have provided ourselves with a rudimentary aid for acting
on that nebulous piece of advice in the user's manual that
says "... you should consider repairing the disk."

Presumably, the sage that said that, and he who said that we
need not be concerned with how DOS allocates clusters have
never had a payroll system go haywire an hour before the pay
checks have to be handed out. Nor have they had to wonder
why RUN-program or CHAIN suddenly seems to take longer than
it used to.

A program file is a sequential file, essentially. When we are
loading, and editing, and saving, it is possible that a program
becomes disjointed--one chunk is in one cluster, another may
be clear across the disk, and the next somewhere in between.
And so on. Which causes a load to take longer than need be.

The Blue Book About GW-BASIC and QuickBASIC - 224 -

So, we should indeed be "concerned".

A simple technique for ensuring that ready-to-deliver programs
individually span contiguous clusters is to do a LOAD, then a
SAVE, to a newly formatted floppy. And while we are at it, we
can stack the files on that disk in a prioritized order, based
on the most frequently used-first, to enhance directory search
times.

To ensure all of that work was not for naught, just before a
new application is installed on the target machine, the user
should run a compress utility on their system disk to ensure
that COPY will write the target files into contiguous clusters.
By copying the files in our preferred order, their names will
be added to directories in the order we intended.

But we still must be careful. Directories are in clusters too.
As names are added, when a cluster is filled, another must be
allocated. When copying a series of new files onto a disk, we
know for sure, if directory add-on clusters must be used, they
are going to be interspersed between real files. So, after all
new files have been successfully copied, run your favorite
compress utility one more time.

Indeed we should be concerned about how clusters are managed.
And not just because we are striving for optimum performance.
A broken program-file chain can be disastrous. FRE can be the
basis for a technique to ensure the integrity of a program.

Get a FRE(0) report with no program in memory. After a LOAD--
not a RUN or CHAIN--see what FRE(0) says, then put a test
statement near the front of the program. If that dynamic
load-test fails, stop the show. RUN may run into some funny
bytes that just happen to look like the tokens for KILL, or
CHAIN, or NAME, or SHELL, or CALL, or....

During development FRE(0) varies as we edit lines of a program.
Editing (and CLEAR) resets FRE(0) to correspond to the amount
of memory consumed by a static program, in the same way a LOAD
would. A simple technique for ascertaining what the integrity
test factor should be is to CLEAR and PRINT FRE(0). If the
test-literal has been precoded as single precision, it will
occupy four bytes in the tokenized program text. It still will
after we edit it to reflect the now current test-size argument.

If FRE(0) reports 60300 with no program in memory, for example,

The Blue Book About GW-BASIC and QuickBASIC - 225 -

and we know our current test argument is 34555, then a "cold
start" statement like the one below can be used.

 IF SGN(60300!-34555!-FRE(0)) THEN oops

 Note: A variation of this technique can also be devised to
 ensure that no one has been doing unauthorized modifications
 to your program. At a selected warm-start point, use the
 then current FRE in an expression that uses the last four
 digits of your Social Security number as an add-on value,
 for example, and do a NEW. Any editing change will upset
 the apple cart on a RUN, and, obliterate all conspicuous
 evidence of where the self-destruct statement is located.
 Like any 49-cent padlock, the determined can bust it. If
 you suspect they have, it will be obvious because they had
 to tamper with an unknown factor in the test expression.

There are no simple and fast ways for doing length-integrity
tests on sequential data files. APPEND-files are especially
vulnerable to being scattered around the disk in disjointed
clusters. For short files, the risks are minimal, of course.
Short in this case meaning not longer than the length of one
cluster. (One more reason for wanting to know cluster sizes
in given situations.)

For the fainthearted, one of the tricks shown in Chapter 14
is for generating BCC (Block Check Code) hash totals. If you
are willing to suffer the performance time required, store a
BCC in a file. After an OPEN for RANDOM with a record length
of one, serially read each byte and generate a new BCC, then
compare it to what is expected. A bad answer can mean bad
news.

A slightly less cumbersome technique for doing integrity tests
on sequential files can be based on knowledge of what should be
contained near the end. For traditional files, for example, we
expect the last byte to be a CHR$(26), control-Z code.

First, OPEN a sequential file as a relative file with a record
length of one byte. If it is file number one, GET 1,LOF(1)
will read the last byte. If it is a control-Z, the file may
be Ok. If it is not, it is not one that was closed according
to DOS traditions, or the DIR length of the file was not
updated correctly, or the FAT has been fried, or a chain has
been broken, or.... (PS: This is valid technique for files
having less than 32768 bytes, only, viz Chapter 8.)

The Blue Book About GW-BASIC and QuickBASIC - 226 -

For those less inclined toward paranoia, but that also want the
best performance possible, simply do not use large sequential
files, or do piggybacking with APPEND. Use relative files,
and a technique such as the one described earlier that puts
record numbers in the records themselves. Not only can a test
be made after OPEN, it can be done after every GET. If GET and
got do not agree, something is rotten in the state of DOS. (Or
we have a bug in the program that did the PUT.)

As an overall safeguard, consider doing a CHKDSK in the BAT
that starts an application. Send the report to a file. When
the first program gets going, open the check-file and check its
LOF. By knowing the length of a "clean report", a longer file
means CHKDSK reported errors. Then....

Anticipating hardware and operating system errors was the theme
above. Another suspect that should worry us even more is the
operator. Merely saying that they should do a RESTORE is often
not enough. If they continue processing with what we have good
reason to believe has been corrupted, and back up that over the
top of what may have been a "clean" back-up, no mere miracle
will ever untangle it all.

A technique based on using NAME to rename a file is a simple,
fast, and nearly foolproof way of detecting abnormal endings.
Like, when updating is going on. And we want to make sure the
program got all the way to RESET (which purges all buffers, and
updates directories).

Nearly any static file can be used as a safety check. On any
first attempt to write to a data file, just before PUT is done,
NAME "FILESAFE.LOG" AS "FILEOPEN.LOG", for example. As a last
act, after RESET, use NAME to change open back to safe. In a
menu or gateway process then, attempt to OPEN "FILESAFE.LOG".
If that attempt fails, it is probably not safe to go ahead.

NAME in BASIC means RENAME to DOS. It can only be done on
files that are not open. No data file access is done. No FAT
changes have to be made. Only one (directory) sector has to be
updated.

Yes, it is possible that the power could go out between a RESET
and a NAME change. So, this technique could cause us to insist
that a RESTORE be done needlessly. Better to be safe than
sorry, however. And the odds of a failure occurring during the

The Blue Book About GW-BASIC and QuickBASIC - 227 -

interval between RESET and NAME are pretty remote, even in the
mysterious world of DOS and BASIC. (Mysterious because none of
our manuals tell us when, or in what specific order such things
are done.)

That safety-check file suggested above, with the dot-LOG name
extension, can also in fact be a job-log file. Before a RUN
to another program is done, for example, make a log entry of
what is about to be done. DATE$, TIME$, and the program-name
may be useful information later.

 Note: To make a log file general to an overall system, you
 may want to call it dot-COM, and put it in the root. This
 will preclude having to specify a path in every program that
 makes use of it. (DOS can find EXE, COM, and BAT files in
 the root of the default drive, no matter what path we are
 executing from. But, it makes no check to see if in fact a
 COM or EXE or BAT file are what they are supposed to be.)

An error handler that cannot cope with a problem at hand might
also log ERR and ERL with DATE$ and TIME$ and that program's
name. A log such as this can be an invaluable aid when it
comes to having to figure out what really did or did not happen
before things went belly-up. (Few operators can remember what
they did, precisely, five minutes after a crash.)

Assuming there is a body available for an autopsy, a job-log
can also serve as the basis for a technique to prevent a user
from doing a RESTORE from an out-of-sequence set of back-ups.
Good DP practices are predicated on father-son schemes, with
successive back ups done on different volumes of back-up media,
used on a rotating basis. Rue the day when a trusted operator
inadvertently does a RESTORE with a back-up made last week,
instead of from the one done yesterday.

The last several techniques were for guarding ourselves against
system and operator failures. The next one to be dredged up
acknowledges a different kind of risk--the risk of software
changes in future releases--but, ignores that risk because of
the need for speed today: CALL machine-code routines when we
are coerced into doing so.

Being reluctant to go native is a meritorious attitude. It is
a very good way to get into trouble. Not especially because
we are inept or incapable, but because someone is apt to pull
the rug out from under us in some future software release. My

The Blue Book About GW-BASIC and QuickBASIC - 228 -

opinions on this theme have been exhausted elsewhere. Still,
there are times when we must prostitute our principles and get
our hands dirty.

In BASIC it is easy to clear the monitor, and we can scroll up
by putting the cursor on the bottom of the screen and doing a
PRINT. The "normal" way to scroll down, however, is by going
to the top, and reprinting all lines, one line farther down.
And that is s-l-o-w in any language.

A sometimes acceptable alternative in BASIC is to use BSAVE and
BLOAD. That simple concept has been covered elsewhere. It is
relatively easy to do, and it is fairly quick when we can make
use of VDISK, but a little slower for hard disk (and absolutely
lethargic when done to floppies).

When we are really pushed to mimic the fast scrolling that most
word processing programs can do, we merely need to mimic their
technique: BIOS service calls.

The following subroutine is useful as is for doing high speed
screen scrolling. It will shift all lines up or down one line.
It was taken from a program that has a window that extends from
line five, down through twenty. It should be evident how it
can easily be modified to suit any size window. (Remembering
that machine language arguments are zero-based offsets.)

 PS: An excellent book on BIOS mechanics is called "System
 BIOS for IBM PC/XT/AT Computers and Compatibles" published
 by Phoenix Technologies Ltd. It is from that source that
 the following "arguments" were derived.

1500 'pageV
1510 IF CM THEN E=&H1700 ELSE E=&H700 'clear in blue or black
1520 I=&H100:ON FR GOTO 1530,1540,1550,1560:I=0:GOTO 1560
1530 D=&H700:F=(L-1)*256:GOTO 1570 'ins = from L down to 20
1540 D=&H600:F=(L-1)*256:GOTO 1570 'del = from 20 up to L
1550 D=&H700:F=&H400:GOTO 1570 'up key = scroll down
1560 D=&H600:F=&H400 'dn key = scroll up
1570 MID$(V,1)=MKI$(&HB4+D) 'B4dd mov ah,d scroll 6=up/7=down
1580 MID$(V,3)=MKI$(&HB0+I) 'B0ii mov al,i i rows (0=clear)
1590 MID$(V,5)=MKI$(&HB7+E) 'B7ee mov bh,ee attribute (7/23)
1600 MID$(V,7)=MKI$(&HB5+F) 'B5ff mov ch,f top row (4-19)
1610 MID$(V,9)=MKI$(&HB1) 'B100 mov cl,00 left col (0-79)
1620 MID$(V,11)=MKI$(&H13B6) 'B613 mov dh,13 bottom row (19)
1630 MID$(V,13)=MKI$(&H4FB2) 'B24F mov dl,4F right col (0-79)
1640 MID$(V,15)=MKI$(&H10CD) 'CD10 int 10 (video func AH)

The Blue Book About GW-BASIC and QuickBASIC - 229 -

1650 MID$(V,17)=MKI$(&H2CA) 'CA02 ret 2 (2*1 param)
1660 MID$(V,19)=MKI$(0) '00 (2nd word)
1670 DEF SEG:B=VARPTR(V)+1:B=PEEK(B+1)*256+PEEK(B):CALL B(I)
1680 RETURN

To make use of the above subroutine, follow these rules:

 CM (Color Main) indicates the background color of the area
 that will be cleared upon completion. As coded here, any
 number in CM will clear with blue; zero will use black.
 (See lines 1510 and 1590.)

 FR (Function Request) sets up one of five (1-5) options, via
 the ON GOTO in line 1520.

 1 = Insert a blank line and shift those below down 1 line.
 2 = Delete a line by up-shifting those below up 1 line.
 3 = Scroll all lines down and blank the top one.
 4 = Scroll all lines up and blank the bottom one.
 5 = Clear the entire window. (Done by any code save 1-4).

 For options 1 and 2, L should equal the current CSRLIN. When
 scrolling is done, the (now) blank line needs to be repainted
 with a LOCATE and a PRINT.

Notice that V has already been established as a string (with a
DEFSTR) and that it is already at least 20-bytes long, and that
all other variables have been prenamed. And that there is
another reason for including this handy module in this chapter:

 This is a technique for calling any machine language routine.
 Simply manufacture code in any string variable. And to heck
 with passing arguments. Force-fit them as literals in the
 machine code itself, just like an assembler would do it.
 (Hint: DEBUG is an easy way to see what machine codes look
 like in assembler language.)

This basic concept can be varied, of course. Routines that have
no options can be set up as string constants. Longer routines
can be fetched from an external file as prefab sequences with
nulls occupying positions that are to be modified with dynamic
arguments. If 255 bytes are not enough, use multiple strings
initially allocated back-to-back. The key suggestions here are
to execute machine code sequences from strings, rather than by
shortening the default 64kb BASIC page size. And we can skip
fooling around with the passing of parameters. (Which is how
the manuals encourage us to do it.)

The Blue Book About GW-BASIC and QuickBASIC - 230 -

By the way, CALL in QuickBASIC must be done differently. (Not
better, just different.) One more aggravation to contend with
when designing programs that we want to use either way. It
seems some folks get perverse pleasure out of making our lives
more complicated than need be. What they tell us in just one
sentence can sentence us unfairly if we fail to remember such
gotchas when choosing techniques.

Having seen my ideas for executing machine language subroutines
from within a BASIC program, here is another handy one: Ever
wish you could write a "COM" program in BASIC? Like the TYPE
command, for example, but much improved so that pages can be
read without scrolling faster than you can hit Pause. We can
easily write our own "general purpose" programs. What is not
obvious is how to pass a file name (or switches) to our programs
directly from a DOS-prompt command line.

Use a BAT file to start the ball rolling; pass whatever is wanted
in BAT-file "variables". Like this:

 GWBASIC MYTYPE %1 %2 %3

That's the easy part. To invoke MYTYPE.BAT, and cause it to open
a file named on the DOS command line, as in

 MYTYPE README.DOC

we need to be able to get ahold of "README.DOC", just like the
big boys do it. Inside the MYTYPE program, the following start
up sequence will do it.

 1000 'getDTA
 1010 DEF SEG:DEFINT C-L:DEFSTR M-Z:B=0:BS=0:BP=0:I=0
 1020 MC=STRING$(128,0) 'machine code
 1030 B=VARPTR(MC)+1:B=PEEK(B+1)*256+PEEK(B)
 1040 MID$(MC,1)=CHR$(&H6) 'push es
 1050 MID$(MC,2)=CHR$(&H53) 'push bx
 1060 MID$(MC,3)=CHR$(&H1E) 'push ds
 1070 MID$(MC,4)=CHR$(&H52) 'push dx
 1080 MID$(MC,5)=MKI$(&H2FB4) 'mov ah,2f get DTA
 1090 MID$(MC,7)=MKI$(&H21CD) 'int 21h
 1100 MID$(MC,9)=CHR$(&H6) 'push es
 1110 MID$(MC,10)=CHR$(&H53) 'push bx
 1120 MID$(MC,11)=CHR$(&H5A) 'pop dx

The Blue Book About GW-BASIC and QuickBASIC - 231 -

 1130 MID$(MC,12)=CHR$(&H1F) 'pop ds
 1140 MID$(MC,13)=MKI$(&H25B4) 'mov ah,25 set int
 1150 MID$(MC,15)=MKI$(&H60B0) 'mov al,60 int#
 1160 MID$(MC,17)=MKI$(&H21CD) 'int 21h
 1170 MID$(MC,19)=CHR$(&H5A) 'pop dx
 1180 MID$(MC,20)=CHR$(&H1F) 'pop ds
 1190 MID$(MC,21)=CHR$(&H5B) 'pop bx
 1200 MID$(MC,22)=CHR$(&H7) 'pop es
 1210 MID$(MC,23)=MKI$(&HCA) 'ret 0 exit
 1220 MID$(MC,25)=MKI$(0) 'end
 1230 CALL B
 1240 DEF SEG=0
 1250 BS=PEEK(387)*256+PEEK(386) 'PSP def seg address
 1260 BP=PEEK(385)*256+PEEK(384) 'DTA offset
 1270 DEF SEG=BS
 1280 FOR I=1 TO PEEK(BP):MID$(MC,I)=CHR$(PEEK(BP+I)):NEXT
 1290 I=INSTR(2,MC," ")+1
 1300 OPEN MID$(MC,I,PEEK(BP)-I-1) FOR INPUT AS 1
 1310 'la de da, and so on, hereafter

This works because: GWBASIC is an EXE program. DOS technical
manuals tell us that a PSP--Program Segment Prefix--is set up
by the loader routine in COMMAND.COM. This is just as true for
the interpreter program as it is for any EXE file. We are also
told that a default DTA--Data Transfer Area--is contained in
the PSP at offset 80h in the PSP. And that whatever is typed on
a command line, after the initiating program's name, will be a
string of bytes in the DTA. And that the first byte of the DTA
string will be a length-of-string value of from 0 to 127.

So: The above machine language instruction sequence makes a DOS
function call to find out where the DTA is for GWBASIC.EXE. Then
it saves that gem of wisdom in the Interrupt Vector Table as if
it was the address of a "user" interrupt servicing routine, for
interrupt 60h. (See Chapter 11 about passing parameters in this
sacred area.)

The loop in 1280 copies the string pointed to by our "interrupt"
into our program. In this case, it will contain two names. The
first one is the name of the program that GWBASIC was told to
load. The second name is the one we want. Line 1290 is a crude
parser to find the beginning of the second name. PS: Notice
that BASIC effectively ignores this name, but it is sitting up
in its DTA area just the same.

And see how we can do anything we want to in BASIC. From the
operator's perspective, MYTYPE can be made to work as if it was

The Blue Book About GW-BASIC and QuickBASIC - 232 -

written in C, Pascal, or any of the other favorites of those that
will argue that BASIC is incapable of such sophisticated feats.

Since we have already entered the red light district, we may
as well go on and get our money's worth: Programs that modify
themselves, or others....

There are at least two rational reasons for using nefarious
techniques of this type. It costs time--and sometimes more than
a little space--to store things in files for the benefit of
subsequent processes. Here is an alternative, practical for
several types of problems (strictly in GW-BASIC).

 OPEN "program.bas" AS 1 LEN = 7 : FIELD 1,7 AS X

Chapter 2 describes what a tokenized program file looks like;
an abbreviated reminder is sufficient to see the significance
of the opening sequence above.

The 7-byte-X record size permits a straight shot into the first
line of a program, i.e., record number two. Here is what is
skipped over in record number one:

 Byte 1: CHR$(255) or CHR$(254), depending on whether SAVE
 was done with the P-to-protect option.

 Word 1: A 2-byte in-memory real address value for the first
 line of the program.

 Word 2: Another 2 bytes; the line number of the first line.

 Word 3: Two tokens. If the first line is coded as a DATA
 statement, these two bytes should be a code 132 and a 32, in
 decimal terms. (The token for DATA, followed by a space.)

Because we are clever, and because we know DATA statements will
always contain text-characters, and because we put no unneeded
spaces between the line number and the word DATA, we can jab
whatever codes we want to in our pseudo-record number two. Or,
three, or four, or more, as long as we "know" how long that
first line is, and our READ logic knows what to expect.

One good reason for resorting to this trick is for tailoring a
set of programs with an installation program. That program can
solicit the answers to a variety of questions, then implant the
answers into each of the programs in the run-time set with an

The Blue Book About GW-BASIC and QuickBASIC - 233 -

OPEN-PUT-RESET sequence. Those programs then merely need to do
a READ into specific variables to see what they want to know.
Which is faster and less cumbersome than having to read some
application global-file that contains such information every
time a program is used.

Other uses can be made of this technique, of course. Such as
"remembering" what an operator last did when a program was
last used. Just before termination, simply open the program
then in use, then save what you want it to remember. The next
time it is RUN, READ will provide instant recall without taxing
anyone's patience. (Next check-number, or the serial number to
be used for the next invoice or purchase order are natural
candidates for this technique. It can also be the fundamental
basis for doing a did-it-run-till-done test.)

And see how this deviation can still adhere to the adopted
rules described in Chapter 11. If the first line is a DATA
statement, simply shift the program identification REM-info
down onto line 1010, following the GOTO that gets the show on
the road. Resorting to sinful techniques (in the eyes of some)
does not mean that we should forsake our religious principles
altogether.

Lest the obvious be missed, see also how easy it is to get rid
of the protect-lock for programs that were saved with comma-P.
Simply GET 1,1 and stuff a CHR$(255) in byte-1, then PUT 1,1.
It is a mystery to me why the manuals make a mystery out of
this. Clever kids can figure this out; if they were not clever
they would not be learning to program. Would they?

Few clients seem to care much about what techniques we use to
solve their problems. They simply care about results. Until
they find they have been trapped into a costly corner, anyway.

Most often our decisions about alternative techniques is a
private affair. Still, good or bad, right or wrong, clumsy or
clever should be serious matters of debate in our own mind.

What has been exhibited here are not proposed techniques; they
are merely meant to be extensions to your own list of possible
alternatives. Even if your list is only slightly longer now,
neither of us has wasted our time.

The Blue Book About GW-BASIC and QuickBASIC - 234 -

Chapter 14 = TRICKS

To turn off the high order bit of a byte held in an integer
variable, use AND. The decimal number to use on one side of AND
is 32639. Which is 32767-128. Half of 65536 is 32768. A 2-byte
word, 16-bits, can represent a positive whole number of from 0
to 65535. And on, and on, and on.

It is not hard to remember that Boolean operators can be used
to flip bits on and off. What is hard for me to remember is
which number to use for specific cases, and how to construct
the expression. Especially if I have not done it in a month
or so. Or a week, or sometimes even a day or two.

It is not hard to figure it out all over again, of course, but
it may take a few minutes of experimenting in direct execution
mode. And a few more minutes to test it thoroughly. And....

Even if you are a trivia champ with instant recall, a lot that
must be done in a lot of programs is way more than trivial. And
even if you enjoy thinking out complicated algorithms, not many
of us enjoy the labor involved in thoroughly testing a newly
reinvented one. Depending on just how complicated a piece of
coding is, the time required for thorough testing can be a lot
more than just a few minutes.

One alternative is to hunt up an old program that used the same
expression. Or, if in a hurry, or feeling lazy, just say to
heck-with-it and use IF and THEN and ELSE, or anything else
that requires less headwork. Or, copy one from this chapter.

Here are some freebees, loosely grouped by type of function
rather than by what kind of programs they are useful in. A
binary search is a searching trick usable in payroll programs,
shots at the moon, and in games for kids.

And "tricks" some of these are. Some use so-called standard
programming practices. Some are so perverse that they should
be used only in private. Hours were spent upon the issue of
including those that might be viewed as belonging only in a
red-light district. The outcome was to include everything from
my notebooks that might be usable to someone else.

Judge me not, and I'll do likewise. Sometimes, anything that
works ought to be legal. One criteria for judging is the old

The Blue Book About GW-BASIC and QuickBASIC - 235 -

saw that a good program is one that works--one that doesn't
may be pretty, and pretty useless. Copy anything that follows
that you like. Ignore anything that seems obscene. Many of
your own tricks may be far superior to mine. No inference is
intended that any of these are the "best way" to do something.

My coding style reflects personal habits, one of which must be
known up front. With no notes to the contrary assume always:

 DEFDBL A 'Accounting Amounts (money) and Accumulations
 DEFSNG B 'Bigger numbers, Binary addresses and BASIC
 DEFINT C-L 'Counters, Do-loops, Indexes and Limits
 DEFSTR M-Z 'Messages, MID$, and the rest of the Zoo

AVERAGES .. line

find MEAN average, sorted array 1080

find MEAN average, unsorted array 1130

find MEDIAN average, sorted array 1250

find MODE (norm), unsorted array 1340

find SIMPLE average, unsorted array 1550

1080 'find MEAN average, sorted array
1090 ' call: A(n)= table of numbers (anytype)
1100 ' F= 1st element, L= Last element; max= 32767
1110 ' exit: A= A(F) + A(L) divided by 2
1120 A=(A(F)+A(L))/2 'answer

1130 'find MEAN average, unsorted array
1140 ' call: A(n)= table of numbers (anytype)
1150 ' F= 1st element, L= Last element
1160 ' exit: A= A(lowval) + A(hival) divided by 2
1170 ' temp: I= Incr, J= lowval ptr, K= hival ptr
1180 J=L 'swag lowval ptr
1190 K=L 'swag hival ptr
1200 FOR I=F TO L
1210 IF A(I)<A(J) THEN J=I 'new lowval ptr
1220 IF A(I)>A(K) THEN K=I 'new hival ptr

The Blue Book About GW-BASIC and QuickBASIC - 236 -

1230 NEXT
1240 A=(A(K)+A(J))/2 'answer

1250 'find MEDIAN average, sorted array
1260 ' call: A(n)= table of numbers (anytype)
1270 ' F= 1st element, L= Last element
1280 ' exit: A= median of A(first) and A(last)
1290 ' temp: I= mid ptr-1 of A(n) if L-F is odd
1300 ' J= mid ptr+1 of A(n) if L-F is odd
1310 I=(L-F)\2+F 'mid ptr rounded up
1320 J=(L-F+1)\2+F 'mid ptr rounded down
1330 A=(A(I)+A(J))/2 'answer

1340 'find MODE (norm), unsorted array
1350 ' call: T(n)= table (anytype)
1360 ' F= 1st element, L= Last element
1370 ' exit: G= Got ptr of most-of in T(n)
1380 ' latter-one of dupes
1390 ' temp: I= Incr, H= Had ptr
1400 ' K= had cnt, J= found cnt, E= exit
1410 FOR J=L TO F STEP-1 'redef L
1420 FOR I=F TO L 'init Found
1430 IF T(I)=T(J) AND I<>J THEN G=I:I=L:L=J:J=0
1440 NEXT
1450 NEXT 'J starts as -1
1460 FOR E=L TO F STEP-1
1470 K=0 'reset had cnt
1480 FOR I=F TO L 'sample loop
1490 IF T(I)<>T(G) THEN IF K=0 THEN H=I:K=-1
1500 IF T(I)=T(H) AND K<0 THEN K=K-1
1510 IF J>K THEN I=L:G=H:J=K 'Got replaces Had
1520 NEXT
1530 IF ABS(J)>E THEN E=0 'early finish
1540 NEXT

1550 'find SIMPLE average, unsorted array
1560 ' call: A(n)= table of numbers (anytype)
1570 ' F= 1st element, L= Last element
1580 ' exit: A= sum of A(all) divided by L
1590 ' temp: I= Incr
1600 A=A(F) 'first
1610 FOR I=F+1 TO L:A=A+A(I):NEXT
1620 A=A/L 'answer

The Blue Book About GW-BASIC and QuickBASIC - 237 -

BOOLEAN ... line

bit EXPRESSION examples 1140

bit RESET (make binary 0) 1220

bit REVERSAL (toggle ON/OFF state) 1250

bit SET (make binary 1) 1280

bit SHIFT (all bits, 1 position in unison) 1310

bit TEST (sample for binary 0 or 1) 1340

get GREATER of 2 numbers 1380

get GREATER of 2 strings 1430

get SMALLER of 2 numbers 1480

get SMALLER of 2 strings 1530

display BYTES in numeric variables 1580

1140 'bit EXPRESSION examples
1150 ' call: E= integer (using low-order byte)
1160 ' mask: |128|64|32|16|8|4|2|1|
1170 ' bit # | 7| 6| 5| 4|3|2|1|0|
1180 E=E-32*(E>64 AND E<91) 'force lower case
1190 E=E+32*(E>96 AND E<123) 'force upper case
1200 E=E+32*(E>96 AND E<123)-32*(E>64 AND E<91) 'flip case
1210 E=E AND 32639 'force 7-bit off

1220 'bit RESET (make binary 0)
1230 E=E OR E XOR 8 'set #3 OFF
1240 E=E OR E XOR 68 'set OFF bits #6 and #2 (68= 64+4)

1250 'bit REVERSAL (toggle ON/OFF state)
1260 E=E XOR 32 '#5 REVERSED
1270 E=E XOR 21 '#4, #2, & #0 REVERSED (21= 16+4+1)

The Blue Book About GW-BASIC and QuickBASIC - 238 -

1280 'bit SET (make binary 1)
1290 E=E OR 16 'set ON #4
1300 E=E OR 48 'set ON #5 and #4 (48= 32+16)

1310 'bit SHIFT (all bits, 1 position in unison)
1320 E=E/2 'RIGHT (#0 lost, #7 is 0)
1330 E=E*2 AND 255 'LEFT (#7 lost, #0 is 0)

1340 'bit TEST (sample for binary 0 or 1)
1350 IF E AND 8 THEN 'true for #3 ON
1360 IF E AND 4=0 THEN 'true for #2 OFF
1370 IF E AND 33 THEN 'true for #5 & #0 ON (33= 32+1)

1380 'get GREATER of 2 numbers
1390 ' call: I= any number, J= any number
1400 ' exit: E= greater of I,J (I and J unchanged)
1410 ' note: logic equals: IF I>J THEN E=I ELSE E=J
1420 E=I*ABS(I=>J)+J*ABS(J>I)

1430 'get GREATER of 2 strings
1440 ' call: X= any string, R= any string
1450 ' exit: S= the greater of X,R (X and R unchanged)
1460 ' note: logic equals: IF X>R THEN S=X ELSE S=R
1470 S=LEFT$(X,LEN(X)*-(X=>R))+LEFT$(R,LEN(R)*-(R>X))

1480 'get SMALLER of 2 numbers
1490 ' call: I= any number, J= any number
1500 ' exit: E= smaller of I,J (I and J unchanged)
1510 ' note: logic equals: IF I<J THEN E=I ELSE E=J
1520 E=I*ABS(I<J)+J*ABS(J<=I)

1530 'get SMALLER of 2 strings
1540 ' call: X= any string, R= any string
1550 ' exit: S= the smaller of X,R (X and R unchanged)
1560 ' note: logic equals: IF X<R THEN S=X ELSE S=R
1570 S=LEFT$(X,LEN(X)*-(X<R))+LEFT$(R,LEN(R)*-(R<=X))

1580 'display BYTES in numeric variables
1590 ' call: A= any value, DEFtype A as needed
1600 ' temp: I= Incr, B= var adrs, G= var type

The Blue Book About GW-BASIC and QuickBASIC - 239 -

1610 ' C= byte, F= Factor bits
1620 G=ASC(VARPTR$(A))-1:B=VARPTR(A) 'var type & adrs
1630 FOR I=0 TO G:C=PEEK(B+I) 'chr loop
1640 IF C<31 THEN PRINT "."; ELSE PRINT CHR$(C);
1650 PRINT SPC(8);:NEXT:PRINT
1660 FOR I=0 TO G:C=PEEK(B+I) 'hex loop
1670 PRINT STRING$(-1*(C<16),48);HEX$(C);SPC(7);
1680 NEXT:PRINT
1690 FOR I=0 TO G:C=PEEK(B+I) 'octal loop
1700 PRINT STRING$(-1*(C<64),48);STRING$(-1*(C<8),48);
1710 PRINT OCT$(C);SPC(6);
1720 NEXT:PRINT
1730 FOR I=0 TO G:C=PEEK(B+I):F=128 'bits loop
1740 WHILE F:PRINT CHR$(48+SGN(C AND F));
1750 F=F\2:WEND:PRINT " ";
1760 NEXT:PRINT

NUMBER BASE CONVERSIONS line

convert BCD (Binary Coded Decimal) to DECIMAL 1170

convert BINARY to DECIMAL 1250

convert BINARY to HEXADECIMAL 1330

convert BINARY to OCTAL 1430

convert DECIMAL to BCD (Binary Coded Decimal) 1520

convert DECIMAL to BINARY 1600

convert DECIMAL to HEXADECIMAL 1680

convert DECIMAL to OCTAL 1760

convert HEXADECIMAL to BINARY 1840

convert HEXADECIMAL to DECIMAL 1930

convert HEXADECIMAL to OCTAL 2010

convert OCTAL to BINARY 2120

convert OCTAL to DECIMAL 2200

The Blue Book About GW-BASIC and QuickBASIC - 240 -

convert OCTAL to HEXADECIMAL 2280

1170 'convert BCD (Binary Coded Decimal) to DECIMAL
1180 ' call: X= bytes in range 00H-99H
1190 ' exit: S= ASCII digits 0-9
1200 ' temp: I= Incr
1210 S=""
1220 FOR I=1 TO LEN(X)
1230 S=S+HEX$(ASC(MID$(X,I)))
1240 NEXT

1250 'convert BINARY to DECIMAL
1260 ' call: X= ASCII zeros and ones
1270 ' exit: A= positive whole number
1280 ' temp: I= Incr, B= factor position
1290 A=0:B=1
1300 FOR I=LEN(X) TO 1 STEP-1
1310 A=A+(ASC(MID$(X,I)) MOD 2)*B:B=B*2
1320 NEXT

1330 'convert BINARY to HEXADECIMAL
1340 ' call: X= ASCII zeros and ones
1350 ' exit: S= ASCII, 0-F, X= length adj MOD 4
1360 ' temp: I= Incr, J= hex digit
1370 X=STRING$((4-LEN(X) MOD 4)*-(LEN(X) MOD 4>0),48)+X:S=""
1380 FOR I=1 TO LEN(X) STEP 4
1390 J=VAL(MID$(X,I,1))*8+VAL(MID$(X,I+1,1))*4
1400 J=J+VAL(MID$(X,I+2,1))*2+VAL(MID$(X,I+3,1))
1410 S=S+MID$("0123456789ABCDEF",J+1,1)
1420 NEXT

1430 'convert BINARY to OCTAL
1440 ' call: X= ASCII zeros and ones
1450 ' exit: S= ASCII 0-7, X= length adj MOD 3
1460 ' temp: I= Incr, J= octal digit
1470 X=STRING$((3-LEN(X) MOD 3)*-(LEN(X) MOD 3>0),48)+X:S=""
1480 FOR I=1 TO LEN(X) STEP 3
1490 J=VAL(MID$(X,I,1))*4+VAL(MID$(X,I+1,1))*2
1500 J=J+VAL(MID$(X,I+2,1)):S=S+CHR$(48+J)
1510 NEXT

1520 'convert DECIMAL to BCD (Binary Coded Decimal)

The Blue Book About GW-BASIC and QuickBASIC - 241 -

1530 ' call: X= ASCII digits 0-9
1540 ' exit: S= bytes, range 00H-99H, X= length adj MOD 2
1550 ' temp: I= Incr
1560 X=STRING$(LEN(X) MOD 2,48)+X:S=""
1570 FOR I=1 TO LEN(X) STEP 2
1580 S=S+CHR$((ASC(MID$(X,I))-48)*16+ASC(MID$(X,I+1))-48)
1590 NEXT

1600 'convert DECIMAL to BINARY
1610 ' call: A= positive whole number
1620 ' exit: S= ASCII zeros and ones, A= 1
1630 ' temp: I= Incr, AQ= quotient
1640 S="":A=A+1
1650 FOR I=A>1 TO 0:AQ=INT(A/2)
1660 S=CHR$(48-(A=AQ*2))+S:A=A-AQ:I=A>1
1670 NEXT

1680 'convert DECIMAL to HEXADECIMAL
1690 ' call: A= positive whole number
1700 ' exit: S= ASCII, 0-F, A= 0
1710 ' temp: I= Incr, J= hex digit
1720 I=0:WHILE A=>16^I:I=I+1:WEND:S=""
1730 FOR I=I-1 TO 0 STEP-1:J=INT(A/(16^I))
1740 S=S+MID$("0123456789ABCDEF",J+1,1):A=INT(A-(J*16^I))
1750 NEXT

1760 'convert DECIMAL to OCTAL
1770 ' call: A= positive whole number
1780 ' exit: S= ASCII, 0-7, A= 0
1790 ' temp: I= Incr, J= octal digit
1800 I=0:WHILE A=>8^I:I=I+1:WEND:S=""
1810 FOR I=I-1 TO 0 STEP-1:J=INT(A/8^I)
1820 S=S+CHR$(48+J):A=INT(A-(J*8^I))
1830 NEXT

1840 'convert HEXADECIMAL to BINARY
1850 ' call: X= ASCII 0-F
1860 ' exit: S= ASCII zeros and ones
1870 ' temp: I= Incr, Q= translate string
1880 Q="0000000100100011010001010110011110001
 001101010111100110111101111"
1890 S=""
1900 FOR I=1 TO LEN(X)

The Blue Book About GW-BASIC and QuickBASIC - 242 -

1910 S=S+MID$(Q,(INSTR("123456789ABCDEF",MID$(X,I,1))*4)+1,4)
1920 NEXT

1930 'convert HEXADECIMAL to DECIMAL
1940 ' call: X= ASCII 0-F
1950 ' exit: A= positive whole number
1960 ' temp: I= Incr
1970 A=0
1980 FOR I=LEN(X) TO 1 STEP-1
1990 A=INT(A)+INSTR("123456789ABCDEF",MID$(X,I,1))
2000 A=A*16^(LEN(X)-I):NEXT

2010 'convert HEXADECIMAL to OCTAL
2020 ' call: X= ASCII 0-F
2030 ' exit: S= ASCII 0-7
2040 ' temp: I= Incr, J= hex digit, A= decimal
2050 S="":A=0
2060 FOR I=LEN(X) TO 1 STEP-1
2070 A=INT(A)+INSTR("123456789ABCDEF",MID$(X,I,1))
2080 A=A*16^(LEN(X)-I):NEXT:I=0:WHILE A=>8^I:I=I+1:WEND
2090 FOR I=I-1 TO 0 STEP-1:J=INT(A/8^I)
2100 S=S+CHR$(48+J):A=INT(A-(J*8^I))
2110 NEXT

2120 'convert OCTAL to BINARY
2130 ' call: X= ASCII 0-7
2140 ' exit: S= ASCII zeros and ones
2150 ' temp: I= Incr, Q= translate string
2160 Q="000001010011100101110111":S=""
2170 FOR I=1 TO LEN(X)
2180 S=S+MID$(Q,(INSTR("1234567",MID$(X,I,1))*3)+1,3)
2190 NEXT

2200 'convert OCTAL to DECIMAL
2210 ' call: X= ASCII 0-7
2220 ' exit: A= positive whole number
2230 ' temp: I= Incr
2240 A=0
2250 FOR I=LEN(X) TO 1 STEP-1
2260 A=INT(A)+INSTR("1234567",MID$(X,I,1))*8^(LEN(X)-I)
2270 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 243 -

2280 'convert OCTAL to HEXADECIMAL
2290 ' call: X= ASCII 0-7
2300 ' exit: S= ASCII 0-F
2310 ' temp: I= Incr, J= octal digit, Q= translate string
2320 Q="000001010011100101110111":S=""
2330 FOR I=1 TO LEN(X)
2340 S=S+MID$(Q,(INSTR("1234567",MID$(X,I,1))*3)+1,3)
2350 NEXT
2360 Q=STRING$((4-LEN(S) MOD 4)*-(LEN(S) MOD 4>0),48)+S:S=""
2370 FOR I=1 TO LEN(Q) STEP 4
2380 J=VAL(MID$(Q,I,1))*8+VAL(MID$(Q,I+1,1))*4
2390 J=J+VAL(MID$(Q,I+2,1))*2+VAL(MID$(Q,I+3,1))
2400 S=S+MID$("0123456789ABCDEF",J+1,1)
2410 NEXT

HASHING ... line

generate BCC (Block Check Code) 1-byte hash 1060

generate COKE codes (consonants only keys) 1160

generate SOUNDEX code (phonetic search key) 1280

1060 'generate BCC (Block Check Code) 1-byte hash
1070 ' call: X= string less than 255 bytes
1080 ' exit: X= X+CHR$(bcc), as often used in RS232
1090 ' temp: I= Incr, K= bcc hash
1100 X=LEFT$(X,254)+CHR$(0):K=0 'len(X)<255
1110 FOR I=1 TO LEN(X)-1 STEP 2
1120 K=K XOR CVI(MID$(X,I)) 'pairs
1130 NEXT
1140 K=PEEK(VARPTR(K)) XOR PEEK(VARPTR(K)+1) 'fold over
1150 MID$(X,LEN(X))=CHR$(ABS(K)) 'insert BCC

1160 'generate COKE codes (consonants only keys)
1170 ' call: X= the "name", upper case ASCII, len<255
1180 ' exit: S= any 1st ltr + consonants, no doubles
1190 ' temp: I= Incr, C= ptr
1200 S=X+" ":IF MID$(S,2,1)=LEFT$(S,1) THEN MID$(S,2)="."
1210 FOR I=2 TO LEN(S)-1
1220 C=INSTR("BCDFGHJKLMNPQRSTVWXYZ",MID$(S,I,1))
1230 IF C=0 THEN MID$(S,I)="."
1240 IF MID$(S,I,1)=MID$(S,I+1,1) THEN MID$(S,I)="."

The Blue Book About GW-BASIC and QuickBASIC - 244 -

1250 NEXT:C=INSTR(S,".")
1260 WHILE C:MID$(S,C)=MID$(S,C+1):C=INSTR(S,"."):WEND
1270 S=LEFT$(S,INSTR(S," "))

1280 'generate SOUNDEX code (phonetic search key)
1290 ' call: X= the "name" in upper case ASCII
1300 ' exit: S= 1st letter of name + 3 ASCII digits
1310 ' temp: I= Incr, J= scan, C= ptr
1320 S="0000":MID$(S,1,1)=X:C=2
1330 FOR I=2 TO LEN(X)
1340 J=INSTR("RMNLDTCGJKQSXZBFPV",MID$(X,I,1)) 'key
1350 IF J THEN MID$(S,C,1)=MID$("655433222222221111",J) 'sub
1360 IF J THEN C=C+1:IF C>4 THEN I=255
1370 NEXT

DATA TRANSLATION line

determine CURRENCY denominations (US) 1120

mask-off high order BIT (#7) in character strings 1390

shift LOWER case ASCII letters to UPPER case 1460

shift UPPER case ASCII letters to LOWER case 1530

switch UPPER and LOWER case ASCII letters 1600

tokenize repeated CHARACTERS in ASCII strings 1670

token-expand repeated CHARACTERS in ASCII strings 1800

translate BYTES of strings using find/swap strings ... 1880

translate ORDINAL number to CARDINAL string 1990

1120 'determine CURRENCY denominations (US)
1130 ' call: A= positive dollars amount
1140 ' S= string, len>9
1150 ' exit: monitor output, S= string amount
1160 ' temp: I= Incr, K= cnt
1170 PRINT USING "#######.##";A;:PRINT STRING$(10,29);:K=1
1180 FOR I=POS(0) TO POS(0)+9
1190 MID$(S,K)=CHR$(SCREEN(CSRLIN,I)):K=K+1:NEXT:PRINT

The Blue Book About GW-BASIC and QuickBASIC - 245 -

1200 K=VAL(LEFT$(S,4))
1210 IF K THEN PRINT K;"thousands";MKI$(-(K=1)*8221)
1220 K=VAL(MID$(S,5,1))
1230 IF K THEN PRINT K;"hundreds";MKI$(-(K=1)*8221)
1240 K=VAL(MID$(S,6,2))
1250 IF K>49 THEN K=K-50:PRINT " 1 fifty"
1260 IF K>39 THEN K=K-40:PRINT " 2 twenties"
1270 IF K>19 THEN K=K-20:PRINT " 1 twenty"
1280 IF K>9 THEN K=K-10:PRINT " 1 ten"
1290 IF K>4 THEN K=K -5:PRINT " 1 five"
1300 IF K THEN PRINT K;"ones";MKI$(-(K=1)*8221)
1310 K=VAL(RIGHT$(S,2))
1320 IF K>74 THEN K=K-75:PRINT " 3 quarters"
1330 IF K>49 THEN K=K-50:PRINT " 2 quarters"
1340 IF K>24 THEN K=K-25:PRINT " 1 quarter"
1350 IF K>19 THEN K=K-20:PRINT " 2 dimes"
1360 IF K>9 THEN K=K-10:PRINT " 1 dime"
1370 IF K>4 THEN K=K -5:PRINT " 1 nickle"
1380 IF K THEN PRINT K;"pennys";MKI$(-(K=1)*8221)

1390 'mask-off high order BIT (#7) in character strings
1400 ' call: Q= any string
1410 ' exit: Q= with all bytes < chr$(128)
1420 ' temp: I= Incr
1430 FOR I=1 TO LEN(Q):C=ASC(MID$(Q,I))
1440 MID$(Q,I)=CHR$(C AND 32639)
1450 NEXT

1460 'shift LOWER case ASCII letters to UPPER case
1470 ' call: Q= any string
1480 ' exit: Q= with no lower case
1490 ' temp: I= Incr, C= chr val
1500 FOR I=1 TO LEN(Q):C=ASC(MID$(Q,I))
1510 MID$(Q,I)=CHR$(C-32*(C>64 AND C<91))
1520 NEXT

1530 'shift UPPER case ASCII letters to LOWER case
1540 ' call: Q= any string
1550 ' exit: Q= with no upper case
1560 ' temp: I= Incr
1570 FOR I=1 TO LEN(Q):C=ASC(MID$(Q,I))
1580 MID$(Q,I)=CHR$(C+32*(C>96 AND C<123))
1590 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 246 -

1600 'switch UPPER and LOWER case ASCII letters
1610 ' call: Q= any string
1620 ' exit: Q= with all upper/lower cases reversed
1630 ' temp: I= Incr
1640 FOR I=1 TO LEN(Q):C=ASC(MID$(Q,I))
1650 MID$(Q,I)=CHR$(C+32*(C>96 AND C<123)-32*(C>64 AND C<91))
1660 NEXT

1670 'tokenize repeated CHARACTERS in ASCII strings
1680 ' call: X= string, S= pack-character (often " ")
1690 ' exit: X= repeats tokenized CHR$(127+ # of S)
1700 ' tokens follow S-characters
1710 ' temp: I= Incr, J= cnt, E= exit
1720 E=LEN(X)
1730 E=E+(E-128)*(E>128) 'max 128 or len(X)
1740 FOR I=E TO 3 STEP-1 'trips at least
1750 J=INSTR(X,STRING$(I,S)) 'repititions of S
1760 IF J THEN X=LEFT$(X,J)+CHR$(127+I)+MID$(X,J+I)
1770 I=I-(J>0) 'same sequence again?
1780 IF INSTR(X,STRING$(3,S))=0 THEN I=3
1790 NEXT

1800 'token-expand repeated CHARACTERS in ASCII strings
1810 ' call: X= string, bytes > CHR$(128) are tokens
1820 ' exit: X= token-byte-1 repeated, token-128 times
1830 ' temp: I= Incr, E= expander
1840 FOR I=LEN(X) TO 2 STEP-1 'scan right-to-left
1850 E=ASC(MID$(X,I)) 'token test
1860 IF E>128 THEN X=LEFT$(X,I-1)+
 STRING$(E-128,MID$(X,I-1))+MID$(X,I+1)
1870 NEXT

1880 'translate BYTES of strings using find/swap strings
1890 ' call: X= any string
1900 ' Q= find-in-this string
1910 ' S= swap-with-in string
1920 ' exit: E= len(X) or, 0 if len(S)<>len(Q)
1930 ' X= translated if E, else unchanged
1940 ' temp: I= Incr, C= ptr
1950 E=LEN(X)*-(LEN(Q)=LEN(S))
1960 FOR I=1 TO E:C=INSTR(Q,MID$(X,I,1))
1970 IF C THEN MID$(X,I)=MID$(S,C,1)
1980 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 247 -

1990 'translate ORDINAL number to CARDINAL string
2000 ' call: Q= translate string, len=>213
2010 ' X= mask string, len=>9
2020 ' P= parse string, len=>11
2030 ' A= input number <= 99,999,999.99
2040 ' temp: I= Incr, L= cnt, C= cnt, K= cents
2050 ' exit: printed, I= L= C= junk, A=unchanged
2060 ' note: output is akin to "check amounts"
2070 LSET Q="1one2two3three4four5five6six7seven8eight"
2080 MID$(Q,41)="9nine:ten;eleven<twelve=thirteen"
2090 MID$(Q,73)=">fourteen?fifteen@sixteenAseventeen"
2100 MID$(Q,108)="BeighteenCnineteenDtwentyEthirty"
2110 MID$(Q,140)="FfortyGfiftyHsixtyIseventyJeighty"
2120 MID$(Q,173)="KninetyLhundredMthousandNmillionO"
2130 L=CSRLIN:C=POS(0):PRINT USING "########.##";A;:LSET X=""
2140 FOR I=1 TO 11:MID$(X,I)=CHR$(SCREEN(L,C)):C=C+1:NEXT
2150 PRINT:K=VAL(RIGHT$(X,2)):LSET P=LEFT$(X,8)
2160 WHILE ASC(P)=32:LSET P=MID$(P,2):WEND:J=77
2170 FOR I=INSTR(P," ")-3 TO 2 STEP-3
2180 MID$(P,I+1)=MID$(P,I):MID$(P,I)=CHR$(J):J=J+1
2190 NEXT
2200 FOR I=INSTR(P," ")-2 TO 2 STEP-4:C=VAL(MID$(P,I-1,1))
2210 IF C THEN MID$(P,I+1)=MID$(P,I):MID$(P,I)="L"
2220 NEXT:C=1
2230 L=INSTR(P,"N000M"):IF L THEN MID$(P,L+1)=MID$(P,L+5,80)
2240 FOR I=1 TO INSTR(P," ")-1:L=ASC(MID$(P,I))
2250 J=VAL(MID$(P,I,2)):IF J>9 AND J<20 THEN L=J+48:I=I+1
2260 IF J>19 THEN L=J\10+66:IF J MOD 10 THEN J=-1 ELSE I=I+1
2270 E=INSTR(Q,CHR$(L))
2280 IF E THEN LSET X=MID$(Q,E+1,INSTR(E,Q,CHR$(L+1))-E-1)
2290 IF C THEN MID$(X,1)=CHR$(ASC(MID$(X,1))-32)
2300 IF E THEN PRINT LEFT$(X,INSTR(X," ")-1);
2310 C=VAL(MID$(P,I+1,1))*(L>66 AND L<76)
2320 IF C THEN PRINT "-"; ELSE IF L-48 THEN PRINT " ";
2330 C=0:NEXT:IF INT(A)=0 THEN PRINT "Zero ";
2340 PRINT "Dollar";STRING$(ABS(INT(A)<>1),115);
2350 PRINT " and";K;"Cent";STRING$(ABS(K<>1),115)

DATE and TIME .. line

calendar MONTH display, years 1901-2000 1200

compute DAY of WEEK for 1901-2000 1440

The Blue Book About GW-BASIC and QuickBASIC - 248 -

convert DATE, Gregorian to Julian 1580

convert DATE, Julian to Gregorian 1680

convert TIME, 12-hour (AM/PM) to 24-hour 1830

convert TIME, 24-hour to 12-hour (AM/PM) 1950

elapsed DAYS, Julian dates, 1900-1999 2060

elapsed TIME, 12-hour, hhmmssA or hhmmssP 2190

elapsed TIME, 24-hour, hh:mm:ss 2340

fielded DATE, Julian, 2-bytes, encode/decode 2480

reformat DATE, ddmmmyy as mm/dd/yy 2590

reformat DATE, mm/dd/yy as ddmmmyy 2680

reformat DATE, mm/dd/yy as month day, year 2770

validate DATE, Gregorian 2920

validate DATE, Julian 3070

validate TIME, 12-hour, hhmmssA or hhmmssP 3180

validate TIME, 24-hour, hh:mm:ss 3310

1200 'calendar MONTH display, years 1901-2000
1210 ' call: T= string len=>182, Y= string len=>100
1220 ' I= year (1901-2000), J= month (1-12)
1230 ' temp: T= months, Y= years, E= exit, I= days
1240 ' K= 1st day, L= line, C= col, H= hold, J= flag
1250 ' exit: display on monitor
1260 LSET Y ="CDEMABCKFGAIDEFNBCDL" '1901-20
1270 MID$(Y,21) ="GABJEFGHCDEMABCKFGAI" '1921-40
1280 MID$(Y,41) ="DEFNLCDLGABJEFGHCDEM" '1941-60
1290 MID$(Y,61) ="ABCKFGAIDEFNBCDLGABJ" '1961-80
1300 MID$(Y,81) ="EFGHCDEMABCKFGAIDEFN" '1981-00
1310 LSET T ="A144725736146B255136147257"
1320 MID$(T,27) ="C366247251361D477351362472"
1330 MID$(T,53) ="E511462473513F622573514624"
1340 MID$(T,79) ="G733614625735H145136147257"

The Blue Book About GW-BASIC and QuickBASIC - 249 -

1350 MID$(T,105)="I256247251361J367351362472"
1360 MID$(T,131)="K471462473513L512573514624"
1370 MID$(T,157)="M623614625735N734725736146"
1380 K=VAL(MID$(T,INSTR(T,MID$(Y,I-1900,1))+J,1))
1390 E=ASC(MID$("303232332323",J))-(I MOD 4=0 AND J=2)-20
1400 PRINT " Su Mo Tu We Th Fr Sa":H=1:I=1
1410 FOR L=1 TO 6:FOR C=1 TO 7:J=(H<K OR I>E)
1420 IF J THEN PRINT " "; ELSE PRINT USING "###";I;
1430 I=I-(J=0):H=H+1:NEXT:PRINT:NEXT

1440 'compute DAY of WEEK for years 1901-2000
1450 ' call: X= string, Julian date as yyddd, len=>5
1460 ' Q= string, len=>101
1470 ' exit: B= cvs(3-letter-day-name-space)
1480 ' E= 0 if X is not logical
1490 ' temp: Q= translate string (day years begin on)
1500 ' I= year, J= day pointer
1510 LSET Q="5612346712456723457123567134":MID$(Q,29)=Q
1520 MID$(Q,4)=LEFT$(Q,101):MID$(Q,1)="734" 'years=Jan 1
1530 I=ABS(VAL(LEFT$(X,2))):E=VAL(MID$(Q,I+1,1)) 'year starts
1540 J=((VAL(MID$(X,3,3))+E-1) MOD 7+1)*4 'day pointer
1550 B=CVS(MID$(" Sat Sun Mon Tue Wed Thu Fri ",J))
1560 E=(VAL(MID$(X,3,3))<=365-(I MOD 4=0)) 'logic check
1570 IF E THEN PRINT MKS$(B) 'display

1580 'convert DATE, Gregorian to Julian
1590 ' call: X= string, mm/dd/yy (assumed valid)
1600 ' exit: B= single precision whole number, yyddd
1610 ' temp: I= Incr
1620 B=VAL(MID$(X,4,2)) 'date
1630 FOR I=VAL(LEFT$(X,2))-1 TO 1 STEP-1
1640 B=B+ASC(MID$("CACBCBCCBCBC",I))-36
1650 NEXT 'per month
1660 B=B+((B>59)*SGN(VAL(RIGHT$(X,2)) MOD 4)) 'leap year
1670 B=B+VAL(RIGHT$(X,2))*1000 'append year

1680 'convert DATE, Julian to Gregorian
1690 ' call: B= whole number, yyddd (assumed valid)
1700 ' S= string, len=8
1710 ' exit: S= mm/dd/yy, B= junk
1720 ' temp: I= month, J= days
1730 RSET S=STR$(INT(B/1000)+100) 'get year
1740 B=B-INT(B/1000)*1000 'get days
1750 FOR I=1 TO 12

The Blue Book About GW-BASIC and QuickBASIC - 250 -

1760 J=ASC(MID$("C@CBCBCCBCBC",I))-36
1770 J=J-(I=2 AND VAL(S) MOD 4=0) 'leap year
1780 IF B<=J THEN MID$(S,3)=STR$(I+100):I=12
1790 B=B-J:NEXT 'per month
1800 MID$(S,1)=STR$(B+J+100) 'format
1810 MID$(S,1)=MID$(S,5,2):MID$(S,4)=MID$(S,3,2)
1820 MID$(S,3)="/":MID$(S,6)="/"

1830 'convert TIME, 12-hour (AM/PM) to 24-hour
1840 ' call: X= hhmmssAM or PM, len=>7
1850 ' assumed valid ("M" not used)
1860 ' R= string, len=>8
1870 ' exit: R= hh:mm:ss
1880 ' temp: I= hour, E= noon/midnight
1890 I=VAL(LEFT$(X,2))-12*(LEFT$(X,2)<="12") 'nighttime
1900 E=12*(INSTR(X,"P")=0) 'morning
1910 E=E+12*(I=24)-12*(LEFT$(X,7)="120000A")
1920 LSET R=STR$(I+E+100):LSET R=MID$(R,3) 'format
1930 MID$(R,4)=MID$(X,3):MID$(R,7)=MID$(X,5)
1940 MID$(R,3)=":":MID$(R,6)=":"

1950 'convert TIME, 24-hour to 12-hour (AM/PM)
1960 ' call: X= hh:mm:ss, len=>8, assumed valid
1970 ' R= string, len=>7
1980 ' exit: R= hhmmssdM (d= "A" or "P")
1990 ' "M" included if R is long enough
2000 ' temp: I= hour, E= 1 or 2 (AM/PM)
2010 I=12*(X>"12:59:59")-12*(VAL(X)=0)+VAL(X) 'adj hour
2020 E=2+(LEFT$(X,8)<"12:00:00" OR VAL(X)=24) 'set AM/PM
2030 LSET R=STR$(I+100):LSET R=MID$(R,3) 'format
2040 MID$(R,3)=MID$(X,4,2):MID$(R,5)=MID$(X,7)
2050 MID$(R,7)=MID$(" AMPM",E*2)

2060 'elapsed DAYS, Julian dates, 1900-1999
2070 ' call: X= fromdate, yyddd, len=>5 (assumed valid)
2080 ' R= thrudate, yyddd, len=>5 (assumed valid)
2090 ' exit: B= days elapsed
2100 ' E= 0 if from/thru reversed
2110 ' temp: I= Incr, J= fromyear, K= thruyear
2120 J=VAL(LEFT$(X,2)):K=VAL(LEFT$(R,2)) 'from:thru
2130 B=0 'clear
2140 FOR I=J TO K-1
2150 B=B+365-(I MOD 4=0)
2160 NEXT 'per year

The Blue Book About GW-BASIC and QuickBASIC - 251 -

2170 B=B+VAL(MID$(R,3,3))-VAL(MID$(X,3,3)) 'subtract
2180 E=(B=>0)*(LEFT$(R,5)>LEFT$(X,5)) 'logical?

2190 'elapsed TIME, 12-hour, hhmmssA or hhmmssP
2200 ' call: S= start time (assumed valid), len=>7
2210 ' X= end time (assumed valid), len=>7
2220 ' R= string, len=>6
2230 ' exit: R= elapsed time (hhmmss)
2240 ' temp: I= hours, J= minutes, K= seconds, E= flag
2250 K=VAL(MID$(X,5,2))-VAL(MID$(S,5,2)) 'seconds
2260 J=VAL(MID$(X,3,2))-VAL(MID$(S,3,2))+(K<0) 'minutes
2270 I=VAL(LEFT$(X,2))-VAL(LEFT$(S,2))+(J<0) 'hours
2280 E=(RIGHT$(S,1)<>RIGHT$(X,1)) 'AM/PM flag
2290 K=K-60*(K<0):J=J-60*(J<0) 'adjust
2300 I=I-12*(I<0)-12*(I<0 AND E=0)-12*(I=>0 AND E<0)
2310 LSET R=STR$(I+100):I=CVI(MID$(R,3)) 'format
2320 LSET R=STR$(J+100):J=CVI(MID$(R,3))
2330 RSET R=STR$(K+100):MID$(R,3)=MKI$(J):MID$(R,1)=MKI$(I)

2340 'elapsed TIME, 24-hour, hh:mm:ss
2350 ' call: S= start time (assumed valid), len=>8
2360 ' X= end time (assumed valid), len=>8
2370 ' R= string, len=>8
2380 ' exit: R= elapsed time (hh:mm:ss)
2390 ' temp: I= hours, J= minutes, K= seconds
2400 K=VAL(MID$(X,7))-VAL(MID$(S,7)) 'seconds
2410 J=VAL(MID$(X,4))-VAL(MID$(S,4))+(K<0) 'minutes
2420 I=VAL(X)-VAL(S)+(J<0) 'hours
2430 K=K-60*(K<0):J=J-60*(J<0):I=I-24*(I<0) 'adjust
2440 LSET R=STR$(I+100):I=CVI(MID$(R,3)) 'format
2450 LSET R=STR$(J+100):J=CVI(MID$(R,3))
2460 RSET R=STR$(K+100):MID$(R,4)=MKI$(J):MID$(R,1)=MKI$(I)
2470 MID$(R,3)=":":MID$(R,6)=":"

2480 'fielded DATE, Julian, 2-bytes, encode/decode
2490 ' call: B= yyddd (assumed valid)
2500 ' R= 2-byte string (typically fielded)
2510 ' exit: B= decoded R, R= encoded B
2520 ' temp: C= year, D= days
2530 C=B/1000:D=B-C*1000 'encode
2540 IF D>255 THEN C=C+128:D=D-128
2550 LSET R=CHR$(C):MID$(R,2)=CHR$(D)

2560 C=ASC(R):D=ASC(MID$(R,2)) 'decode

The Blue Book About GW-BASIC and QuickBASIC - 252 -

2570 IF C>127 THEN C=C-128:D=D+128
2580 B=C*1000+D

2590 'reformat DATE, ddmmmyy as mm/dd/yy
2600 ' call: X= ddmmmyy (assumed valid), len=>7
2610 ' R= string, len=>8
2620 ' exit: R= mm/dd/yy
2630 ' temp: J= month number
2640 J=INSTR(" ANEBARPRAYUNULUGEPCTOVEC",MID$(X,4,2))\2
2650 LSET R=STR$(J+100):LSET R=MID$(R,3)
2660 MID$(R,4)=MID$(X,1):MID$(R,7)=MID$(X,6)
2670 MID$(R,3)="/":MID$(R,6)="/"

2680 'reformat DATE, mm/dd/yy as ddmmmyy
2690 ' call: X= mm/dd/yy (assumed valid), len=>8
2700 ' R= string, len=>7
2710 ' exit: R= ddmmmyy
2720 ' temp: none
2730 LSET R=MID$(X,4,2):MID$(R,6)=MID$(X,7,2)
2740 MID$(R,3)=MID$("JFMAMJJASOND",VAL(X),1)
2750 MID$(R,4)=MID$("AEAPAUUUECOE",VAL(X),1)
2760 MID$(R,5)=MID$("NBRRYNLGPTVC",VAL(X),1)

2770 'reformat DATE, mm/dd/yy as month day, year
2780 ' call: X= mm/dd/yy (assumed valid), len=>8
2790 ' R= string, len=>19
2800 ' exit: R= month-name daySS, year
2810 ' (SS= st,nd,rd or th)
2820 ' temp: I= Instr, J= month
2830 J=VAL(X):I=(J MOD 3+1)*9-8
2840 LSET R=MID$("March January February",I,9)
2850 IF J>3 THEN LSET R=MID$("June April May",I,9)
2860 IF J>6 THEN LSET R=MID$("SeptemberJuly August",I,9)
2870 IF J>9 THEN LSET R=MID$("December October November",I,9)
2880 I=INSTR(R," "):MID$(R,I)=STR$(VAL(MID$(X,4)))
2890 I=INSTR(" 1 21 31 2 22 3 23",MID$(R,I,3))+1
2900 MID$(R,INSTR(R," "))=MID$("th,st,st,st,nd,nd,rd,rd,",I,3)
2910 MID$(R,INSTR(R,",")+1)=STR$(1900+VAL(MID$(X,7)))

2920 'validate DATE, Gregorian
2930 ' call: X= mm/dd/yy, len=>8
2940 ' exit: E= 0 if X is invalid
2950 ' temp: none

The Blue Book About GW-BASIC and QuickBASIC - 253 -

2960 E=32-VAL(MID$(" 141212112121",VAL(LEFT$(X,2))+1,1))
2970 E=E-(E=28 AND (VAL(MID$(X,7,2)) MOD 4=0))
2980 E=E*VAL(MID$(X,4,2))*(VAL(MID$(X,4,2))<=E)
2990 E=E*SGN(VAL(X))*(VAL(LEFT$(X,2))<13)
3000 E=E*(MID$(X,3,1)=MID$(X,6,1))*(MID$(X,3,1)="/")
3010 E=E*SGN(INSTR("01",MID$(X,1,1)))*(LEN(X)>7)
3020 E=E*SGN(INSTR("0123456789",MID$(X,2,1)))
3030 E=E*SGN(INSTR("0123",MID$(X,4,1)))
3040 E=E*SGN(INSTR("0123456789",MID$(X,5,1)))
3050 E=E*SGN(INSTR("0123456789",MID$(X,7,1)))
3060 E=E*SGN(INSTR("0123456789",MID$(X,8,1)))

3070 'validate DATE, Julian
3080 ' call: X= yyddd, len=>5
3090 ' exit: E= 0 if X is invalid
3100 ' temp: none
3110 E=(VAL(LEFT$(X,2)) MOD 4=0)
3120 E=VAL(MID$(X,3,3))*(VAL(MID$(X,3,3))<=365-E)
3130 E=E*SGN(INSTR("0123456789",MID$(X,1,1)))
3140 E=E*SGN(INSTR("0123456789",MID$(X,2,1)))
3150 E=E*SGN(INSTR("0123",MID$(X,3,1)))*(LEN(X)>4)
3160 E=E*SGN(INSTR("0123456789",MID$(X,4,1)))
3170 E=E*SGN(INSTR("0123456789",MID$(X,5,1)))

3180 'validate TIME, 12-hour, hhmmssA or hhmmssP
3190 ' call: X= hhmmssyb, len=>7
3200 ' (y is A or P, b is blank, null, or M)
3210 ' exit: E= 0 if X is invalid
3220 ' temp: none
3230 E=(LEN(X)=7 OR INSTR("M ",MID$(X,8,1))<>0)
3240 E=E*(VAL(LEFT$(X,2))<13)*SGN(VAL(LEFT$(X,2)))
3250 E=E*INSTR("01",MID$(X,1,1))*INSTR("AP",MID$(X,7,1))
3260 E=E*INSTR("0123456789",MID$(X,2,1))
3270 E=E*INSTR("012345",MID$(X,3,1))
3280 E=E*INSTR("0123456789",MID$(X,4,1))
3290 E=E*INSTR("012345",MID$(X,5,1))
3300 E=E*INSTR("0123456789",MID$(X,6,1))

3310 'validate TIME, 24-hour, hh:mm:ss
3320 ' call: X= hh:mm:ss, len=>8
3330 ' exit: E= 0 if X is invalid
3340 ' temp: none
3350 E=(LEFT$(X,2)<>"24" OR LEFT$(X,8)="24:00:00")
3360 E=E*(VAL(LEFT$(X,2))<25)*INSTR("012",MID$(X,1,1))

The Blue Book About GW-BASIC and QuickBASIC - 254 -

3370 E=E*SGN(INSTR("0123456789",MID$(X,2,1)))
3380 E=E*INSTR("012345",MID$(X,4,1))
3390 E=E*SGN(INSTR("0123456789",MID$(X,5,1)))
3400 E=E*INSTR("012345",MID$(X,7,1))
3410 E=E*INSTR("0123456789",MID$(X,8,1))
3420 E=E*(MID$(X,3,1)=MID$(X,6,1))*(MID$(X,3,1)=":")
3430 E=E*(LEFT$(X,8)<>"00:00:00")

NUMBER EDITING line

edit DOLLARS, floating-$, $ZZZ,ZZZ,ZZD.DD- 1080

edit DOLLARS, floating-(, (ZZZ,ZZZ,ZZD.DD) 1240

edit PHONE number as (999) 999-9999 1400

edit PHONE number as 999-999-9999 1500

edit SOCIAL SECURITY number as 999-99-9999 1590

1080 'edit DOLLARS, floating-$, $ZZZ,ZZZ,ZZD.DD-
1090 ' call: A= whole number, S= string, len=>16
1100 ' exit: S= edited string, right justified
1110 ' temp: I= Instr, L= len(S)
1120 LSET S=STR$(INT(A)/100):MID$(S,1)="-"
1130 I=INSTR(S," "):L=LEN(S)
1140 IF INSTR(S,".")=0 THEN MID$(S,I)=".00":I=I+3
1150 IF I-INSTR(S,".")=2 THEN MID$(S,I)="0":I=I+1
1160 IF LEFT$(S,2)="-." THEN MID$(S,2)=LEFT$(S,L)
1170 IF LEFT$(S,2)="--" THEN MID$(S,1)="-0":I=I+1
1180 RSET S=LEFT$(S,I):MID$(S,L)=CHR$(32-13*SGN(A<0))
1190 I=L+7*(VAL(LEFT$(S,L-7))<0)
1200 IF I<L THEN MID$(S,1)=MID$(S,2,I):MID$(S,I)=","
1210 I=L+11*(VAL(LEFT$(S,L-11))<0)
1220 IF I<L THEN MID$(S,1)=MID$(S,2,I):MID$(S,I)=","
1230 MID$(S,INSTR(S,"-"))="$"

1240 'edit DOLLARS, floating-(, (ZZZ,ZZZ,ZZD.DD)
1250 ' call: A= whole number, S= string, len=>16
1260 ' exit: S= edited string, right justified
1270 ' temp: I= Instr, L= len(S)
1280 LSET S=STR$(INT(A)/100):MID$(S,1)="-"
1290 I=INSTR(S," "):L=LEN(S)

The Blue Book About GW-BASIC and QuickBASIC - 255 -

1300 IF INSTR(S,".")=0 THEN MID$(S,I)=".00":I=I+3
1310 IF I-INSTR(S,".")=2 THEN MID$(S,I)="0":I=I+1
1320 IF LEFT$(S,2)="-." THEN MID$(S,2)=LEFT$(S,L)
1330 IF LEFT$(S,2)="--" THEN MID$(S,1)="-0":I=I+1
1340 RSET S=LEFT$(S,I):MID$(S,L)=CHR$(32-9*SGN(A<0))
1350 I=L+7*(VAL(LEFT$(S,L-7))<0)
1360 IF I<L THEN MID$(S,1)=MID$(S,2,I):MID$(S,I)=","
1370 I=L+11*(VAL(LEFT$(S,L-11))<0)
1380 IF I<L THEN MID$(S,1)=MID$(S,2,I):MID$(S,I)=","
1390 MID$(S,INSTR(S,"-"))=CHR$(32-8*SGN(A<0))

1400 'edit PHONE number as (999) 999-9999
1410 ' call: A= 10-digit whole number, S= string len=>14
1420 ' exit: S= (zzz) zzz-zzzz, left justified, zero filled
1430 ' temp: I= inspect for spaces
1440 LSET S=STR$(A)
1450 WHILE MID$(S,14,1)=" ":MID$(S,2)=LEFT$(S,13):WEND
1460 MID$(S,2)=MID$(S,5,3):MID$(S,7)=MID$(S,8,3)
1470 MID$(S,5)=")":MID$(S,1)="(":MID$(S,10)="-":I=INSTR(S," ")
1480 WHILE I*(I<15):MID$(S,I)="0":I=INSTR(S," "):WEND
1490 MID$(S,6)=" "

1500 'edit PHONE number as 999-999-9999
1510 ' call: A= 10-digit whole number, S= string len=>12
1520 ' exit: S= zzz-zzz-zzzz, left justified, zero filled
1530 ' temp: I= inspect for spaces
1540 LSET S=STR$(A)
1550 WHILE MID$(S,12,1)=" ":MID$(S,2)=LEFT$(S,11):WEND
1560 MID$(S,1)=MID$(S,3,3):MID$(S,5)=MID$(S,6,3)
1570 MID$(S,4)="-":MID$(S,8)="-":I=INSTR(S," ")
1580 WHILE I*(I<13):MID$(S,I)="0":I=INSTR(S," "):WEND

1590 'edit SOCIAL SECURITY number as 999-99-9999
1600 ' call: A= 9-digit whole number, S= string len=>11
1610 ' exit: S= zzz-zz-zzzz, left justified, zero filled
1620 ' temp: I= inspect for spaces
1630 LSET S=STR$(A)
1640 WHILE MID$(S,11,1)=" ":MID$(S,2)=LEFT$(S,11):WEND
1650 MID$(S,1)=MID$(S,3,3):MID$(S,5)=MID$(S,6,2)
1660 MID$(S,4)="-":MID$(S,7)="-":I=INSTR(S," ")
1670 WHILE I*(I<12):MID$(S,I)="0":I=INSTR(S," "):WEND

The Blue Book About GW-BASIC and QuickBASIC - 256 -

SEARCHING .. line

search for BYTE, largest within a string 1070

search for BYTE, smallest within a string 1150

search for ELEMENT in an array (binary search) 1230

search for SUBSTRING (longest repeated, in string) ... 1340

1070 'search for BYTE, largest within a string
1080 ' call: X= any string
1090 ' exit: C= asc(largest byte), E= 1st position
1100 ' temp: I= Incr
1110 C=0
1120 FOR I=1 TO LEN(X)
1130 E=ASC(MID$(X,I)):C=E*ABS(E=>C)+C*ABS(C>E):NEXT
1140 E=INSTR(X,CHR$(C))

1150 'search for BYTE, smallest within a string
1160 ' call: X= any string
1170 ' exit: C= asc(smallest byte), E= 1st position
1180 ' temp: I= Incr
1190 C=-255*(LEN(X)>0)
1200 FOR I=1 TO LEN(X)
1210 E=ASC(MID$(X,I)):C=E*ABS(E<C)+C*ABS(C<=E):NEXT
1220 E=INSTR(X,CHR$(C))

1230 'search for ELEMENT in an array (binary search)
1240 ' call: F= find, A(n)= array, sorted, ascending
1250 ' H= highest element, L= lowest element
1260 ' exit: I= position, E= 0 if F is not found
1270 ' temp: H= High, L= Low, I= Incr, E= Exit
1280 ' note: for descending order switch less/greater signs
1290 I=H\2:H=H+1:L=L-1
1300 FOR E=0 TO 1
1310 IF F<A(I) THEN H=I:I=I-(H-L)\2
1320 IF F>A(I) THEN L=I:I=I+(H-L)\2
1330 E=ABS(F=A(I) OR I=H OR I=L):NEXT:E=(F=A(I))

1340 'search for SUBSTRING (longest repeated, in a string)
1350 ' call: X= any string, len>2
1360 ' exit: F= From (1st one), L=Len, as in mid$(X,F,L)

The Blue Book About GW-BASIC and QuickBASIC - 257 -

1370 ' temp: I= Instr
1380 ' note: includes overlaps ("aaaaa" is F= 1, L= 4)
1390 I=LEN(X):L=SGN(I):F=1
1400 WHILE I
1410 I=INSTR(F+1,X,MID$(X,F,L+1)):L=L+SGN(I)
1420 IF I=0 THEN I=INSTR(F+L,X,MID$(X,F+1,L)):IF I THEN F=I
1430 IF I=0 THEN I=INSTR(F+L,X,MID$(X,F,L)):IF I THEN F=I
1440 WEND:F=INSTR(X,MID$(X,F,L))
1450 L=L*-(L>1) 'L=0 if no repeats of at least 2-bytes

DATA ORDERING .. line

reverse NAMES, Doe, John J. Jr. as John J. Doe, Jr. .. 1140

reverse NAMES, John J. Doe, Jr. as Doe, John J. Jr. .. 1320

reverse sequence of BYTES in a string 1450

reverse sequence of ELEMENTS in an array 1520

shuffle significant ELEMENTS to top of an array 1590

sort BYTES of a string, ascending 1700

sort BYTES of a string, descending 1810

sort ELEMENTS of an array, ascending (bubble-sort) ... 1920

sort ELEMENTS of an array, ascending (shell-sort) ... 2020

sort ELEMENTS of an array, descending (bubble-sort) .. 2160

sort ELEMENTS of an array, descending (shell-sort) ... 2260

1140 'reverse NAMES, Doe, John J. Jr. as John J. Doe, Jr.
1150 ' call: X= last, first middle rank
1160 ' S= string, len=>len(X)
1170 ' exit: S= first middle last, rank
1180 ' temp: I= ptr, J= ptr
1190 LSET S=X
1200 FOR I=1 TO LEN(S):J=ASC(MID$(S,I))
1210 MID$(S,I)=CHR$(J-32*(J>64 AND J<91)):NEXT
1220 J=INSTR(S," iv")+INSTR(S," ii")
1230 J=J+INSTR(S," jr")+INSTR(S," sr")

The Blue Book About GW-BASIC and QuickBASIC - 258 -

1240 J=J*SGN(INSTR(". ",MID$(S,J+3,1)) OR J+3=LEN(S))
1250 I=INSTR(S," iii")
1260 I=I*SGN(INSTR(". ",MID$(S,I+4,1)) OR I+4=LEN(S))
1270 J=I*ABS(I=>J)+J*ABS(J>I):I=J:IF J=0 THEN J=LEN(S)+1
1280 WHILE I AND I<LEN(S):MID$(S,I)=" ":I=I+1:WEND
1290 I=INSTR(S,","):LSET S=MID$(S,I+2)
1300 MID$(S,INSTR(S," ")+1)=LEFT$(X,I-SGN(I)+1)
1310 I=LEN(S):J=I*ABS(I<J)+J*ABS(J<=I):MID$(S,J)=MID$(X,J)

1320 'reverse NAMES, John J. Doe, Jr. as Doe, John J. Jr.
1330 ' call: X= first middle last, rank
1340 ' S= string, len=>len(X)
1350 ' exit: S= last, first middle rank
1360 ' temp: I= ptr, J= ptr
1370 LSET S=X:I=INSTR(S,","):IF I=0 THEN I=LEN(S)
1380 FOR I=LEN(S) TO I STEP-1:MID$(S,I)=" ":NEXT
1390 I=LEN(S):WHILE I>1 AND MID$(S,I,1)=" ":I=I-1:WEND
1400 J=I:WHILE J>1 AND MID$(S,J,1)>" ":J=J-1:WEND
1410 J=J-(MID$(S,J,1)=" ")
1420 LSET S=MID$(S,J):I=INSTR(S," "):MID$(S,I)=","
1430 MID$(S,I+2)=LEFT$(X,J-1):I=INSTR(X,", ")
1440 IF I THEN MID$(S,INSTR(S," "))=MID$(X,I+1)

1450 'reverse sequence of BYTES in a string
1460 ' call: X= any string
1470 ' exit: X= byte sequence reversed
1480 ' temp: I= Incr, C= Chr
1490 FOR I=1 TO LEN(X)\2:C=ASC(MID$(X,LEN(X)-I+1))
1500 MID$(X,LEN(X)-I+1)=MID$(X,I,1):MID$(X,I)=CHR$(C)
1510 NEXT

1520 'reverse sequence of ELEMENTS in an array
1530 ' call: T(n)= array, F= 1st position, E= last position
1540 ' exit: T(n)= element sequence reversed
1550 ' temp: I= Incr
1560 FOR I=F TO E/2
1570 SWAP T(I),T(E-I)
1580 NEXT

1590 'shuffle significant ELEMENTS to top of an array
1600 ' call: T(n)= array, F= 1st position, L= last position
1610 ' exit: T(n)= nulls shifted to "bottom" of table
1620 ' temp: E= Exit, I= Incr

The Blue Book About GW-BASIC and QuickBASIC - 259 -

1630 ' note: for numeric array change LEN to SGN
1640 FOR E=F TO L
1650 IF LEN(T(E))=0 THEN I=E ELSE I=L+1
1660 FOR I=L TO I STEP-1
1670 IF LEN(T(I)) THEN SWAP T(E),T(I)
1680 NEXT
1690 NEXT

1700 'sort BYTES of a string, ascending
1710 ' call: X= any string
1720 ' exit: X= bytes sorted left-to-right
1730 ' temp: E= Exit, I= Incr, J= Juggle, L= len(X)
1740 L=LEN(X)
1750 FOR E=L>0 TO 0
1760 FOR I=1 TO L-1:J=MID$(X,I,1)>MID$(X,I+1,1)
1770 IF J THEN MID$(X,I)=MID$(X,I+1,1)+MID$(X,I,1):L=I
1780 NEXT
1790 E=L<I AND L>0
1800 NEXT

1810 'sort BYTES of a string, descending
1820 ' call: X= any string
1830 ' exit: X= bytes sorted right-to-left
1840 ' temp: E= Exit, I= Incr, J= Juggle, L= len(X)
1850 L=LEN(X)
1860 FOR E=L>0 TO 0
1870 FOR I=1 TO L-1:J=MID$(X,I+1,1)>MID$(X,I,1)
1880 IF J THEN MID$(X,I)=MID$(X,I+1,1)+MID$(X,I,1):L=I
1890 NEXT
1900 E=L<I AND L>0
1910 NEXT

1920 'sort ELEMENTS of an array, ascending (bubble-sort)
1930 ' call: A(n)= array, F= 1st position, L= last position
1940 ' exit: A(n)= sorted, ascending, positions F thru L
1950 ' temp: E= Exit, I= Incr
1960 FOR E=-1 TO 0
1970 FOR I=F TO L-1
1980 IF A(I)>A(I+1) THEN SWAP A(I),A(I+1):L=I
1990 NEXT
2000 E=L<I
2010 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 260 -

2020 'sort ELEMENTS of an array, ascending (shell-sort)
2030 ' call: A(n)= array, F= 1st position, L= last position
2040 ' exit: A(n)= sorted, ascending, positions F thru L
2050 ' temp: E= Exit, H= Half, I= Incr, J= Juggle
2060 H=(L-F)/2
2070 WHILE H
2080 FOR I=F TO H+F:E=1
2090 WHILE E:E=0
2100 FOR J=I TO L-H STEP H
2110 IF A(J)>A(J+H) THEN SWAP A(J),A(J+H):E=1
2120 NEXT
2130 WEND
2140 NEXT:H=H\2
2150 WEND

2160 'sort ELEMENTS of an array, descending (bubble-sort)
2170 ' call: A(n)= array, F= 1st position L= last position
2180 ' exit: A(n)= sorted, descending, positions F thru L
2190 ' temp: E= Exit, I= Incr
2200 FOR E=-1 TO 0
2210 FOR I=F TO L-1
2220 IF A(I+1)>A(I) THEN SWAP A(I),A(I+1):L=I
2230 NEXT
2240 E=L<I
2250 NEXT

2260 'sort ELEMENTS of an array, descending (shell-sort)
2270 ' call: A(n)= array, F= 1st position, L= last position
2280 ' exit: A(n)= sorted, descending, positions F thru L
2290 ' temp: E= Exit, H= Half, I= Incr, J= Juggle
2300 H=(L-F)/2
2310 WHILE H
2320 FOR I=F TO H+F:E=1
2330 WHILE E:E=0
2340 FOR J=I TO L-H STEP H
2350 IF A(J+H)>A(J) THEN SWAP A(J),A(J+H):E=1
2360 NEXT
2370 WEND
2380 NEXT:H=H\2
2390 WEND

The Blue Book About GW-BASIC and QuickBASIC - 261 -

Chapter 15 = TOOLS

Back when Altair and Albuquerque were unusual names to some,
and apples were just fruit to everyone, and RENUM had yet to
be invented, some of us spent as many hours changing line
numbers, sometimes, as we did writing useful code. It was not
long, naturally, before we wrote a program that would renumber
the lines of another program, all automatically.

We all did it. We programmers. And every programmer had his
own little toolbox in which he kept all of his homemade tools.
Me too.

Times have changed. My Altair vamoosed years ago. Now we see
Washington and New York addresses on the backs of manuals. And
not all apples grow on trees. And RENUM is a built-in feature.
But most of us still have toolboxes. Me too.

The tools in this chapter are some of my favorites. Favored
because they are so necessary (not because they are my own).
The need for this minimum set has not diminished. In fact,
they are needed more today than ever.

Time was, when 4 KB was a big program, and you left out remarks
to conserve memory. Now we can afford 4 KB-worth of remarks,
alone. But bigger programs can also make it a bigger job to
keep track of what is what, and where what is. A job that can
be ever so much easier with just a few tools.

These programs are shared with a proviso: They were handmade
by me, for me. They work just fine, on my machine, with my
programs. Reiterated differently: They were not written to
suit the world. They may not do everything for everyone, on
all machines, on all versions of the interpreter, forever and
ever. Ad infinitum.

This is not to say they cannot be made to work, differently, or
in a different environment. They are all written in BASIC, and
they can be overhauled to whatever extent need be. If they
fail to work as described, customize them. Hopefully enough
help has been provided that you will be able to easily add them
to your own toolbox, for your own use.

Compatibility is, undoubtedly, the most overworked word in

The Blue Book About GW-BASIC and QuickBASIC - 262 -

computer advertising today. These tools are sensitive. They
can cohabit, but not always blissfully. They all depend on
knowing certain addresses up in the interpreter's own working
storage areas. The addresses used were found in manuals. Not
all of them are in any one manual, however, and they are not
easily found. But, because they have been published, at least
once, somewhere, they are likely to remain unchanged. For a
while, anyway. Here are the ones taken advantage of:

 Using DEF FNB(B)=PEEK(B+1)*256+PEEK(B) then....

 FNB(46) = line number of line currently executing
 FNB(48) = beginning of first line of object program
 FNB(856) = address of first simple variable
 FNB(858) = address of first array variable
 FNB(860) = beginning of free-space (end of variables)

The accuracy of the last three addresses is easily enough
confirmed by use of VARPTR. They have all been correct, for
me, for three successive releases of, three different versions
of BASIC interpreters: One with a last name of EXE, and two
that are COM files that link-up with that part of the software
that is frozen in ROM. If yours is different than mine you may
have to do some peeking and poking. In the manuals and in the
software.

Another type of generation gap is possible. All of these
tools analyze a program in situ. Chapter 2 tells how to
examine programs sitting in memory. New gadgets are added
to the language from time to time. If the key word tokens
or other bits in yours do not align with mine, getting these
programs to work correctly may require some research of the
type suggested there.

An overview: All of these programs are "mergeable modules".
They are stored as files using SAVE with the comma-A option.
Obviously their names can be changed to protect the innocent.
(And the guilty.) As you can see, they are all numbered
beginning with line 9000 so that they can be merged onto the
Tail end of an application program. (In my world no regular
program has line numbers that even get close to 9000.) All
of these tools can be renumbered so as to start with a higher
number, if you like. With the exception of VLIST, they must
all be numbered high enough to cause them to be situated beyond
the last line of a program to be worked on. By numbering them
all alike, they can MERGE over the top of each other.

The Blue Book About GW-BASIC and QuickBASIC - 263 -

They are all terse. And cryptic, and tricky. But they are
also small and fast. They were kept small so that they can
be left in a program while it is in development, at a minimum
cost to that program's need for memory. The tricks used to
make them as efficient as possible are to save me time. Not
others. They are not intended to be models of how to write
good programs. They are tools. 'nough said. Grab one.

The Blue Book About GW-BASIC and QuickBASIC - 264 -

LXREF = Line Numbers Cross Reference

 Runs through a program, top to bottom, and compiles
 a list of all line-references. (GOTO, etc.) Prints
 a listing, in line-number order, of all lines that
 are referenced by statements in other lines. Each
 target-line number is followed by a listing of the
 line numbers that point to it.

Usage: LOAD "program" 'the object program to be analyzed
 MERGE "LXREF" 'must be last block of code
 RUN 9000 'printer on? on-line? paper?
 Ok 'ends with an END
 DELETE 9000- 'if no longer needed

Rules: Load size is 800 bytes; needs about 8100 more to run.
 Assumes object program has no invalid line references.
 (Report will include bad references, same as valid.)
 Can report up to 999 references; crashes (ERR=9) if
 too many. Can be RUN repeatedly, once in residence.

9000 PRINT "Lxref":DEF SEG:DEFINT I-J:B=PEEK(47)*256+PEEK(46)
9010 H=VARPTR(#1)+51:POKE H,6:FOR I=H+1 TO H+252:POKE I,1:NEXT
9020 POKE I,0:POKE I+1,0:POKE I+2,0:POKE H+11,2:POKE H+12,2
9030 POKE H+14,3:POKE H+15,0:POKE H+132,6:POKE H+143,6
9040 POKE H+28,2:POKE H+29,4:POKE H+31,8:POKE H+34,5:I=0:J=0
9050 F=B:B=PEEK(49)*256+PEEK(48):C=B:A=B:DIM B(999),A(999)
9060 A=PEEK(B+1)*256+PEEK(B):B=B+3:C=PEEK(B)*256+PEEK(B-1)
9070 IF C<F THEN PRINT C;:LOCATE ,1 ELSE 9170
9080 B=B+1
9090 ON PEEK(H+PEEK(B)) GOTO 9080,9110,9140,9110,9120,9130,,9110
9100 B=B+2:GOTO 9090
9110 B=B+PEEK(H+PEEK(B))+1:GOTO 9090
9120 B=B+1:IF PEEK(B)=34 THEN 9080 ELSE IF PEEK(B) THEN 9120
9130 B=A:GOTO 9060
9140 A(I)=C:B(I)=PEEK(B+2)*256+PEEK(B+1):FOR J=I TO 1 STEP-1
9150 IF B(J)<B(J-1) THEN SWAP B(J),B(J-1):SWAP A(J),A(J-1) ELSE
J=0
9160 NEXT:I=I+1:B=B+3:GOTO 9090
9170 H=I-1:FOR I=0 TO H:IF A(I)<0 THEN 9200 ELSE LPRINT B(I),
9180 FOR J=I TO H:IF B(I)=B(J) THEN LPRINT A(J);:A(J)=-1
9190 NEXT:LPRINT:H=H+(A(H)<0)
9200 NEXT:LPRINT:LPRINT DATE$,TIME$:END

The Blue Book About GW-BASIC and QuickBASIC - 265 -

LHITS = Line Numbers Cross Reference (Selective)

 Is like LXREF, save it only lists lines that have
 been addressed since a RUN was last done.

Usage: LOAD "program" 'the object program to be analyzed
 MERGE "LHITS" 'must be last block of code
 RUN 'start your program
 BREAK 'keyboard or END or STOP (optional)
 GOTO 9000 'or GOSUB; outputs to printer
 Ok 'add your own END or add a
 DELETE 9000- 'RETURN to use as a subroutine

Rules: Load size is 807 bytes; needs about 8100 more to run.
 Can report up to 999 references; crashes (ERR=9) if
 too many. Can be RUN repeatedly, once in residence.

9000 PRINT "Lhits":DEF SEG:DEFINT I-J:B=PEEK(47)*256+PEEK(46)
9010 H=VARPTR(#1)+51:POKE H,6:FOR I=H+1 TO H+252:POKE I,1:NEXT
9020 POKE I,0:POKE I+1,0:POKE I+2,0:POKE H+11,2:POKE H+12,2
9030 POKE H+13,3:POKE H+14,2:POKE H+15,0:POKE H+132,6:POKE H+143,6
9040 POKE H+28,2:POKE H+29,4:POKE H+31,8:POKE H+34,5:I=0:J=0
9050 F=B:B=PEEK(49)*256+PEEK(48):C=B:A=B:DIM B(999),A(999)
9060 A=PEEK(B+1)*256+PEEK(B):B=B+3:C=PEEK(B)*256+PEEK(B-1)
9070 IF C<F THEN PRINT C;:LOCATE ,1 ELSE 9170
9080 B=B+1
9090 ON PEEK(H+PEEK(B)) GOTO 9080,9110,9140,9110,9120,9130,,9110
9100 B=B+2:GOTO 9090
9110 B=B+PEEK(H+PEEK(B))+1:GOTO 9090
9120 B=B+1:IF PEEK(B)=34 THEN 9080 ELSE IF PEEK(B) THEN 9120
9130 B=A:GOTO 9060
9140 A(I)=C:B(I)=PEEK(B+2)*256+PEEK(B+1):FOR J=I TO 1 STEP-1
9150 IF B(J)<B(J-1) THEN SWAP B(J),B(J-1):SWAP A(J),A(J-1) ELSE
J=0
9160 NEXT:I=I+1:B=B+3:GOTO 9090
9170 H=I-1:FOR I=0 TO H:IF A(I)<0 THEN 9210 ELSE A=B(I)+3
9180 PRINT PEEK(A+1)*256+PEEK(A),
9190 FOR J=I TO H:IF B(I)=B(J) THEN PRINT A(J);:A(J)=-1
9200 NEXT:PRINT:H=H+(A(H)<0)
9210 NEXT:PRINT:PRINT DATE$,TIME$:END

The Blue Book About GW-BASIC and QuickBASIC - 266 -

VFIND = Variables Finder

 Asks you for a variable name to search for, then
 runs through a program, top to bottom, and displays
 the line numbers that that name was found in.

Usage: LOAD "program" 'the object program to be analyzed
 MERGE "VFIND" 'must be last block of code
 RUN 9000 'start tool
 VFind? 'enter search argument
 Ok 'ends with an END
 DELETE 9000- 'if no longer needed

Rules: Load size is 981 bytes; needs about 450 more to run.
 Will only find names that obey syntax rules.
 Will also find key words that are not tokenized.
 Will report the "B" and "BF" used in graphics (like
 in LINE), as if they were variable names.
 Include "FN" in front of user defined function names.
 For array names, include the left-parenthesis, only.
 Alpha characters may be upper or lower case.
 Can be RUN repeatedly, once in residence.

The Blue Book About GW-BASIC and QuickBASIC - 267 -

9000 PRINT "Vfind? ";:DEF SEG:B=PEEK(47)*256+PEEK(46)
9010 DEFSTR M-Z:DEFINT I:H=VARPTR(#1)+51:POKE H,6
9020 FOR I=H+1 TO H+252:POKE I,1:NEXT:POKE I,0:POKE I+1,0
9030 POKE I+2,0:FOR I=H+11 TO H+14:POKE I,2:NEXT
9040 POKE I,0:POKE H+132,6:POKE H+143,6:POKE H+28,2
9050 POKE H+29,4:POKE H+31,8:POKE H+34,5:POKE H+209,9
9060 FOR I=65 TO 90:POKE H+I,3:NEXT
9070 Z=SPACE$(255):F=B:B=PEEK(49)*256+PEEK(48):C=0:A=B
9080 LINE INPUT Q:IF Q>"" THEN PRINT ELSE END
9090 FOR I=1 TO LEN(Q):IF ASC(MID$(Q,I))<97 THEN 9110
9100 MID$(Q,I)=CHR$(ASC(MID$(Q,I))-32)
9110 NEXT:M="######"+STRING$(6,29)
9120 A=PEEK(B+1)*256+PEEK(B):B=B+3:C=PEEK(B)*256+PEEK(B-1)
9130 IF C<F THEN PRINT USING M;C; ELSE PRINT SPC(6):END
9140 B=B+1
9150 ON PEEK(H+PEEK(B)) GOTO
9140,9170,9210,9170,9180,9190,,9170,9200
9160 B=B+2:GOTO 9150
9170 B=B+PEEK(H+PEEK(B))+1:GOTO 9150
9180 B=B+1:IF PEEK(B)=34 THEN 9140 ELSE IF PEEK(B) THEN 9180
9190 B=A:GOTO 9120
9200 I=3:LSET Z="FN":B=B+1:GOTO 9220
9210 I=2:LSET Z=CHR$(PEEK(B)):B=B+1
9220 WHILE
INSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$#%!.",CHR$(PEEK(B)))
9230 MID$(Z,I)=CHR$(PEEK(B)):B=B+1:I=I+1:WEND
9240 IF PEEK(B)=40 THEN MID$(Z,I)="(":B=B+1:I=I+1
9250 IF LEFT$(Z,I-1)<>Q THEN 9150
9260 PRINT STRING$(6,28);:B=A:GOTO 9120

The Blue Book About GW-BASIC and QuickBASIC - 268 -

VLIST = Variables Lister

 Displays the names of variables presently in use, in
 the order in which they are stacked in memory, in the
 variables-storage work area.

Usage: LOAD "program" 'the object program to be analyzed
 MERGE "VLIST" 'anywhere, but not over your lines
 RUN 'start your program
 BREAK 'keyboard or END or STOP (optional)
 GOTO 9000 'or GOSUB; outputs to monitor
 Ok 'add your own END or add a
 DELETE 9000- 'RETURN to use as a subroutine

Rules: Load size is 688 bytes; needs about 54 more to run.
 Assumes you have no array called O!(report will
 include this name. Does a default DEF SEG; otherwise
 has no impact on a live program.

9000 DEF SEG:O!(0)=PEEK(857)*256+PEEK(856) 'Vlist
9010 WHILE O!(0)<PEEK(859)*256+PEEK(858):O!(1)=PEEK(O!(0))
9020 O!(0)=O!(0)+2:IF PEEK(O!(0)-1)>127 THEN PRINT "FN";
9030 PRINT CHR$(PEEK(O!(0)-1) AND 32639);
9040 PRINT STRING$(SGN(PEEK(O!(0))),PEEK(O!(0)));
9050 O!(0)=O!(0)+1:O!(2)=PEEK(O!(0))
9060 WHILE O!(2):O!(0)=O!(0)+1:O!(2)=O!(2)-1
9070 PRINT CHR$(PEEK(O!(0)) AND 32639);:WEND:O!(0)=O!(0)+1
9080 PRINT MID$(" %$!...#",O!(1),1):O!(0)=O!(0)+O!(1):WEND
9090 WHILE O!(0)<PEEK(861)*256+PEEK(860):O!(1)=PEEK(O!(0))
9100 O!(0)=O!(0)+2:PRINT CHR$(PEEK(O!(0)-1));
9110 PRINT STRING$(SGN(PEEK(O!(0))),PEEK(O!(0)));
9120 O!(0)=O!(0)+1:O!(2)=PEEK(O!(0))
9130 WHILE O!(2):O!(0)=O!(0)+1:O!(2)=O!(2)-1
9140 PRINT CHR$(PEEK(O!(0)) AND 32639);:WEND
9150 O!(0)=O!(0)+1:PRINT MID$(" %$!...#",O!(1),1);"("
9160 O!(0)=O!(0)+2+(PEEK(O!(0)+1)*256+PEEK(O!(0))):WEND

The Blue Book About GW-BASIC and QuickBASIC - 269 -

VXREF = Variables Cross Reference

 Runs through a program, top to bottom, and finds
 all of the variable names that are used in each line.
 Prints each different name found, in alphabetical
 order. Each name is followed by a list of each of
 the line numbers that that name was found in.

Usage: LOAD "program" 'the object program to be analyzed
 MERGE "VXREF" 'must be last block of code
 RUN 9000 'printer on? on-line? paper?
 Ok 'ends with an END
 DELETE 9000- 'if no longer needed

Rules: Load size is 1563 bytes; needs about 3500 more to run,
 plus 3 bytes for each named variable; ERR=7 if not
 enough free space to complete. Maximum number of
 unique variables is 255; crashes (ERR=9) if too many.
 Reports "B" and "BF", as used in LINE, as variables.
 Can be RUN repeatedly, once in residence.

The Blue Book About GW-BASIC and QuickBASIC - 270 -

9000 PRINT "Vxref":DEF SEG:DEFINT I-J:B=PEEK(47)*256+PEEK(46)
9010 H=VARPTR(#1)+51:POKE H,6:FOR I=H+1 TO H+252:POKE I,1:NEXT
9020 POKE I,0:POKE I+1,0:POKE I+2,0:POKE H+209,9
9030 FOR I=H+11 TO H+14:POKE I,2:NEXT:POKE I,0
9040 FOR J=H+65 TO H+90:POKE J,3:NEXT:POKE H+132,6:POKE H+143,6
9050 POKE H+28,2:POKE H+29,4:POKE H+31,8:POKE H+34,5:J=255
9060 DEFSTR X-Z:Z=SPACE$(255):Y=Z:K=VARPTR(Y)+1
9070 K=PEEK(K+1)*256+PEEK(K)-4:D=B:B=PEEK(49)*256+PEEK(48):C=B
9080 DIM X(J),H(J),A(J):E=VARPTR(A(J)):E=E-(E<0)*65536!+8:A(0)=D
9090 J=0:H(0)=PEEK(B+1)*256+PEEK(B):B=B+3:C=PEEK(B)*256+PEEK(B-1)
9100 IF C<A(0) THEN PRINT C;:LOCATE ,1:C=B:G=E ELSE 9320
9110 B=B+1
9120 ON PEEK(H+PEEK(B)) GOTO
9110,9160,9180,9160,9140,9150,,9160,9170
9130 B=B+2:GOTO 9120
9140 B=B+1:IF PEEK(B)=34 THEN 9110 ELSE IF PEEK(B) THEN 9140
9150 B=H(0):GOTO 9090
9160 B=B+PEEK(H+PEEK(B))+1:GOTO 9120
9170 LSET Z="FN":B=B+1:I=3:GOTO 9190
9180 LSET Z=CHR$(PEEK(B)):B=B+1:I=2
9190 WHILE
INSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$!#%.",CHR$(PEEK(B)))
9200 MID$(Z,I)=CHR$(PEEK(B)):I=I+1:B=B+1:WEND
9210 IF PEEK(B)=40 THEN MID$(Z,I)="(":I=I+1:B=B+1:GOTO 9230
9220 IF INSTR("AS ALL APPEND BASE OUTPUT SEG ",
 LEFT$(Z,7)) THEN 9120
9230 IF X(J)=LEFT$(Z,I) THEN 9120
9240 J=INSTR(Y,LEFT$(Z,1)):IF J=0 THEN 9290
9250 IF X(J)=LEFT$(Z,I) THEN D=E-3 ELSE 9280
9260 IF PEEK(D)=J THEN 9120
9270 IF D>G THEN D=D-3:GOTO 9260 ELSE 9300
9280 J=INSTR(J+1,Y,LEFT$(Z,1)):IF J THEN 9250
9290 J=INSTR(Y," "):X(J)=LEFT$(Z,I):H(J)=E:MID$(Y,J,1)=Z
9300 A(J)=E:POKE E,J:POKE E+1,PEEK(C-1):IF E=K THEN ERROR 7
9310 POKE E+2,PEEK(C):E=E+3:GOTO 9120
9320 D=INSTR(Y," ")-1:FOR I=1 TO
D:MID$(X(I),LEN(X(I)))=CHR$(I):NEXT
9330 I=D/2:WHILE I:FOR H=1 TO I:B=1:WHILE B:B=0
9340 FOR J=H TO D-I STEP I:IF X(J)<=X(J+I) THEN 9360
9350 B=J+I:SWAP X(J),X(B):SWAP H(J),H(B):SWAP A(J),A(B)
9360 NEXT:WEND:NEXT:I=I\2:WEND
9370 FOR H=1 TO D:LPRINT LEFT$(X(H),LEN(X(H))-1);" ";
9380 I=ASC(RIGHT$(X(H),1)):FOR B=H(H) TO A(H) STEP 3
9390 IF PEEK(B)=I THEN LPRINT PEEK(B+2)*256+PEEK(B+1);
9400 NEXT:LPRINT:NEXT:LPRINT D,DATE$,TIME$:END
 ---=== THE END ===---

	Titelseite
	TABLE OF CONTENTS
	FOREWORD
	1. INTRODUCTION - our mutual aims
	2. PROGRAMS - parsing, key words, and tokens
	3. VARIABLES - where, how stored and searched for
	4. STRINGS - free space use and (mis-) management
	5. NUMBERS - arithmetic accuracy, or nearly so
	6. DEVICES - avoiding I/O headaches
	7. GRAPHICS - bits, pixels, and pretty pictures
	8. FILES - bridging the gaps between DOS and BASIC
	9. STRANGE - BASIC bugs, maybe
	10. STYLE - pretty programs vs. dense code
	11. DESIGN - deciding where to put the pieces
	12. METHODS - coding faster, and coding better
	13. TECHNIQUES - ISAM, MRI, file integrity, menus
	14. TRICKS - ready to use canned code
	15. TOOLS - Lxref, Lhits, Vfind, Vlist, Vxref

