BLULE

The Blue Book About GW-BASIC
And QuickBASIC

Thomas C. Mcintire, 1991

PDF Conversion by Thomas Antoni, 2004
www.QBasic.de

BLUE - BASIC Language User Essay
The Bl ue Book About GW BASI C And Qui ckBASI C
by: Thomas C. Mcintire

(C) Copyright: Thomas C. Mcintire, 1991
PDF Conversion: Thomas Antoni, 2004 — www. QBasi c. de

Chapt er TABLE OF CONTENTS Page
FOREWORD our mutual aims 2
1. INTRODUCTION . why BASIC, which BASIC 4
2. PROGRAMS parsi ng, key words, and tokens 11
3. VARI ABLES where, how stored and searched for 25
4. STRINGS free space use and (m s-) nanagenent 40
5. NUMBERS arithnetic accuracy, or nearly so 53
6. DEVICES avoiding 1/ O headaches 74
7. GRAPHICS bits, pixels, and pretty pictures 94
8. FILES bridgi ng the gaps between DOS and BASIC 115
9. STRANGE BASI C bugs, maybe 138
10. STYLE pretty prograns vs. dense code 151
11. DESIGN deci di ng where to put the pieces........ 172
12. METHODS codi ng faster, and coding better 195
13. TECHNNQUES .. ISAM MR, file integrity, menus 211
14. TRICKS ready to use canned code 234
15. TOOLS Lxref, Lhits, Vfind, Mist, Wxref 261

The Blue Book About GW-BASIC and QuickBASIC -1-

FOREWORD

This book is dedicated to the proposition that all programers
are not created equal. Which has nothing to do with politica
rights. It does have to do with what is right, when you wite
a programthat ought to run, but barely nmanages to |inp al ong.

Most manuals nmake it easy to learn the syntax of a | anguage.
Some occasional ly offer suggestions that such and such is a
preferred method. My library has none that explain fully the
advant ages to be derived, or the consequences to be suffered,
for accepting or rejecting their infrequent advice.

One argunent can be nmade for brevity because the author does
not want to insult your intelligence. Another can contend
that saying too much will intimdate beginners. The nore
likely truth is that such decisions are based on econom c

I ssues. Manuals are expensive to wite and publish. And in
this industry, a conprehensive manual risks becom ng outdated
before the ink is even dry.

Bot h of us have an 1Q a notch or two above the average bear.
This book was not witten for the bears. It is for those who
can make rational choices about how to code when arnmed with
an awareness of probable cause and effect. M anbition is to
provi de the m ssing amunition.

Neither do | want to offend or intimdate. Sone will already
know a ot of this. Sone, undoubtedly, wll know it better.
Most will agree with ne, however, that all programers are not
created equal. How can we be when so nuch of what is needed
can only be learned by trial and error. What | have | earned I
have now written down.

Hopeful ly the experienced will be rewarded with a gem or two.

For all, recognize that this is not a manual. It is witten
on the assunption that you have been there and are | ooking for
nore. Because this is not a manual it is also not terse. |If

it seens a little windy, bear with nme. The breeze is supposed
to be less harnful to your health than staying up all night with
a sick program

It has been said that there are old programrers, and there are
bol d programers, but there are no old, bold programmers. On

the eve of ny retirenment I amold enough that | can afford to

be bol d enough to not worry about critical reviews.

The Blue Book About GW-BASIC and QuickBASIC -2-

A d enough to renenber when we programed by poking wires in
little holes in big plastic boards. Bold enough to admt that
no matter how hard I work, | still do not knowit all. O der
for sure. Wser enough to no | onger be adamant when a bug
surfaces in one of ny best jobs: Nothing can be nore hunbling
than a bug-free programthat crashes.

I f any one thing between these covers can prevent bent bytes,
i nprove execution tines, or enhance your productivity, this
essay Wil |l have been worthwhile. For both of us.

™

The Blue Book About GW-BASIC and QuickBASIC -3-

Chapter 1 = | NTRODUCTI ON

This book is not a work of fiction. No names have been changed
to protect the innocent. They need no protection. Sone of the
ot hers deserve recognition.

This book is an essay. It is |oaded with opinions. Mne. At
| east nmy recommendations can be traced to their source. Sone
systens manual s of fer an occasi onal recommendati on. Few nane
t he sage, however, or even, from whence those gens were m ned.

My background is pure grass roots: Progranmer. By trade and
occupation. My first program that worked, and was useful, was
in 1962. What we did then was not called programm ng as that
termis used today. |In fact, the machine was not even called a
conputer. It was a Tabul ating Machine, or, Tab Card Processor.
What we did in those shops was called Automatic Data Processing.

As ADP gave way to EDP--El ectronic Data Processing--we quit
programming with little short wires and started "witing" our
progranms on fornms. Then we sat at a keypunch and converted
what we had witten into little holes in cards.

As the machi nes evolved, so did the |anguages. Yes, | have
programmed i n many | anguages. Because whatever was supplied by
t he hardware manufacturer is what we had to use; the list of
choi ces usually ranged from none to one. The make and nodel of
a conmputer dictated what its | anguage | ooked |ike: SPS (IBM,
SAAL (Univac), and BAP (Honeywell) were sone of those early
assenbl ers.

As tinme went on, with occasional changes in enployers, | also
| earned "high | evel |anguages”, |ike FORTRAN, COBOL, RPG APL
PL/ 1, LISP, NEAT, and even, BASIC. | had to learn them It

was how | earned a |iving.

Today | no |longer have to hustle for a living and can afford to
pi ck and choose. Alnobst. Prospective clients wanting custom
prograns still manage to limt ny choices, however, because of
noney. Which, on reflection, has always been the big issue.

Gven: A R o Gande clone. Usually purchased froma conputer
store or sonme Post Ofice Box. The hardware configuration is
whatever it is; seldomis it what woul d have been prescribed by
a professional systens anal yst.

The Blue Book About GW-BASIC and QuickBASIC -4 -

Client: Wants to do busi ness data processing, but does not
want to make the intellectual investnment necessary to sel ect,
install, and operate, a ready-to-wear package off the sales
rack. He would rather spend noney than brai npower hours to
get what he wants. Not "too nuch" noney, however.

And that is where the rub cones in. For ne. Tine and | abor
The person that just blew a grand or two on a "conputer"” is
rarely prepared for estimates for custom progranmm ng that use
formulas |ike $50 an hour tinmes 1,000 man-hours. In fact,
many turn pink if you quote a buck an hour.

So, the thousand-hour factor is the one that has to relent.
As much as | enjoy plying ny trade | amreluctant to drop
bel ow a buck an hour. That is about where | began, a |ong
time ago. So, today, | programnostly in BASIC

BASIC is not a personal preference. | use it because:
+ More end-product usable code in the | east anount of tine.
+ Today's code is apt to be usable on next year's machi nes.
+ Wien | die ny client can |likely find a cheap surrogate.

This is not the forumto recant ny reasoning on these points.
If you are inclined to argue, drop by sonetine. W can sit
on the front porch and drink a beer, and enjoy that debate.

This is where, however, | need to present mny evidence about
whi ch BASI C, and when to use the alternatives.

On the Big Blue machines, and those fromthe stores where they
demand your nane and address for a cash purchase of a flashlight
battery: There is usually a BASIC and a BASI CA; both are COM
files on the systemdi skette. And a big chunk of the BASIC
interpreter is in the boot-ROMitself. Al of which I refuse
to use. M clients still have to purchase a GABASI C. EXE
interpreter, if the conmputer vendor did not throwit in for
free.

This advice is based on dollar pragmatics and has nothing to
do with vendor favoritism Al of these interpreters have a
conmon | ineage; they are not 100 percent alike in how they

The Blue Book About GW-BASIC and QuickBASIC -5-

behave, unfortunately.

My ability to produce "custont prograns, cheaply, depends on
bei ng abl e to make maxi mum reuse of already witten prograns

and pieces of prograns. It sinply costs too nuch to try to
stay abreast of all the quirks that exist anong the so called
conpati ble machines. It costs too much as it is, to contend

with the prickly differences that cone as pop-up surprises in
successi ve rel eases of DOS, and any one | anguage.

So, CeeWiiz it is, because it does work on nore different
machi nes, nore consistently, than any other one.

There are four aspects to this need for consistency:

Qovi ously new prograns can be created out of chunks of old
code, quickly, if that code can be reused as is.

My disks are |oaded with a | ot of homemade tools that nake
my work easier and nore profitable. The tinme it takes to
over haul them when "sonet hi ng" changes costs twice. Tine
spent doing that is time not spent producing ny wares.

It takes tinme to master a | anguage. Any |anguage. W earn
our keep by working with what we know. Wen changes occur
we have to update our know edge base. This is especially
costly for undocunented gotchas: Those changes we find out
about the hard way, when sonething no | onger works the way
it used to.

My clients criticize me (rightly so) if what | do for them
puts themin a corner when it cones tinme to upgrade, expand
their gear, or add new applications.

Anot her | anguage product that is highly useful is QuickBASIC
This is used nostly in-house, seldomfor full-scale, turnkey
applications that are to be used at sites where they know ny
nanme and phone nunber.

Conpi | ed prograns do run faster than interpreted ones. 1In the
| ab we do a |lot of batch processing, which takes tine, and tine
saved neans increased productivity.

Most accounting applications, today, have to be "interactive".
Execution speed is inportant only to the extent that user

The Blue Book About GW-BASIC and QuickBASIC -6-

productivity is not adversely affected. (Read: |If you can run
faster than the operator, that is fast enough.) A recurring
theme in this book is about how to achi eve opti mum performance
fromthe interpreter.

Only the inept or uncaring wite prograns that run slower than
need be, especially when alternative techni ques cannot be fully
rational i zed by argunments about maintainability, or simlarly
subj ective issues.

Brain strain is not an acceptabl e excuse to a professional. It
takes intellectual effort to acquire know edge. No argunent.

It seldomrequires any extra |labor to apply that know edge,
however. No confidence should be allowed for progranms witten
by people too lazy to naster their trade: Slow running code is
often a reliable indicator of professional inconpetence. This
is equally true of all software, no matter what |anguage it is
witten in. (It is true that programer ineptitude is nore
conspicuous in interpreted BASIC prograns. Sonetines.)

When speed freaks argue that they use conpilers sinply because
interpreted prograns are too slow, we can i medi ately assune
that they are on sonebody else's payroll. Howlong it takes to
crank out an end product concerns themlittle. They get paid
to come in every day and crank. Those of us whose income is in
di rect proportion to our productivity tend to see things froma
rather different perspective.

When interview ng job applicants--1 have hired, and fired,
quite a few over the years--if they say execution speed is a
primary factor in choosing a | anguage, they do not get hired.

One nore observation is offered about speed: An interpreted
program running on an 8088 at 10 MHz may very well out performa
conpi |l ed one running on an old 4.77 machine. It is inpressive
even to nme, to see two year old GW#BASIC prograns running on a
PS/ 2, racing along at 33 MHz.

After an enotional argunment about performance, even if we give
ground a little, we still nust be adamant. Qui ckBASIC is not
unlike a | ot of other "nodern" |anguage products:

It has not yet matured. The differences between rel eases are
enough to make a wild man mad. In fact, we have gone back to
using release 2. Later releases fixed sone earlier bugs, but

The Blue Book About GW-BASIC and QuickBASIC -7-

al so created nore headaches in trying to wite BASIC programns
that will run in both interpreted and conpil ed nodes.

Al'l conpiler witers are too dictatorial. Rather than just
checking for syntax errors and translating our instructions,
they try to force us to conformto their concepts of "good
progranmm ng practices". They who have never had to wite a
payrol | application, and support it year after year, are il
equi pped to dictate programm ng doctrine. Wat we have to
do, and how we do it, often differs fromwhat is preached in
the halls of academ a.

The manuals are too thin. 1In addition to specifying what a
programw || do, software contracts have to specify what size
box it will fit in, and what its performance threshol ds are.

Before the job begins. To have to do probe coding to find
this out, in a conpiled-language environnment is too costly.

The Qui ckBASI C conpiler is highly useful, even for prograns
that are not going to be delivered in conpiled form It is a
super tool for finding coding errors that the interpreter may
never bunp into. The neasly hundred or so for this tool can
easily be offset by what a single on-site service call would
cost, to correct a m stake that escaped your diligence.

The conpiler manual is needed for reference, even for those
witing only in GMBASIC. Just as it is for us die-hards that
cannot afford to cut the cord and go out into the world with
not hi ng nore in our pockets than Qui ckBASI C

By readi ng both manual s, GWMBASI C and Qui ckBASI C, we can get

two different author's definitions of things that were neant to
be alike. The fingerprints of nultiple authors can be seen in
bot h books; there is sonme evidence however, they never read what
each other had witten.

The syntax of these two different BASIC | anguages is simlar.
So far. The key words that are common to both are spelled the
same, and punctuation rules are alike. The grammar differs
some: The conpiler knows sone key words that are totally

I nconprehensible to the interpreter, and vice versa. These
variations are not too difficult to live with. Mst of the

di fferences in vocabul ary cause no probl ens because, what is
different is not useful in the "other environnent", anyway.

Semantics is a harder nut to crack for bilingual progranms. A

The Blue Book About GW-BASIC and QuickBASIC -8-

given line of code may run in either environnment, but behave
differently, because the two different |anguage translators do
not derive the same nmeaning froma given word or phrase.

Until release 4.5 of the conpiler, internal processes produced
simlar answers. Presumably this is because conpil ed object
code is still "interpreted" by a vast nunber of "nobdul es” taken
fromthe GMBASIC interpreter. Run-tine differences between
these two pieces of software crop up because they interface to
DCS differently, i.e., nost of their differences relate to I/0O
operations and nmenory utilization.

The newer conpilers are revolutionizing the | anguage. Adding
new gadgets did not hurt us old timers, nuch, until recently.
Latel y, we cannot even count on our prograns to count the sane.
The adoption of |IEEE nuneric formats as the normfor BASICis
one nore very good reason for staying with G¥#BASIC, and for
never becom ng a whol ehearted convert to Qui ckBASIC

When they pull stunts like that, and "suggest" that we shoul d
back up and overhaul not only our old prograns, but their data

files as well, we are forced to revise our thinking about words
i ke confidence and loyalty. Inagine a quarter of a mllion

i nes of code, running at a hundred or so installations, that
maintain mllions of records for all of those clients.

Qui ckBASI C proponents would like for us to believe that it is
an enhanced or "extended" form of the | anguage; those of us
using the interpreter are laboring with a nere subset of the
ultimate. If you swallow this without batting an eye, chuck
this book and go read "Mein Kanpf".

There is a risk of further divergence in these two | anguages.
One indication that the "master plan" is aimng for a fina
decree of divorce can be seen in the respective manuals. The
ol der, potty-trained versions of the GWMBASIC nmanual (1986)
menti oned sone of the differences in the two | anguages, albeit,
somewhat sporadically. M newest nanual, only a few nonths
ol d, doesn't even bother to acknow edge its rival sibling.

The Qui ckBASI C manual continues to remark upon sone of the nore
obvious differences in the two | anguages. Presumably to help
us "up grade" fromthe interpreter. Wich can be further read
to mean they would |ike to coerce us in that direction.

The Blue Book About GW-BASIC and QuickBASIC -9-

Meanwhi |l e, we can pray they have nore social conscience than
Adol ph had. None of us are |likely to begrudge themtheir
profits, or that they are conpelled to offer new products to
keep their fiscal towers fromtoppling. At the sanme tine, we
hope they will not ignore what happened to the Avanti and the
Edsel. The masses may be ignorant, but sone of us peasants are
not as gullible as those on high m ght think.

So nuch for the Whom Wi ch, When and, Wiay: Fromhere on it is
all about how. How the interpreter works, nostly. And that is
based on how | perceive it, looking fromthe outside in, as a
user of GMBASIC. M sporadic notes about sone differences
between the interpreter and Qui ckBASI C have no ulterior notive;
those that are nentioned are those that caused nme grief because
they are not docunented anywhere else, as far as | know.

When Qui ckBASIC is nmentioned hereafter, it refers to rel ease 2.
Nobody coul d docunent all of the differences that have occurred
since. It often takes nme a year or two find nost of the bugs in
each rel ease. New rel eases are being issued so rapidly today,
there is not enough tine to even read the manual s for any one,
before it is time to start all over.

What follows is not a tutorial on howto program |In BASIC or
any ot her | anguage. Teaching is properly the province of those
who know how to teach

What follows is sinply a nenory dunp. O ny nenory. O ny
experience, and how | make use of what | have |learned. And
some of ny code. If you already have a better wheel, good.
If not, sonme of what works for ne could save you having to
rei nvent solutions to progranm ng problens that have exi sted
for years.

Expert? Hardly. Read nme as a coworker, passing along to ny
fellows what | know (or think I know) before | amtoo old to
remenber it all. Wien | amqguilty of a m stake, or awkward
phrasing, remenber that | amsinply a sinple programrer. (I
nearly drowned the last tinme | tried to walk on water.)

The Blue Book About GW-BASIC and QuickBASIC -10-

Chapter 2 = PROGRAMS

A programis stored, physically, as a file. Logically it is
organi zed as what is traditionally called a sequential file.
That is, a file of records (lines) of varying |lengths, one
record followi ng anot her, sequenced in 1-2-3 order.

If you save a programas an ASCI| file (SAVE "progranm',A) it
is in fact output according to the conventions that have by
now beconme known as "...a standard sequential file."

Each line of your programis a variable-length record. The
| ast two bytes of each record are a CR/LF pair (a carriage
return and a line feed). The end of the file is marked by
a single-byte (control-Z code) imrediately follow ng the

| ast record. Al bytes, in all records, are standard ASC |
character codes. (Save those above CHR$(127), which are not
truly ASCII.)

As M. Holnmes would say: "Elenentary, ny dear Watson". This
much is learned easily fromthe manuals. And at sone point,
nost novi ce programrers wite experinmental prograns to "read"
programfiles. Sone progress rapidly to the next step and
wite prograns that "wite" prograns.

Program generators, as a concept, is as old as is the business
of progranmng itself. The first tinme any programer wth
very much experience has to wite a couple of hundred |ines
that | ook-a-lot-alike, he is very likely to wite a "tool" to
generate those |lines automatically.

By the tinme nost students have gotten this far they al so begin
to wish they had nore tools. And veterans of other progranmm ng
| anguages are very quick to notice the conspi cuous absence of
tools in this environment. At |east part of that void can be
filled by Chapter 15 which contains handy routines fromm own
t ool box.

This chapter seeks to fill another void. Wen your world
dictates the need for custom nmade tools, that have to work on
prograns as they are in menory, or as they are in files that
were saved as "binary", what is in those bytes nust be known.
That nitty-gritty detail is provided here, but not just for
the benefit of tool witers.

Suffer nmy favorite contention repeated often el sewhere: To be

The Blue Book About GW-BASIC and QuickBASIC -11-

able to wite prograns that run as efficiently as possible
requi res an understandi ng of how the interpreter works. This
narrative can be read to further that insight, savoring the
general concepts, skipping quickly over the gristle.

A brief preanble is necessary before wading in. The nore
explicit a technical note is, the nore apt it is to be wong.
Not because of errors (which are certainly possible), but nore
i kely because we are not view ng exactly the sane thing. The
world is constantly changi ng around us, and that cliche is so
very applicable to the world of programming. On the off chance
you encounter a bent byte in what follows, perceive it as a
nere pebble in a swft stream \Wade on

A programis stored, physically, as a file. Logically it is
organi zed as what is traditionally called a sequential file.
That is, a file of records (lines) of varying |lengths, one
record foll ow ng anot her, sequenced in 1-2-3 order. This
repetition is still basically true, but from here on, when
you save a programw thout the A-for-ASCIl option, it is a
whol e new ball gane.

A programfile is, essentially, what is sonetinmes called a
mrror-imge nenory dunp to disk. That is why LOAD and SAVE
type activity is fast: Reading and witing are done on the

basi s of physical blocks, not at the logical line, or record
level. While in nmenory (and therefore while on disk) a program
is still internally organized as discrete |ines, arranged in

| i ne-nunber order, just as you see themwth LIST or LLIST.

Granted, this nuch can be |l earned by a careful reading of nost
manual s. Sonme nention that the lines are stored in a conpact,
conpressed, or "tokenized" form \Wiich is about as far as any
of them go. Unquestionably, the interpreter programis a very
sophi sticated, highly conplicated, special piece of software.

But, it is still a program It "processes" your program |t
starts where you do, on the first |ine, exam ning each of your
statenments, doing what you tell it to do, one step at a tine.

This grossly understated, oversinplified definition of the
interpreter is the fundanental perspective fromwhich to read
what follows. The purpose at hand is to view what is in the
programlines thenselves. Seeing that, we can often surm se
what the interpreter has to do. How it actually does it can
remai n obscure.

The Blue Book About GW-BASIC and QuickBASIC -12 -

Al lines begin with the first four bytes having the sane
order and purpose, and end with a byte equal to CHR$(O0).

The first two bytes are an address pair. They contain the
actual address of the start of the next line. Starting with
the next two bytes, the pair that contains your |ine nunber,
everything within a line is in exactly the same order as it
is when it is viewed as an ASClI|-text line. Therein ends
its simlarity. The bits in the bytes thenselves are
fornmulated to suit the interpreter.

Some bytes still coincide with the ASCII character set, and
their interpretation remai ns unchanged. Because any given
byte may range the full 8-bit spectrum of 0-255, in decimal
nunbers, nost of themare bound to | ook |ike printable
characters. But a byte that |ooks Iike a CHR$(65) may not
be for the letter "A", at all. It nmay be a code, or part of
a code, or a nunber, or part of a nunber, or....

The bytes within a line are parsed as 1-byte codes, or as
words (groups of bytes). A word may be as small as 1 byte.
Sonme are 2, sone 4, and naturally, sonme are 8. G ab on now
to that thread that is woven throughout machi ne | anguage
programm ng: 8-bit bytes used as 1, 2, 4, or 8-byte words.

Nearly all of the so-called "key words" in BASIC are stored
as tokens (codes). Wen you type a |line of a program using
the BASIC editor, the text of what you type is transl ated.
The key word BEEP is stored as a single byte, for exanple; it
| ooks |like a CHR$(197). When you see BEEP, a token that is
equal to the nunmber 197, in decinml, has been transl ated back
into the four upper case ASCII letters that spell BEEP

Time out. From here on assune all ny nunbers are decinal.
To keep using phrases to ensure that 197 is understood to
mean a byte equivalent to CHR$(197) is redundant. It slows
down your reading, and ny witing. Now to resune...

Many key word tokens are, effectively, two-byte codes. The
first byte serves as an indicator that the token in the next
byte is froman alternate translation table. The token for
SWAP is 164 and the token for LOC is also 164. So, a token
byte of 164 is either for SWAP or LOC, dependi ng on which
table is used for translation, i.e., on whether or not the
token is preceded by a 255-table indicator byte.

The Blue Book About GW-BASIC and QuickBASIC -13-

In all, there are four key word tables. The single byte
129-token translates to END. A 255-byte followed by 129 is
transl ated as LEFT$, a 254 then a 129 is for FILES, and 253
foll owed by 129 neans CVi

Because the first byte dictates how the token that follows it
shoul d be transl ated, we can get an i medi ate insight into how
the interpreter actually works. It processes a line fromleft
to right, one byte at a tine. On the basis of what a byte has
init, it can proceed at the rate of one at a tinme or, gobble
up 2, 4, or 8 bytes for its next trick.

When a programis "running", when the interpreter bunps into
a 253-byte, for exanple, it knows that the next byte is a
token, and it will be a function call to do CvI, CVS, CVD
MKI $, MKS$, MKD$, or EXTERR (because only 7 unique tokens are
expected to follow a byte that contains 253).

Notice how "a byte" indicates what should be expected next.

To be able to parse a line--to separate it into lexical units
words)--nerely requires an algorithmthat mmcs the | ogic of
how the interpreter does it. And that is not very conplicated
at all.

Constructing a tool that will translate the nunber 145 into
the word PRINT, for exanple, requires no great effort. What
it takes in the way of routines to carry out a comrand such
as PRINT can take many hundreds of programlines. Wthout
seeing those |ines, or even know ng machi ne | anguages, we can
appreciate the long hours and hard work that went into the
witing of the interpreter itself. By stepping along a line,
a byte at a tine, just as that programdoes it, we can grasp
the basic principles by which it works, however. Like this:

Begin at the beginning. The first |ine of your program The
first two bytes are an address-pair. To get their deci mal
value, if need be, nmultiply the second byte by 256 and add to
that, the value of the first byte. And take a note. This
same arithnetic feat can be used to convert all 2-byte words
that represent addresses or |ine nunbers. (Wich are stored
in the way nachi ne | anguage works, i.e., backwards conpared
to how we would do it in our head.)

Add 2 to your byte pointer. The next pair of bytes is also
a 2-byte word. Do the arithnmetic. 'Lo and behold, the result

The Blue Book About GW-BASIC and QuickBASIC -14 -

is equal to the |line nunber you used when this programline
was created. Now increnment your byte pointer by one and get
ready for sone real fun

If the next byte is 32, 44, or 58, it is a space, a conmm, oOr

a colon, sane as in ASCIlI. Bunp on. |If the next byte is zero,
you have reached the end of the line. |If it is greater than
128, it is a key word token. [If none of these tests are true,

you are now | ooki ng at sonething that you made up--a literal,
a constant, or a variable nanme--or, your pointer is in the
wong place. O you are trying to read sonebody el se's muail

By this tinme, if you are actually witing a progranmm ng tool,
what you want to see nost are the tables at the end of this
chapter. But don't start coding yet. It would be useful to
know how the information in these tables was conpiled. (In
case your version of the interpreter differs frommne.) And,
there are sone tidbits that need to be known that are not

obvi ous when | ooking at charts al one.

Speaki ng of charts: In days of yore the manuals al ways had a
chart that listed all of the "reserved words". Which was handy
to review, to keep frominadvertently creating a conflict when
coi ning vari abl e-nanes. MW newest (seldomused) nanual has no
such chart. It does say, "All GWMBASIC commands, statenents,
functions, and variables are individually described in the
GWMBASI C User's Reference." Poppycock. Attenpt LCOPY = 1 and
you will get a syntax error. LCOPY O, on the other hand, gives
no error, but neither does it do anything.

LCOPY is a truant command. It worked in only one rel ease--|
forget which one, 2-dot-sonething--but it now sinply works
i ke a no-op. Perhaps that is why the books no |onger |ist
all of the reserved words; they would have to say, exactly,
on what day of the week it could safely be consulted.

To find out, exactly, what token is used to represent a given
key word, type it as the first word in a BASIC program SAVE
it, then use DEBUG -or sone other tool--to see just what the
interpreter converted that word to. By the way, the very first
byte of a "saved" programfile is a file-type indicator. (It
may be 255, which indicates a "normal" BASIC program 254 says
it was saved with the "protect” option.) Renenber also, to
junmp over the first four bytes at the begi nning of each line
before you start |ooking for a key word token.

The Blue Book About GW-BASIC and QuickBASIC -15-

PS: A first byte of 254 or 255 does not al ways nean that
what follows is a BASIC program it is sinply what the
interpreter looks for to "know' if the file you are | oading
is a BASIC "t okeni zed" program

If you don't know all of the key words built into your version
of the interpreter, there is a way to find out. But it is not
particularly easy. Unfortunately, they are not all shown in
all manual s, and sone, although in a manual may not be in your
software. Back to DEBUG Dunp the interpreter itself. Look
for what resenbles BASIC "reserved words". They are not stored
as pure ASCII; the first letter of a word and the last letter,
or both, may | ook Iike nunbo junbo, but the letters in the

m ddl e of the |longer ones |ike RANDOM ZE are still recognizabl e
as ASClI| upper case letters.

More than just accurate tables of key words and their tokens

are needed. Here are sone other interesting things to expect
when parsing BASIC lines. And sone nore insight into how the
interpreter works when it is executing a program

Nuneric literals are stored in a line in exactly the sane
format as they would be as if you had assigned themto the

| east precise variable that would be required to hold them
For exanple: -32000 is stored in tw bytes (exactly the sane
as in an integer variable). This in-line literal is preceded
by a code-28 that indicates that what follows is a 2-byte word,
and that it should be translated as an integer. See now why
it happens that, although you typed A=99999, l|ater you wl|
see A=99999! when you do a LIST. (Integers do not get a free
appendage but all larger nunbers do, or they play back as if
you had typed them using pseudo-scientific notation.)

This same concept is true for all in-line values. They are
stored in ready-to-use format. No conversion is necessary.
The interpreter can grab a 1, 2, 4, or 8-byte word and use it
instantly, just as it is. |It's better to do the conversion
while you are typing. You won't even know when it is done.
(Not many typists can outrun a nodern mcro.) See also why a
MERGE can take awhile: There's a whole |ot of converting
goi ng on during the | oad process.

There is one type of conversion that does take place during
execution of a program |If you are poking around in program
menory while a programis in progress, watch for this one.

The Blue Book About GW-BASIC and QuickBASIC -16 -

G010, for exanple, is followed by a |ine nunber. Line nunbers
are stored in 2-byte words. They are normally preceded by a
code- 14 byte. When the interpreter bunps into the 14, it runs
t hrough your programto find the line that has the matching
line nunber. Now the tricky part: The three bytes after the
GOTO get changed. The code will be changed from 14 to 13,

and the real address of the target line will overwite the two
| i ne-nunber bytes. Once found not forgotten is the noral.

Converting transl ated addresses back into |ine nunbers can be
done very quickly, by the way. |[|f you bunp into a code-13,
use the address following it to get the unchanged pair of
bytes fromthe beginning (+2) of the target |ine, and change
the | ead byte from 13 back to 14.

Most of the tinme your variables |ook just |ike you typed them
As ASCI| upper case letters, nunbers, and appendages. One
exception is the case of a user-defined function nane. The
FN itself is converted to a 1-byte token (209), but the rest
of your nane remai ns unchanged.

Confusion--and not a little aggravation--can arise when you
are parsing for variables only. Not all key words are

tokeni zed. There are only a few that are not, but because
they are stored internally as ASCI| letters, they have to be
parsed as if they are variables. Then you can deci de whet her
you i nvented the nanme or BASIC did. The ones that are, and
those that are not key words tend to be different sonetines.
(If you call your machi ne Junior, watch out for PALETTE. The
seni ors use a token, but sone PC Jr's do not.)

Anot her perversity: B and BF can certainly be variabl e nanes.
But they may al so be "un-tokenized key words". |If they follow
the second comma in a graphics LINE statenent, they are nerely
switches to condition how that statenent is executed. To find
all variables, only, accurately, your algorithmw Il have to
becone context-sensitive when it encounters the 176-token for
LINE. A 133-token soon after means you found LINE | NPUT and
any subsequent B or BF are variables. Qherwise, the letters
B or BF--following a corma-count of two--can be ski pped.

DATA statenents are always whole lines. |If the first token
followng a line nunber is 132, the next byte should be 32 (a
space character) and the rest of the line is pure ASCII up to
the final byte (which is always zero). Notice too, nuneric

The Blue Book About GW-BASIC and QuickBASIC -17 -

DATA el ements are not converted to internal format until the
nonent that you do a READ. Another performance hint, albeit
a rather small one. (Reading strings of literals from DATA
statenments is not an efficient way to program)

Remark statenments are interesting, and a little odd. A token

of 143 translates as REM but only if the next byte is not 217.
The two in a row-143 and 217--transl ate as an apostrophe, the
shorthand synbol for a remark. (And this pair is followed by
an arbitrarily inbedded code-58--a colon--for some obscure
reason.) Beyond that, whatever you typed is stored just as is,
as ASCI| characters. Notice also that the shortest remark is at
| east two bytes. |If you use REMit is stored as 143 foll owed by
the syntactically required space character (32). Two bytes. |If
you use the apostrophe, it is stored as 143, then 217, then 58,
but no space character is required. Three bytes. So, REMis

| ess costly than the apostrophe (but is I ess pleasing visually).

Anot her performance note: Both DATA statenents and remarks

are, effectively, do-nothing bytes when they are encountered

by the interpreter while it is executing a program To get
fromthe token to the start of the next line, the interpreter
has to bunp along, one byte at a tinme while | ooking for the zero
at the end. (It forgot, apparently, what address is in the

pair of bytes at the beginning of this line.) So, use remarks
freely, but put themonly after statenents that have an enphatic
conclusion. After NEXT instead of after FOR, for exanple. And
never intersperse DATA statenents in a stream of executable
lines unless you like prograns that run slower than they need to.

Al t hough the token for ELSE (161) conmes fromthe single-byte
tokens table, it is always preceded by a 58, which is normally
seen as a statenent separator. So, when you bunp into a 58,

| ook at the next byte before assuming that what is com ng up
IS the next statement on a nultistatenent line. (Normally
ELSE should only cone after THEN, as we all well know.)

Quotation marks are also a little odd. They are stored as 34,
same as in ASCII, but they are supposed to be used in pairs.

If, for exanple, PRINT "hello" is encountered, the first quote
turns-off the tokenizing. The next one turns it back on. So,
everything that you bracket with quotes gets stored just as you
typed it. And if you failed to type a second one, everything
fromthe first quote through the end of the line is treated as
one continuous string of text. Wich explains why you see sone
funny stuff, sonetinmes. (A missing quote can be the cause of

The Blue Book About GW-BASIC and QuickBASIC -18-

some not so funny bugs.)

Par ent heses, on the other hand, nust be used in matching pairs,
and they are stored as codes 40 and 41, respectively. O you
will trigger an error trap. The LEFT$ token, for example, will
(shoul d) always be followed i medi ately by a code-40 byte.

Anot her aside: See fromthe above why an error trap can

soneti nes be confusing. You confused it. Parentheses and

ot her "syntax characters” are fundanmental to the business of
parsing a line. Sonme codes indicate that the byte pointer
should junmp forward a specific nunmber of bytes. |If the code
found at that point is not what is normally expected, it can be
assuned that whoever typed that |ine was not playing by the
rules. The best "error" that can be given is based on what

the pointer is now seeing. Bytes bunped over are history.

And sone bytes ought to be history. Bytes that really are
bunps are not unlike the speed bunps in parking lots. They

sl ow down your program Not always nuch, maybe, but if you

i ke prograns that run in the fast lane, onmt anything that is
"optional". Many times the third argunent in M D$ expressions
can be omtted. The pound-sign can al nost always be omtted.
It is a nmust before the file nunber in I NPUT, and PRI NT, and
VWRI TE statenments. But the rules are inconsistent when a file
nunber is used between parentheses. Like in VARPTR(#1) the
rule is different than for LOF(1). Wich is not the only

i nconsi stency about parentheses.

For sonme odd reason the left parenthesis is not stored in a
line in two cases. The key words TAB and SPC have their
trailing appendage i nbedded in the translation tables. Their
tokens will not be followed by a code of 40. And these two
are perverse in another way: They can be used only in sone
formof a PRINT statenent. Presumably these genetic traits
have sonething to do with their heritage.

A nunber of famly characteristics are noticeable in the key
word translation tables. Mst of those in the first famly
are commands (as opposed to functions). Mst of these kids
are not expected to have parenthetical expressions tagging

al ong behind them The tokens in this famly range from 129
to 244, with a few gaps. Sone of the gaps are caused by
infant nortality--key words that used to be in BASIC but are
no longer with us. And sone are recent adoptions, words |ike
COLOR, that have been added as the | anguage has grown up over

The Blue Book About GW-BASIC and QuickBASIC -19-

t he years.

The second family is a little nore purebred. This is the gang
guarded by a 255-byte. All of these key words are al ways
followed by a left-parenthesis, except the word PEN. (A msfit
cousin, no doubt. Depending on howit is used, PEN rmay or may
not have a code 40-byte tagging along behind it.) The 37 kids
in this clan are nunbered from 129 to 165, and none are m ssing.
Which inplies, in the absence of famly planning, up to ninety
nore (166-255) could conme along in sonme future generation of

t he | anguage.

The next family down the line, guarded by a 254-byte, |ooks

| i ke an orphanage. This group of 27 tokens range from 129 to
155, with no gaps. Most of this bunch are relative newconers;
especially those that provide an interface to the operating
system Still, the older ones near the top of the Iist have
been around since the juvenile versions of "disk BASIC'.

For a long tinme there were only six menbers in the fourth
famly, the one guarded by a 253-byte. These three sets of
twins were originally conceived to be useful for working with
so-called fielded-variables. (They are not restricted to that
pl ayground, however.) Then al ong came EXTERR Wong bus,
maybe? Notice the enpty seats.

Had this chapter begun with WHILE, we are now nearly ready
for VEND, and a fall-through to those tail-end tabl es.
Renmenber those two bytes at the beginning of each Iine that
address the start of the next logical [ine? That address is
accurate only while a programis nmenory resident. Wen you
SAVE a program those addresses get saved, right along with
everything el se. Wen you LOAD, however, just where the file
is placed into nmenory at that time nmay be different than it
was the last tinme it was used. During a LOAD (or a RUN,

or a CHAIN) the interpreter nust recalculate all of those
addr esses.

Notice that the address values are proportionally correct in
programfiles stored on disk. A single addition or subtraction
factor can be applied to themall, to maintain their chain-to
relationship. Equally, the difference in the address headers
of two successive lines can be used as a byte-count of the

l ength of a line.

If you are reading a programas it sits in a file, the line

The Blue Book About GW-BASIC and QuickBASIC -20 -

addresses shown are those that were, once upon a tine. |If you
are peeking at a programin nmenory, you are seeing things as
they are now. Either way, now we know how to see a program
just as the interpreter sees it. Even if that vision is stil
alittle fuzzy, this overlook will, hopefully, broaden the

hori zon.

The Blue Book About GW-BASIC and QuickBASIC -21-

| I'nternal Code Assignnents |

0 End of a programline

1-10 Not used (shoul d not be encountered)

11 Transl ate next 2 bytes as Cctal, |ike &01024

12 Transl ate next 2 bytes as Hexadecinal, |ike &H7DOB
13 Next 2 bytes are the address of another |ine

14 Transl ate next 2 bytes as a |ine nunber

15 Transl ate next byte as a nuneric literal (0-255)

16 Not used (should not be encountered)

17-26 Translate this byte as a decimal digit (0-9)
27 Mar ks end of file (preceded by a zero-byte)
28 Transl ate next 2 bytes as an integer
29 Transl ate next 4 bytes as a single precision nunber
30 Not used (should not be encountered)
31 Transl ate next 8 bytes as a doubl e precision nunber

32-127 Transl ate as standard ASCI| text characters unl ess
58 is followed by 161; translate this pair as ELSE

128 Not used (should not be encountered)

129-252 Translate as a key word fromtable 1

253 Transl ate next byte as a key word fromtable 4

254 Transl ate next byte as a key word fromtable 3
If 1st byte in file, it was saved with P-option

255 Transl ate next byte as a key word fromtable 2

If 1st byte in file, this is a LOAD-and-go program

The Blue Book About GW-BASIC and QuickBASIC -22 -

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

(gaps:

230
231
232
233

129
130
131
132
133
134
135
136
137
138

END
FOR
NEXT
DATA
| NPUT
DI M
READ
LET
G&oro
RUN

I F
RESTCRE
GOosuB
RETURN
REM
STCOP
PRI NT
CLEAR
LI ST
NEW
ON
VAI'T

154,

+ A1l V

| Table 2

LEFTS$
Rl GHT$
M D$
SGN
| NT
ABS
SR
RND
SIN
LOG

Table 1 = Single-byte tokens |

151 DEF
152 POKE
153 CONT
156 QUT
157 LPRI NT
158 LLI ST
160 W DTH
161 ELSE
162 TRON
163 TROFF
164 SWAP
165 ERASE
166 ED T
167 ERROR
168 RESUME
169 DELETE
170 AUTO
171 RENUM
172 DEFSTR
173 DEFI NT
174 DEFSNG
175 DEFDBL

155, 159, 180-182, 203, 223-229,

234 -
235 *
236 /
237 °

176 LI NE
177 VH LE
178 VEEND
179 CALL
183 WRI TE
184 OPTI ON

185 RANDOM ZE

186 OPEN
187 CLCSE
188 LOAD
189 MERGE
190 SAVE
191 COLOR
192 CLS
193 MOTOR
194 BSAVE
195 BLOAD
196 SOUND
197 BEEP
198 PSET
199 PRESET
200 SCREEN

238 AND
239 OR
240 XOR
241 EQV

201 KEY
202 LOCATE
204 TO

205 THEN
206 TAB(
207 STEP
208 USR
209 FN

210 SPC(
211 NOT
212 ERL
213 ERR
214 STRI NGB
215 USI NG
216 | NSTR
217 ' (rem
218 VARPTR
219 CSRLIN
220 PO NT
221 OFF
222 | NKEY$

245- 255)

242 | WP
243 MOD
244 \

= Key word tokens preceded by 255

139 EXP
140 COS
141 TAN
142 ATN
143 FRE
144 | NP
145 PGS
146 LEN
147 STR$
148 VAL

149 ASC
150 CHR$
151 PEEK
152 SPACE$
153 OCT$
154 HEX$
155 LPCS
156 CI NT
157 CSNG
158 CDBL

159 FI X
160 PEN
161 STICK
162 STRI G
163 ECF
164 LCC
165 LOF

The Blue Book About GW-BASIC and QuickBASIC

-23-

| Table 3 = Key word tokens preceded by 254 |

129 FI LES 139 COMVON 149 ERDEV 159 PALETTE
130 FI ELD 140 CHAIN 150 | OCTL 160 LCOPY
131 SYSTEM 141 DATE$ 151 CHDI R 161 CALLS
132 NAME 142 TI VES$ 152 MKDI R 162 ---

133 LSET 143 PAI NT 153 RMDI R 163 ---

134 RSET 144 CoM 154 SHELL 164 ---

135 KILL 145 Cl RCLE 155 ENVI RON 165 PCOPY
136 PUT 146 DRAW 156 VI EW 166 ---

137 GET 147 PLAY 157 W NDOW 167 LOCK
138 RESET 148 TI MER 158 PMVAP 168 UNLOCK

| Table 4 = Key word tokens preceded by 253 |

129 CVI 132 WK $ 135 --- 138 ---
130 CVS 133 MKS$ 136 --- 139 EXTERR
131 CVD 134 MKD$ 137 ---

| Key words not tokenized (kept as ASCI 1) |

ACCESS - - - as in OPEN ... FOR RANDOM ACCESS

AS - - - - - asinOPEN... AS--- and --- FIELD ... AS
ALL - - - - as in CHAIN ... ,ALL

APPEND - - - as in OPEN ... FOR APPEND

BASE - - - - as in OPTION BASE O --- or --- OPTION BASE 1
QUTPUT - - - as in OPEN ... FOR QUTPUT

RANDOM - - - as in OPEN ... FOR RANDOM

SHARED - - - as in OPEN ... SHARED

SEG - - - - as in DEF SEG

The Blue Book About GW-BASIC and QuickBASIC -24 -

Chapter 3 = VARI ABLES

Some texts would aptly |ead off here tal king about "heaps".
(Wen | was in school, ny car was a heap.) M preference is
nore accurate: Variables, their contents and the nanmes by
whi ch you know them are organi zed internally as tables. The
word table connotes |ogical structure....

Two tables may exist. One for sinple variables, another for
arrays. These tables are maintained in nmenory i medi ately
foll owi ng your program |f your program has both sinple

vari abl es and arrays, the first table holds sinple variables,
the second table is for the arrays.

Bot h tabl es are mai ntai ned and searched i ndependently. Their
structures are simlar, however, and additions to either table
are done on nmuch the sane basis.

As your program executes, any statenent that assigns a val ue
to a variable causes one of the tables to be searched. It is
al wvays done sequentially, fromthe top of the table downward.
In the event a search fails--in the event this is the first
time a variabl e has been assigned a value--its nanme is added
to the bottomof the table.

Because the sinple variables table is first, each addition to
this table nmeans that the entire second table nust be shifted
downward to nmake room for the nane being added to table #1.
Ergo: This is why nost manuals nention that you should do a
VARPTR i nmedi ately before any attenpt to directly address
array-bytes in menory--in case the arrays have been noved
because of a recently added sinple variable.

What is sel dom nade clear, however, is just when it is a nane
Is added to either table. Sonme manuals are so erroneous as to
say "on any first reference"” to a variable nane. And | have
read none that fully explain about deleting nanes fromthe
tabl es, nor how searching for variables is actually done.

This narrative is needed to fill the literature void. Run tine
performance is why. Mst of us have heard that BASIC prograns
run too slow. Oten tinmes they do because many programmers
have little concern for witing efficient code, or they are
sinmply unaware of how the interpreter works.

The last part of this chapter covers what is actually in the

The Blue Book About GW-BASIC and QuickBASIC -25-

vari abl es tables. Mst manuals give only a nodi cumof this
detail. Wat is here can inprove your productivity when, if
you need to know specifics, you need not have to find out the
hard way.

Appl yi ng what follows can nake a dramatic difference in how
fast some programs run. |n any event, coining names, and when
in a programto first declare them ought to be decided

del i berately: Based on a full awareness of cause and

ef f ect.

When nanmes are added: It is done only by nenory allocating
statenments. Meaning on a LET, either explicitly stated or
inplied as in A=3. O, in the case of arrays, on a DIM
explicitly stated, or not. They are added only once, and
remain in place in the table--relative distance fromthe
top--during the continuous execution of a given program
(Renmenber, arrays are not static. Mre on that later.)

Qddl y enough, an LSET or RSET works as an explicit declaration,
even when the consequence is a null variable. Like, if you do
LSET X$ = "hello", and this is the first tinme X$ has been
naned, the nane is added to the table. Now do a PRINT X$. It
will read as if you had done X$ = "". Fromthis we can deduce
no distinction is nmade for fielded variables vs. "regular”
string variables during the nechanics of searching for nanes,
and when adding themto the tables. (There is a distinction
about where the data itself is stored. See Chapter 4 for that
greasy grit.)

The thenme of explicit vs. inplicit nmenory allocation nust

be carried one step further. Wen a user-defined function
statement is executed, such as DEF FNA(G = B*C+G the nane of
the function (FNA) and its paraneter (G nust already be in

a table, or they are added at that tinme. Although no data is
actual ly acted upon, yet, space nust be allocated now for the
address that will point to this function-expression, and for
its paranmeters. But notice that its argunents, B and C, are
not | ooked for at this point. The search for themis not done
until (unless) this function is actually made use of in sone
statenment or expression later on in the program This is only
one instance of a variable "being referenced", but it is not
added to the variabl es tables.

When names are not added: Sone "references" to variabl e nanes

The Blue Book About GW-BASIC and QuickBASIC - 26 -

require no table searching, hence they have no influence on the
ordering of table entries. Default typing is such an instance.
The statenment DEFINT C-L assigns no data to storage, thus, no
tabl e searching is done. It matters not a whit, where in the
programthis statenent is encountered.

Dunmry vari abl es are another case in point. In the function
POS(B), for exanple, the "B" is not logically needed, i.e.,
what is or is not in that variable, or whether or not it even
exists is uninmportant. So PRINT POS(B) causes no search, and
so, has no influence on nanes-tables.

The nam ng of variables in a COMON statenent is another case.
Merely nam ng them causes no table search, so it has no side
effects at that point. Table searching and the addition of
COMMON nanes to the tables works the sane as for "uncommon®
nanmes: Wen they are used in a way that demands reference to
some area in working storage. Chapter 11 covers the use of
COMMON and CHAIN in depth. Here, note that in a chained-to
program COVWMON nanes are passed along as is, ordered the sane
as they were stacked by the progran(s) that ran previously.
New additions to the tables caused by the program now runni ng
are added to the bottomof the tables that were inherited.

Searches can be provoked sonetinmes w thout causing any nanes

to be added to the tables. And this is alnpost a worst-case
codi ng instance; the perfornmance overhead for doing the search
nmust be suffered with no gl obal benefits to be derived. For
exanple: |F Mp =2Z% THEN.... In the event Z$ is null, i.e.,

it has never been assigned any data, the entire nanmes-table
nmust be searched to |earn that the nanme does not exist (and
therefore, Z$ = ""). But this will not cause Z$ to be added to
the table. This sane consequence is true when doi ng VWH LE/ VEND
and ON GOTO types of conditional tests, by the way, and is al so
true for tests involving nuneric variables that are zero sinply
because they have never been assigned a val ue since RUN

To this point then, take note that the tables are built in
sequential order: The first-named variable will be first in
the table, the second-naned one will be next, and so on. Table
searches are always done fromthe top, |ooking for the one just
naned. If it is found the search is ended. If it is not found
--the end of the table is reached--that name is added, but only
i f the usage expression dictates that space be allocated to
hold literals, constants, or address pointers to be used (maybe)
| at er.

The Blue Book About GW-BASIC and QuickBASIC - 27 -

Infer now, also, why it is possible to use the sane nane for
both a sinple variable and an array. Two tables. Using just
"A" causes a different table to be accessed than an A foll owed
by a | eft-parenthesis.

Not so easily inferred is the fact that every instance of a
vari abl e nane, in an expression, instigates a full top-down
search. This, despite the high frequency of repetitious nam ng
in BASIC. Like, A= A*A+3. Every encounter of "A" causes a
search, even though the |ast previous search was for the sane
nane. So, A = X+A+7 is just as efficient as--or is just as
inefficient as--A = A+7+X. Both cases require three nane
searches. By the way, see why in-line literals are faster than
variables. As the interpreter steps through an expression |ike
the |l ast one, it does not have to search for the "7". It just
ran into it.

On the other hand, no repeat-search is needed for the contro
variable in a FOR/ NEXT | oop, unless that variable is renaned
after the NEXT. Wwen FOR 1 =1 TO 10 is executed, the name "I"
nmust be searched for only once. Pointers are then pushed onto
the interpreter's stack to control the |oop. Sone chanpi ons

of pretty code insist on renam ng the control variable after
every NEXT. Like NEXT I or NEXT B, or what have you. Agreed,
it isnicetoread. But, it slows down your program

Every time NEXT is encountered a table search nust be done to
ascertain the pre-existence of that nane in the table. And to
confirmthat it is the sane nane used in the last FOR, by the
way. Read that phrase, "the control variable" closely: It
means the variable used with FOR or NEXT. Expressions that use
that sanme variable inside a |oop are treated no different than
vari abl es used anywhere else in a program

Ergo: Omtting the nane after NEXT optim zes perfornmance.
Using a single NEXT as the term nal point for nested | oops
requires the namng of all FOR-variables, in proper order,
after NEXT. (Wiich is slower than NEXT: NEXT, for exanple.)

The parsing of variable nanes: As the interpreter bunps al ong
a line in your programan ASCI| upper case letter (A-Z) denotes
the start of a nane. The nane-string continues until a byte is
encountered that is not a letter or a digit or a period. |If
the next (one) character is one of the data-typi ng appendages
(9%#3!) it will be used in the table search, but the appendage

The Blue Book About GW-BASIC and QuickBASIC -28 -

itself is not stored, as such, in the tables. And finally, if
the next character is "(", it too will be used (but not stored)
to determ ne which table to search

Tabl e selection: Logically, the two tables are distinct. |If
the name in your programtext has a left-parenthesis as its

| ast character, the array table is searched. Any character
denoting the end of a nanme other than "(" causes a search of
the sinple variables table.

How t abl e searching is done: Ostensibly, by conparing nanes.
In fact, it is alittle quicker than that. The first test is
for a matching data-type name. All variables that are not of
the sane type as the one being searched for are stepped over

i medi ately. The next test is done on a nanme's first two
characters. |[If they are not matched, searching continues. Wen
both the data type and the first two characters are alike, a

| ength conparison is made. Searching resunes i medi ately when
unequal lengths are found. Oherw se, a conparison is done on
a byte-by-byte basis until a difference is found, or until the
end of the nane is reached.

Searches for names of only one or two characters are qui ckest.
Next qui ckest are |onger nanmes that have the sane first two
characters, but are of unequal Iength. The unwary that adopts
nam ng conventions such as

TOTAL. A1 - TOTAL. A2 - TOTAL. A3
may be surprised at the better performance obtained wth
Al. TOTAL C. A2. TOTAL C. A3. TOTAL

with no real |oss of menonic quality. Ganted, the first
exanple is (maybe) nore aesthetic. \Wich is needed nore,

pretty code or efficiency should be thought about, rather

than build-in | ess than opti num performance on a whim

How nenory space for the two tables is managed: Because the
fundanmental structure of the two tables is simlar, the above
comment s about when and how tabl es are searched, and when and
how nanmes are added apply to both sinple variables and arrays.
Tabl e- space managenent is considerably different, however.

The first table, the one with the names of sinple variables

The Blue Book About GW-BASIC and QuickBASIC -29 -

init, grows longer as a programruns, but it never gets
shorter. (Exception: CLEAR erases everything, of course;
this is one of the |east useful, and certainly one of the
nost ill-defined key words in the |anguage.)

The second table grows |onger, also, but an ERASE wi |l cause
all of the bytes in all of the arrays that followit to be
noved up, to overlay the area just "erased".

Consi der: A handy and sonetines qui ck method of clearing
totals is to ERASE and again DIMthe sanme array. Notice the
potential for reordering the relative position of array nanes.
If a DIMis done in the initialization phase of a program for
several arrays, their position in the table is consistent with
the order in which they are first named. An ERASE done on one,
foll owed by another DI M of the sane array pushes it to the
bottom of the array storage area: It is now at the bottom of
the list for future searches.

Significance (an exanple): To nmake a sort loop run faster it
is better if the array's nane is at the top of the table.
Because repetitive references to this nane nust be done, each

nanme-search in each iteration of the loop will take less tine
than would be required if the nane were at the bottom of the
array-variables table. |If you clear an array--using an ERASE

and DI M sequence--to ready it for sorting another batch of
data, know that the second sort may take |onger than the first
one did.

It is reasonable to assune that the interpreter can do a bl ock
nove of the array storage area on an ERASE nuch faster than a
FOR/ NEXT | oop can clear array elenents. |In many applications,
total systemthroughput may actually be better in the second
case. The seenmingly longer tine needed to do discrete variable
assignments to clear array elenments can sonetinmes be nore than
of fset by maintaining the array's nane at the top of the table.
The factors to consider are: How nany uni que array nanes are
in the table, how nany tines a given array has to be cleared
for reuse, and how nuch searching for array nanmes is involved
in each iteration of a | ooping process.

Note: ERASE and DI M done on string arrays portends a serious
performance ri sk beyond the sinple issues described above.
(Chapter 4 is a full discourse on how the interpreter manages
string space.)

The Blue Book About GW-BASIC and QuickBASIC - 30 -

To what extent the points made thus far should influence the
design of a given programis a function of the end purpose of
that program and what its overall design requirenents are.
Strong argunents can be made for "pretty code", for prograns
that nust be nodified periodically, and especially for those
that may have to be worked on by nore than one progranmer.

Al'l such argunents are invariably subjective, however. Wat
follows is an attenpt to reduce performance considerations to
an objective level. Recognize that what follows nust still be
viewed as approximate, or "rules of thunb", because of the
infinite variety that can occur in the world of programm ng.

Anot her preanble is needed before getting to the neat of the
matter. Speed is relative. |If your machine runs at 8 MHz

and m ne at 16, then mne can be assuned to be twi ce as fast
as yours. For the purpose needed here. Different kinds of

m cros, and nmenory chi ps, and machi ne configurations, and so
on, all do inpact the truth of clains about one being such and
such faster or slower, etc. Still, on a given machine, if one
codi ng techni que takes 20 seconds and anot her techni que takes
10, we can junp to the conclusion that the faster technique
will still be about twice as fast as the alternative on sone
ot her machine. (And assuning, of course, use of the sane
versions of the interpreter and other "systens software".)

G ven these assunptions, the follow ng discussi on makes use of
Time Units (TU) for conparison purposes to preclude ny being
m sread as having said such and such takes so many fractions
of a second. M research did involve taking clock tines, but
nei ther of us should have to do nental gymmastics because one
machi ne i s supposedly 53.7% faster than another. Ad nauseam

If we accept a base line for the tine required to search for

a 2-character variable nane, if it is at the top of the table,
as 1 Tinme Unit, then for one |ocated at position 100 in the
table, the search takes 2.2 Tinme Units. The additional 1.2 TU
seens so small, especially if we digress for a nonment and think
of it as 1.2 mlliseconds. |In practice, all clock ticks are
important. For highly repetitive processes they can be very
significant, no matter how fast the clock is ticking.

Here is a line of code froma sort algorithm

I F AX(1 C)>AX(1 C+1) THEN SWAP AX(1C), AX(1 C+1): EX = 1

The Blue Book About GW-BASIC and QuickBASIC -31-

Count the nunber of table-searches required if the SWAP nust
be made. Four for AX(, 4 for IC, and 1 for EX. So, 9 table
searches are required, for this one |line of code, every tine
it is fully executed, in each iteration of the |oop.

In a bubble sort of 1000 el enents, 100% out of order, one
pass through the table would take 9000 TU just for searching
for the variables. And this is true only if 1C and EX are
the first two sinple variables, and AX(is the first array
nane. Thus, it is no wonder sort routines run so slowy.

If, on the other hand, |1C happens to be way down in the I|ist,
say at position 100, this sane sort would require an additiona
4800 TU for each pass through the loop. And if EX is also way
down in the search list, say at position 99, another 1200 TU
woul d be required: An additional overhead burden of 6000 TU.

Fifteen thousand vs. nine thousand. Holding to ny thene that
speed is relative, this |looks |ike you could chop six mnutes
off of a fifteen-mnute sort. Nce. |In fact, this one would
run nearly twi ce as fast because the first pass runs 999 tines,
the second runs 998, the third runs 997, and so on. (In a
bubbl e sort, the depth of the loop is shortened on each ful
pass by at |east one. The nane-search overhead is a constant,
for each line executed in the loop. As the |oop gets shorter,
the burden is greater proportionally in terns of the anpunt of
wor k bei ng acconplished.)

W would all like to cut sort tinmes in half. But, don't start
recodi ng old prograns yet. The exanple used here is heavily

| oaded for dramatic affect. How many tines does a sort have
to be done on data that is 100% out of order to begin wth?
How | ikely is it your |loop's data variables are so far down in
t he names-table? One hundred sinple variables is a lot in any
of ny prograns.

One opportunity can be gleaned at this point: |[If some of the
vari ables used in a long-running |oop are naned for the first
time late in the program performance woul d have to be better
if they were nanmed earlier. Even if that declaration seens

redundant, out of place, or has no obviously |ogical purpose.

My average program has maybe 40 vari abl e nanes, rather than the
fictitious 100 above. So, the potential for inproving run tine
performance by cleverly stacking the nanes-tables is nuch | ess.
Still, the possibility of shaving even 10 or 15 m nutes off of
a one-hour run is well worth sonme serious thinking about where

The Blue Book About GW-BASIC and QuickBASIC -32-

in a programto initially declare frequently used vari abl es.

What about |ong variable names? They are easier to read, no

doubt. If we deliberately contrive a program having 100 uni que
vari abl e nanmes, all of equal length, |ike:
TOTAL. AO TOTAL. B1 TOTAL. C2 ... TOTAL. V3

Then 1.16 TU are required to find the first nanme. And 6.3 TU
are required to find nane nunber 100 in the list. There really
is a difference, as we knew, intuitively. In this (ridiculous)
case the last naned vari able takes nearly three tinmes |onger
than woul d be the case if all the nanes had only 2 characters.

Agreed, this contrivance is farfetched. But it does support

ny contention that AO. TOTAL, Bl1. TOTAL.... is nore optinmm
than those above. And 1.16 TUvs. 1 TUis the proportiona
penalty for a nane wth eight characters vs. a nane with only
two. Read this carefully, however. The penalty applies to the
time required to search for a given variable. Wich my or may
not have any real significance on program performance overall

How to get optimum performance insofar as the nam ng of data
vari ables is concerned can be sunmarized at this point. Use
short nanes. Make themunique within the first two characters.
Nane those used nost often, first. Keep the total nunber of
nanes used to the m ninum Make bal anci ng trade-offs between
the use of sinple variables vs. arrays. Avoid conditiona
expressions that use nanes that have never been added to the
tabl es. For those who like to CHAIN, be cautious of passing
nanmes al ong; those passed on will be at the top of the tables
in the programthat inherits them Focus optimzing efforts on
nanes used in long running | oops and those used in interacting
with the outside world. (An operator will enjoy the fastest
keyboard response you can provide, for exanple.)

One nore caution is needed. Notw thstanding ny enthusiasmfor
provi di ng objective guidelines, TU as used here nmust still be
seen as a relative yardstick. The interpreter's need to nove
groups of bytes frommenory into the CPU can skew precise
timng conparisons of different nmachines (viz, 8-bit buses vs.
16-bits). Also, a mnute difference between successive tests
on a given machi ne can occur because no ORGis done to ensure
that the tables align on even-word boundari es.

The Blue Book About GW-BASIC and QuickBASIC -33-

And here's a plug for Chapter 15: One of the handy tools
included there is called VLIST. It provides a quick |ist of
what nanmes are actually in the tables, in the order in which
they are stored, at any selected point in the execution of a
runni ng program

VWhat is in the variabl e-nanes tables: The nanes thensel ves, of
course. Imediately follow ng each nane, space is allocated to
contain its data. For nuneric data, this is the space used to
hol d actual values. For string data, this space contains the
address of where each string is physically located. (Again,
Chapter 4 docunents where that is.)

A nane entry in a table is at |east four bytes. Bytes 2 and 3
are the first two characters of your nanme, in upper case ASC I
If a nane has only a single letter, byte 3 is zero. |If a nane
is for a user defined function, byte 2 is equal to the ASClI
chart value of that nanme's first letter, plus 128 (decimal).

The fourth byte of a nane is a VLI (Variable Length Indicator).
This is a count of the nunmber of characters in that nane, |ess
two. That is, it is the nunber of bytes that foll ow the VLI.
For one or two character names, the VLI is zero. Each of the
bytes that follow the VLI--the remainder of the nane, if any
--are equal to their ASCI I character equival ents, plus 128.
(Note that adding 128 in decimal is the sane thing as turning
on the high order bit in a byte in machi ne | anguages.)

The single byte that precedes each nane entry is a nunber. For
nunmeric variables the nunber is 2, 4, or 8, which is the nunber
of bytes that are needed to store an integer, or a single or
doubl e precision value, respectively. The nunber that precedes
string nanmes is 3, the nunber of bytes needed to hold a 1-byte
VLI of the string itself, and the 2-byte address of where the
string is actually | ocat ed.

How t he data-type indicator is determned: |If a name in a line
of code includes a type appendage, |ike Z$, the dollar signis
translated to 3, for exanple. |If a name has no appendage, its

"default type" comes froma string of 26 codes bei ng nai ntai ned
in the interpreter's own working storage. The first letter of
a name is used as an offset--as in ASC(nane)-64--to get the
current default for all names that start with that same first
letter.

The inference in the paragraph above needs to be stated. Note

The Blue Book About GW-BASIC and QuickBASIC -34 -

that data-type appendages are translated. And dropped. They
are not stored as a name-character. So, XY$ is really the
same length in the tables as XY. In both cases the type-code
will precede the nane (assuming an earlier DEFSTR X). Know ng
this, by the way, performance debates should avoi d argui ng
about whether or not to use self-typing variable nanes. There
is a performance advantage to nanmes that have appendages. It
Is so slight--sonething like .02 TU--it ought to be ignored.
(My prograns use DEF-type, and no name-appendages to save
wearing out my little pinky on the typewiter shift key. M
performance matters, too, not just the machine's.)

Now we can read between the lines in the | anguage nmanual s.
Read: "...BASIC s default data type is for single precision
nuneric variables..." neans that, when the interpreter is
first loaded into nenory, all 26 of the codes in the list of
defaults are initially set to 4. And: Wen we do DEFINT CL
the codes in |list positions 3 through 12 are changed to a 2,
for exanple.

Further: "A type declaration appendage takes precedence over
a default type..." neans, really, if an appendage is incl uded,
the defaults-list is not |ooked at. 'Lo and behold, with a

DEFDBL X currently in force, X and X$ can be seen as referring
to different variables. Conversely, after DEFSTR X, X$ and X
nmean the sane thing.

Note: Although it is not abundantly clear in the nmanual s,
not hi ng "happens"” to the data stored in variabl es whose type
gets redefined. |If A was originally nuneric, and contained

a nunber, DEFSTR A can be done so that a string can be stored
by that name. Now, DEFDBL A will| again point to the nunber,
and A$ will point to the string. Care nust be taken in all
cases involving nunerics. |If A was originally for an integer
t hat nunber can only be referenced by A% or by doing a
subsequent DEFINT A, for exanple.

Anot her stray bullet is needed here about data typing:

Conpilers and interpreters work differently. Wether or not
vari abl es shoul d be "self-typing", and how and when DEF-type
statenments should be used are matters that require serious
t hought for prograns that may be run in either environnent.
The conventions used in ny shop address this fully; Chapters
10 and 12 both have conments that fully explore this issue.

The Blue Book About GW-BASIC and QuickBASIC -35-

Inside the tables: They are alike. A 1-byte data-type code,
the first two bytes of the nane, a VLI-byte, and the rest of
the nane, if it has nore than two characters. For sinple
vari ables the rest is sinple. The data itself comes next,
i.e., inthe next 2, 3, 4, or 8 bytes. Arrays have severa
nore bytes of overhead that follow the nanme, ahead of the
area allocated to contain the data.

The next two bytes after an array's nane contain a total-bytes
count needed for the data area. (This value, plus 2, added to
this counter's own address is the address of the data-type
byte that begins the name entry of the next array.) The very
next byte after this VLI tells how many di nensions the array
has: DIMGX(7,4) has 2 dinensions, one for 7, and one for 4.

The di nensi ons-indicator byte is foll owed by 2-byte counters,
each counter telling how nmany el enents are in each di nension.
In the above exanple, the first counter would be 5, and the

next one would be 8 PS: The counters are in reverse order,
as conpared to how they are stated in the DOM Notice al so,
i f you did not specify an OPTION BASE 1, the zero-elenent is
included in these counters. Either way, with or without a

gl obal OPTI ON BASE statenent, the dinensions indicator is a

literal count.

Now we can deduce the "conmputing” the interpreter does when it
searches for variables. And appreciate why it does take sone
time, sonetines.

Begi nning at the beginning, to |ocate the next sinple variable,
add the first one's data-type (2, 3, 4, or 8. Add 2 nore to
get the VLI, and add it. The result, plus 1 (the wdth of the
VLI) points to the data-type indicator of the next variable.

Fi nding the next array variable starts out the sanme way: The
data-type, plus 2, plus the nanme's VLI. Now, adding the val ue
in the next two bytes--the array's VLI--plus 2, points to the
dat a-type indicator of the next array variable.

Whee. The manual s are now el ucidated. An array decl aration
could theoretically have 255 di nensi ons, the capacity of the
1-byte di nensions-indicator. Sonme manuals actually say this.
O hers are nore accurate and point out that it is inpossible
to construct a line in a programthat would specify that many
di rensions. (By the way, a zero-dinensions array cannot be

The Blue Book About GW-BASIC and QuickBASIC - 36 -

specified either. Nor would it serve any |ogical purpose.)

Each di nension could, in theory, indicate the maxi num capacity
of the 2-byte counters. Sone manuals specify a maxi num Sone
don't. It probably does not matter anyway. Real prograns are
bound to run out of nenory |ong before the counters run out of
bits. Wth only 60k or so of usable program nenory, a one-line
program woul d run out of nenory trying to declare an integer
array |arger than 30,000 elements. O thereabouts.

Wth 30,000 as the probl ematical maxi num for integer arrays,

it is one-fourth that for double precision nunerics, or, about
7,500 elenents of 8 bytes each (vs. 2-byte integers). Single
precision nuneric arrays, with 4-byte elenents, wll run out
of menory twice as fast as integers; at about 15,000. Strings
require three bytes of overhead per elenment, so if only one
data character was stored per elenent, their limt is also
about 15,000. If no data are actually loaded into a string
array, as many as 20,000 el enments m ght be definable. Once
nore, these are maximuns. They are naturally |ess dependi ng
on the space used to contain your programitself, space needed
for file buffers, and so on.

Getting back on the main road after that side-track, the
mappi ng of data elenments in arrays needs to be docunented.
Those heavily into math may do intellectual tricks using terns
i ke vectors and matrices. Ohers--including yours truly--nmay
draw little crude charts to figure out conplicated FOR/ NEXT

i ndexes, subscripts, offsets, or sinply: Pointers into arrays.
However we do it, it is for the purpose of devising the |ogic
for conventional access to individual data elements. For the
unconventional, for those instances where it is prudent to use
VARPTR and PEEK and POKE tricks, it is necessary to know how
the elenments are actually stacked up in array storage areas.

The overall design of some prograns al so denands an awar eness
of how nenory is allocated for arrays, an awareness that is
hard to glean in a casual reading of nost BASIC manuals. An
ERR = 7, "out of nenory", can be enbarrassing to nost veteran
programmers; the flushed face of an amateur nerely indicates
i nconpl ete mastery of his burgeoning skills.

Each naned array is a subtable. The subtable begins right

after the name's header-string of bytes. The individua

el enents are placed contiguously--one right after another--
wi th not hing physically separating them This is possible

The Blue Book About GW-BASIC and QuickBASIC - 37 -

because all elenments of a given array are of exactly the sane
l ength. Yes, even for string data. Not to beat a dead horse,
but remenber that in a string-array, each elenent is exactly 3
bytes, the VLI-byte followed by a 2-byte address of where each
(variable length) string is itself actually located in nenory.

For the sinplest exanple, like DIM AX(5), the cost in the table
is anmltiple of the bytes needed for whatever data type Ais,
times the nunber of elenments. |If A-names are integers, and

no OPTION BASE 1 is in force, the table for this array woul d

be exactly 12 bytes. Two bytes for each el enent, position O

t hrough position 5.

Continuing with this exanple, an expression referring to AX(0)
accesses the value stored in the first pair of bytes. AX(1l) is
a reference to the next pair of bytes. AX(2) refers to the
next two, and so on.

Anot her nonmentary aside: \Wen you paraphrase a manual to say
that you get a free DIMout of an expression like AX(3) =7,
with no explicit DM for AX having been done beforehand, space
is allocated for a full 10 or 11 elenments--for each di mension-
dependi ng on a stated OPTION BASE, or, the default BASE 0 that
I's established when the interpreter is initially |oaded.

Mul ti di mnensi oned arrays are mapped nearly as sinplistic as
single-w de tables. Each successive dinension has its own
subt abl e of contiguous el enents, and the subtables are

| ocat ed one after another in the same order as the subscripts
are named in an expression. The size of each subtable can be
conmputed by nmultiplying all dinmensions, then by multiplying
that result by the nunber of bytes needed for each el enent.

Using an exanple to clarify this, assunme OPTION BASE 1 and
DIM X$(2,4,6). The first subtable is 2*4*6, for 48 bytes,
times an elenmentary length requirenment of 3 bytes per, for a
total of 144 bytes. The second subtable is also 144 bytes.
And so is the third. For a total allocation of 3*144, or 432
bytes for the entire array.

Conpare this with OPTION BASE 1 and DIM X$(2), Y$(4),Z$(6). The
X$ table-allocation is 3*2 = 6 bytes. Table Y$ is 3*4 = 12 and
Z$ is 3*6 = 18. Wiich is 36 bytes total. Wich is quite a bit
| ess than the 432 bytes in the precedi ng exanple. Mst of the
time, for small arrays, nenory consunption is a weak topic of

The Blue Book About GW-BASIC and QuickBASIC - 38 -

debate. Large masses of data, on the other hand, tend to
di ctate using |inear, single-dinensioned, individually named
tabl es rather than nultidi nensional arrays. Caveat and finito.

A few parting remarks are needed to round out this subject in
full. The start up section of a program should declare all nanes
that are used anywhere in the programs fabric. Nanme all sinple
vari ables first, then arrays. (Renenber that all arrays nust be
noved downward whenever a new sinple variable is added; |arge
arrays nean | arge bl ocks of menory nmust be rel ocated.)

Devel op habits that will not contradict QuickBASIC. To wt:
DiMall arrays. Even the little ones. GWlets you "default"”
smal | arrays with eleven or fewer elenments. QuickBASIC insists
on the use of DOIMin all cases.

User defined functions is another semantical anbiguity between
these two | anguages. In GWyou can define a function that nanes
an array before the array is declared (dinmensioned). Not so in
the (dunber) conpiler. So, nane sinple variables, then user
defined functions that use only sinple variables, then arrays,

t hen user defined functions that have to reference arrays. (And
tolerate the burden that a user defined function declared after
arrays have been naned will cause the array bl ocks to be shifted
downward in nmenory.)

Finishing this chapter, after |aboring through ny | aborious

narrative, hopefully you will be rewarded by witing faster
runni ng prograns, and when forced to, by being able to put
five pounds of sand in the proverbial four pound sack. In

either event, ny reward is in sharing what | have | earned over
a long period of time. And sone of it took ne along tinme to
| earn. \Whether that was because | am dense or the manuals are
obtuse can certainly be argued. M/ contention renains:

To be able to wite efficient prograns requires a thorough
under st andi ng of how the interpreter works.

The Blue Book About GW-BASIC and QuickBASIC -39 -

Chapter 4 = STRI NGS

It is certainly possible to wite acceptable progranms with no
concerns what soever about how the interpreter works. Mich of
this book is devoted to the thene that you can achi eve superi or
per f ormance, however, by using techniques that are the nost
efficient, based on a total awareness of how the interpreter
does worKk.

Sonetimes the net difference between choi ces made by a novice
vs. an old hand is hard to neasure. Sonetines the difference
is even as nuch as a few mnutes, but no one cares. Two or
three m nutes | onger than need be, for a programthat is used
only once a nonth, with a typical overall run time of only ten
mnutes is not apt to get any programrer fired. On the other
hand, the essence of this chapter is critical for professiona
survi val

The thenme here is not only on how well a program works. Sone
may run well enough, initially, to be acceptable to the one
paying for it. Sonme may run for weeks, or even nonths, before
a programm ng faux pas becones evident.

The risk: A programis witten that is one of several naking

up a total application set. It is discovered to be intolerable
some tinme after the application is installed and its owners have
becone dependent upon it. A fix nowis going to be expensive.
For soneone.

This type of risk is always potential. O course. When the
fault is your own, the cost for repairing it beconmes yours

al so, usually. Anyone that has witten nore than a few sizable
prograns has learned to live with the aggravation caused by an
occasional bug. A bug inside a program that is. Design bugs,
on the other hand--those that perneate the overall schene of
how a program was nmapped-out in the first place--can be nuch
nore than aggravating. They can nean msery. Seldomis it fun
to have to conpletely rewite any program because its design
was based on invalid assunptions.

How strings are managed by the interpreter is one area of
know edge sorely needed to preclude nmaki ng serious design

m st akes- - knowl edge that in nmany cases can be gotten only at
UHK Tuition rates at the University of Hard Knocks can be
very expensive.

The Blue Book About GW-BASIC and QuickBASIC -40 -

Suffer nmy continuing criticismthat nmany manual s are obscure.
In one case cited bel ow, so erroneous even, that its advice
coul d cause you to nmake design decisions that you will later
regret. The purpose of this chapter is to cut |earning costs.

For sonme this may be only a refresher course. Ohers may find
even nore of value. The cost of a few mnutes reading tinme is
bound to be a cheaper |esson, for anyone, than having to | earn
fromcostly m stakes.

As you read what follows maintain a nmental imge of a sinple
menory map. An interpreted BASIC programis a continuous
string of bytes, a block of text if you wll, that is nuch the
same as it is stored in a file on disk. A file created by SAVE
wi thout the "A" option. Wat the bytes of that text actually

| ook like is uninportant at the nmonent. (Chapter 2 docunents
all of that.)

When you LOAD a program--or create one while in editing node--
the text of the programlines is stored in nenory as a "bl ock
of bytes". For this narrative, see this as bl ock nunber two,
of five. These blocks are soft subdivisions of a single chunk
of menory that a GMBASIC programruns in. The overall size
of this chunk cannot be | arger than 64kb.

Bl ock-1 is a working-storage area for the interpreter's

own use. |Its size can be varied within certain limts by
use of the "slash options" when the interpreter is first

| oaded. Fromthen on, the size of this block remains fixed.

Bl ock-2 is your program |Its size is initially simlar to
its "file size" as it is stored in a disk file. This size
remai ns constant while a programis running. While you are
editing, this block increases or decreases in length as you
add or delete programlines, or change anything that alters
t he physical length of a given line.

Bl ock-3 is where your variables are stored after you do a
RUN. This block is conceptually a table of nanes; each nane
is imediately followed by what is "in" that variable at a

gi ven nmonent. Chapter 3 describes this block, fully. For
the subject at hand, renmenber that what is actually in string
variables, in this block, are the addresses of where strings
are, not the strings thensel ves.

Bl ock-4 is generally called "string space". This is where

The Blue Book About GW-BASIC and QuickBASIC -41 -

all "strings" are actually kept. This is the block that this
chapter focuses on. It is that heap of bytes that is bounded
on the north by the bottom of block-3, and on the south by

t he begi nning of bl ock-5.

Block-5 is last. |Its size is fixed while running. Most
manual s allude to this as the interpreter's "stack"”. |Its
size can be altered by use of CLEAR The bottom of this

bl ock can be considered as the end-of-nmenory for prograns

t hat use conventional techniques. This soft boundary is
normal ly set for the maxi mum of 64k bytes, but it can be set
to be less, by use of a slash-Moption when the interpreter
is first | oaded.

Bearing this sinplified map in m nd, renenber that bl ocks-1, 2,
and 5 are static in size while a programis running. Block-3
grows downward. The space in block-4 is used fromthe bottom
up. Wen the bottomof three runs into the top of four, or
vice versa, humthe jingle in the beer conmmercial :

"When you're out of FRE(""), you're out of space...."

When this happens, here is what the interpreter does: It runs
t hrough your stack of variables (in block-3) Iooking for those
that are for strings whose addresses point into block-4. As
each one is encountered, its string is noved, if need be, so as
townd up with all currently in-use strings packed end-to-end
at the bottom of block-4. Wen it gets done, if sone space

was freed up as a consequence of overlaying strings no |onger
bei ng used, the program keeps right on running. O wal king.
The execution pace can slowto a crawl even. Read on.

If only alittle bit of garbage gets di scarded you may not even
be aware that it happened. Sonetines it takes |ong enough for
you to humthe tune suggested above. |In sonme cases it can take
| ong enough for you to go to the store and repl eni sh your beer

suppl y.

No matter how | ong the garbage collection takes, in the event
you really are out of nenory, and you get the dreaded ERR = 7,
atripto town mght be a good idea anyway: To |ook for a new
j ob.

If my sense of levity tries your patience, renmenber the manua
that said--in the staid manner of all such literature--the tine

The Blue Book About GW-BASIC and QuickBASIC -42 -

required for repacking strings can take "...a mnute to a
mnute and a half". O sonmething like that. If ny quote is
I mpreci se, ny renmenbrance of what it said is accurate.

Where that range of 60 to 90 seconds cane fromis a conplete
nystery to ne. On an older, slower mcro it can be as little
as a nere fewnlliseconds. In contenporary machi nes (8088),
running at 10 MHz, it can take half an hour. O nore.

Mel odramatic? Not at all. Wote a POS (Point O Sal e) program
for a shoe store. Held the SKU (Stock Keeping Unit) codes in a
si ngl e-di mensi oned string array. Four thousand codes, nostly

6- bytes each. About 36kb used for this. (Prices and inventory
bal ances were kept on disk.) Total program size was about 56kb.
No sweat; ran beautifully on Wdnesday. And Thursday. Big sale
started Friday. Heavy traffic all day. Boom About ni dday,
with nine people standing in line, the "cash register"” goes out
to lunch. And it stayed gone for over twenty m nutes.

Fact or fiction? Try this:

DI M X$(3999) "space allocation
FOR I = 3999 TO 0 STEP-1 "decreasing | oop
X$(1) = STR$(I) ' phony | ook-up code
NEXT "fill whole table
PRI NT TI MER "mark start tinme
PRI NT FRE("") "provoke a cl ean up
PRI NT TI MER "how |l ong to do?

Continuing with enpirical research, we can deduce that if the
codes were stored in ascendi ng sequence, instead of backwards,
the clean up would only take 13 or 14 minutes. That woul d be
better. Maybe only half of your custoners will get mad at
you. Far better still, don't nmake anyone nad.

There are several tricks and techniques that can be used to
stave off lengthy time-outs, and a couple of others that wl|
enabl e you to warn an operator of an inpending pregnant pause.
Those suggestions are at the tail end of this chapter. That
is where they deserve to be. They ought to be used only when
doctoring prograns that were nalformed in the first place.

Only one suggestion needs to be heeded to ensure that no well
witten programw || ever go into an uninterruptible tinme-out:
Once a programgets rolling, nake sure that the size of bl ocks
three and four remain static. Static enough, at least, that it

The Blue Book About GW-BASIC and QuickBASIC -43 -

can be predicted that their boundaries will never collide.

The codi ng techni ques that can be used to freeze dynamc
storage areas are not exotic, nor even contrary to what sone
woul d call "standard programm ng practices". To be able to
predict, and therefore to preclude unnecessary "garbage" in
string space is not difficult either. But it does require
an awar eness of what causes fragnentation in the first place.

Some of this knowl edge can be intuitively surm sed from reading
progranmm ng manuals. Some is so subtle that it can be gl eaned
only by extensive probing. And sone of us are nore adept at
readi ng between the lines than are others. Wat foll ows nakes
no arbitrary discrimnation. It is the sumof it all that is
necessary to keep in mnd while programming. 1In all prograns.

If a statenment in a program says PRINT "Hello", there is no
i npact on any nenory utilization. The interpretive routine
that executes PRINT gets its output directly fromthe quoted
literal that is inbedded in the fabric of your program

In the case: X$ = "Hello", may cause a small inpact. |If this
is the first time X$ has been encountered, that name nust be
added to the tables in working storage. In ny sinple map

above, the size of block-3 nust be |l engthened to hold the new
nane (4 bytes), plus the "overhead" for the interpreter to know
how long this string is, and that it is |ocated up inside your
program (Sone manual s say the overhead for strings is four
bytes. | count three; the |l ength-byte, plus the address pair.)
The bottom boundary of bl ock-3 just noved downward 7 bytes.

Contrast this with: X$ = STR$(2*400). |If the variable' s nane
is already in working storage, the size of block-3 remains the
same, but the interpreter needs to construct a 4-byte ASClI
string: A space, an 8, and two zeros. Wen doing so it uses
the next four bytes just above the current roof of block-4, the
area of nmenory that thus far, hopefully, is unused for anything
el se. After the requested string is generated, the variable's
nanme-entry is updated to a length of 4, and the address-bytes
are overlaid with the address of where this string is actually
at down in block-4. And the interpreter's work registers are
updated to show that the top of block-4 has just noved upward
four bytes.

Do it again. X$ = STR$(2*400). Qur nmnuals are sorely remss

The Blue Book About GW-BASIC and QuickBASIC -44 -

on this: Another 4 bytes of nenory are used to hold this newy
manuf actured string, even though the target's space requirenent
is exactly the sanme as it was. One space, an 8, and 2 zeros.
And, its nane-entry in the sinple variables table is now updated
to point to a "new' address. The result is a hole. The four
bytes used for the previous string are now, unfortunately, an
unaddr essed free-space fragnent. They are garbage.

Do it differently: LSET X$ = STR$(2*400). Take advant age of
an inportant opportunity inplied in the manual's description of
how LSET and RSET work. They reuse string storage, if it has
been previously allocat ed.

FI ELD, LSET, and RSET were added to BASIC in the early days of

random access files. (Read: Disks.) There is still a trend
inthe literature to inply that LSET and RSET only work with
"fielded variables". 1In fact, they work quite well with any

string vari abl e.

When you FIELD #1,7 AS X$, the variable's nane is added to
the tables in block-3 on exactly the sanme basis as if you did
X$ = "Georgia". O, X$ = SPACE$(7). The only difference is,
where the string itself is.

Usi ng these sane exanples: The fielded X$ is up in block-1, in
the interpreter's working storage, in an area set aside as a
buffer for your file #1. As described earlier, "Georgia" is

up in block-2, aliteral in your program And the 7-spaces
wer e manufactured on the fly, down in block-4 in the so called
"string space".

Now we read between the lines: |If you do a LET to a variable
that was previously fielded--instead of an LSET or RSET--
"“...the logical association of that data to a file is lost."
Because the string that is now pointed to is down in bl ock-4,
not, as it was, up into the file's read/wite buffer.

Bef ore stunbling on we should know of a quirk that is not even
i mpli ed between the covers of the manuals. Bilingual prograns
that have to work in either interpreted or conpiled node have
to contend with this:

When a data file is opened--which nust be done before its
buffer can be defined with fielded-variables--its buffer's
space-allocation (and its contents) remai ns unchanged after

The Blue Book About GW-BASIC and QuickBASIC -45 -

the file is closed. That sane work area can be reused for
storing any string with LSET, RSET, or MD$. [If the sane
file is opened again--the sane file nunber, not necessarily
the sane file specification--previous field statenents are
still in affect, if no redefinition of those variabl es was
done in the interim

Here's the catch: The above paragraph is totally true when
using the interpreter. It is absolutely false when using
the conpiler. Don't bother to look. It is equally true
that, none of this is nentioned anywhere in either of the
BASI C nanuals. (PS: OPEN initializes all fielded variables
as hex-zero bytes, not as spaces--another gotcha not in

t he manual s.)

When variables are naned in a field statenent, if they had been
used el sewhere previously, the strings they addressed before
are abandoned: Mre junk for the garbage collector.

Mark this point before racing on: The growth of block-4 can be
contai ned by pre-allocating working storage for strings, and

t hen, by maki ng maxi mum reuse of the space thus set aside. Do
it like this: During the start-up of a program declare fixed-
l ength work strings. For exanple:

WL$ = CHR$(0) "for single byte operations
Vg = MKI$(0) "for pairs of bytes

WS = MKS$(0) "for 4-byte words

V8$ = MKD$(0) "for 8-bytes at a tine

VWB$ = SPACE$(80) "for a whole (print) buffer

Now, as codi ng proceeds, use LSET, RSET, and M D$ to nake
conti nuous reuse of these worker-variables. (Not only wll
this constrain the growth of block-4, overall perfornmance of
your programw || usually be better).

String "functions" were used above to force the interpreter to
pre-all ocate string workspace. Conpare this technique with
using Wi = "...." instead. Renmenber, when a quoted literal is
first declared, the variable will point up into your program
Later, if you do an LSET to a variable that points to program
text, a string of bytes equivalent to the length of that quoted
string nmust be allocated at that tinme, down in string space,
before the LSET can be acconpli shed.

The Blue Book About GW-BASIC and QuickBASIC - 46 -

In any event, ignore the ill-formed advice cluttering up the
manual s. Yes, X$ = "Hello"+"" will force a string to be pl aced
i mredi ately down in "free" nenory. (Because of concatenation
regardl ess of the fact that, really, nothing is being tacked
onto the word Hello.) This seemngly innocuous little trick may
al so trigger a garbage clean up. Even if there is not enough
roomleft for only the null, which needs no space at all.

Some of the above can be | earned by readi ng manual s cl osely.

By reading what they say literally, and by inferring what they

al nrost say. But, nore nust be known before you can program so

as to not get any nasty surprises. Nasty? Because you cannot

predict.... If you cannot predict, you cannot prom se. |If you
cannot prom se, do you expect to get paid? Conpare:

100 PRI NT CHRS$(34); "hel | 0"; CHRS(34)
200 PRI NT CHR$(34) +"goodbye" +CHR$(34)

Knowi ng the ASCI| character for code 34, even el enentary
students can tell you that the two |lines above wll print a
greeting and a sal utation bracketed by quotation marks. Sone
seniors mght notice that |ine 200 uses concatenati on.

The very astute m ght even spot what ol der veterans have

| earned the hard way (nmaybe). Line 200 just created 9-bytes
of garbage. The interpreter does all concatenation down in
string-space nmenory. And, it just noved the top boundary of
bl ock-4, 9-bytes closer to colliding with the bottom of the
vari abl es storage area. The programis now 9 bytes closer to
t he moment when a time-out nmust be done if a collision does
occur. Unnoticed concatenation can cause nore traffic janms

t han unseen ice on a freeway.

PS: Line 200 runs slower than 100; "goodbye" had to be noved
(copied) fromone place to another before it could be acted
upon. In line 100, "hello" can be printed right fromwhere
it 1s, in programtext-space. This difference is small, for
smal | things, but can be very significant for |engthy output.

The overall concept of variable length strings is beautiful.
To be able to concatenate--to be able to hook two strings
together, end-to-end--is even better. And it is so easy to
do. So nmuch so that it is enough, alnost, to nmake one want
to think that BASIC is a higher level, "high I evel |anguage",

The Blue Book About GW-BASIC and QuickBASIC -47 -

than COBOL. Little that goes on in a COBOL programis hidden
fromthe progranmer, however. He does not have to worry about
runni ng out of menory unexpectedly. In COBCL, all storage
areas nmust be explicitly allocated ahead of time by the
programer hinmself. In BASIC we can |let the interpreter take
over the burden of managi ng space for us. If we do rely on
that, as we are coding, we nmust naintain a nental tally of the
litter we are | eaving behind.

The follow ng is another exanple of string concatenation:

X$ = "Hello"

Y$ = "and"

Z$ = "goodbye"

Mp = X$+" "+YS+" "+Z$+" "

What is the nmenory fragnentation cost in this case? 42 bytes.
To determne this, do a PRINT FRE(O) just before this segnent

of code, and again just after. The difference in the two
nunbers printed will be 60 bytes. The resultant |ength of M
is 18. And 60 mnus 18 is 42. To duplicate this technique of
measuring, know that all of the variables used (X$, Y$, Z$, and
MP) nust have been previously encountered in the program so that
their tabl e-overhead has al ready been accounted for.

I f you prefer bookkeeping over programmng, so be it. M
preference is to not have to bother with keeping track of how
many bytes will wind up in the bit bucket. Besides being a
chore, a small accounting error could exact a |arge penalty.

One obvious alternative is to avoid doing concatenation. That
IS sage advice. Like all such advice, it nust be tenpered with
realism For a small. quick-out programthat can afford to burn
the bytes because there are so many, and the run will finish
before the nenory runs out, no problem For full scale, rea
applications that have to run for hours and hours, if we borrow
that concept from COBOL--of pre-allocating storage--then we need
not be bookkeepers. O be paranoid.

Using the earlier exanple of WB$ as a general purpose worker,
here is one alternative to doing concatenation.

G ven:

X$ = "Hell 0" : Y$ = "and" : Z$ = "g()Odbye" . V\B$ = SPACE$(80)

The Blue Book About GW-BASIC and QuickBASIC - 48 -

t hen

LSET WB$ = X$: MDS(WBS,7) = Y$: MDS(WBS, 11) = Z$
t hen

PRI NT LEFT$(WBS$, 17) ;

wi || produce a "concatenated" nessage with absolutely no cost.
No cost in the sense of causing any nmenory fragnentation. The
trade off, obviously, is that the cost is now one of effort on
your part. Calculating, exactly, the argunents to use in the
M D$ and LEFT$ statements is tedious. Pay now, or pay |later.

One nore incidental nust be considered before assum ng that
there will be enough "free space". The above descri bed what to
do: Make maxi numreuse of already allocated string variabl es,
and avoi d doi ng concatenation. The do-not-do |list of rules
needs to be | onger because, incidentally, the interpreter's
appetite for free bytes is voracious.

Here is an exanple of a do-not-do. It is not a very useful
algorithm It is nerely a nethod of conveying an inportant
i nsight: Choosing a technique for how to do sonethi ng nust
be done with care.

200 | F RI GHT$(TI ME$, 2) <>" 00" THEN 200
210 PRI NT LEFT$(TI MES$, 5)

When the interpreter bunps into the word TIME$S in Iine 200 it

constructs an 8-byte ASCII string, like "07:14:52". 1t does
it in string-space, inmediately above the current top-of-Dblock
boundary, of block-4. It then subtracts 8 fromthat block's

begi nni ng address. And it does it again, and again, and again,
until the seconds roll past 59 and become zero. Then it does
it one nore tine, to get the hours and mnutes for |ine 210.

The above is not only bad technique, it may not work at all.
Li ne 210 may never be gotten to. On a machine running at
8 MHz, over 24,000 bytes would be burned every 10 seconds.

If the | ooping burns nore bytes than avail able, at that point
in the loop, a time-out will occur, to free-up "free space".
And to do so, renenber, it has to run through your vari abl es

The Blue Book About GW-BASIC and QuickBASIC -49 -

and pack your strings, regardless of the care you have taken
to preclude fragnmentation. And while it is doing this chore,
necessary or not, the execution of your timng | oop has been
suspended. And while the interpreter is off cleaning up its
own ness, tinme rolls on. Wat are the odds that "00" was
passed by in the interin? You could be trapped in this |oop
for along tine. Forever, even. O at least until a |ucky
coincidence in tinme lets the interpreter conclude your test
before it runs out of nenory again.

So: Wiol esal e concatenation is a no-no. And so isS using
substring functions--or inplicit concatenation--whenever

it will cause the interpreter to construct a full Iength ASCl
string of text, fromwhich to extract the requested substring.

Li ke: PRINT STR$(789) has no inpact on string space. This
construction is done up in block-1, in the interpreter’'s own
work area. Qddly enough, PRINT M D$(STR$(789),2) -- to keep
fromgetting an unwant ed | eadi ng-space--will cause all four
ASCl | -text characters to be strung together, down in your
"free" string-space first, before the PRINT interpretive is
directed to print the three you want fromthere. And, at a
cost of pushing the top of block-4 closer to an unexpected
time out, all because of four, very tenporary bytes.

So, don't do it that way. Do LSET W$ = STR$(789) then do a
PRINT M D$(WI$,2). Wiich is also an alternative technique,

al beit a not very el egant one, that would work successfully
for the timng-loop above. Viz: LSET WB$ = TIMES, then the
test, |F MD$(WBS, 7,2)<>"00".... In this way you deci de where
the test-string wll be constructed in nmenory. Wat is often
called "free space" nmay be free to the interpreter, but it can
be costly to you.

Al'l of which brings us to the decision naking point: Before a
programis witten. |It's called designing. Wat nust be done?
Where can you put it? How big will it be? Roll these three
answers around, and around, and determine if there will be
enough menory. Not just to hold it all, but wll it be enough
until the job is done? The answer to this |last question should
deternmine the discipline to be used when coding. To use nenory
conserving techniques, or, "... dam the torpedoes, full speed
ahead." Wi ch may equate to not much speed at all if you SWAG
wrong about the nmenory needed. (SWAGis a technical termoften
used in software engineering: Scientific WId-Assed CGuess.)

The Blue Book About GW-BASIC and QuickBASIC - 50 -

A large string-array is slowto clean up. Each elenent is not
unl i ke having an equal nunber of individual string-variables,
when we use FRE(""), Wich can be used to deliberately provoke
t he repacki ng of string-space. Wich is a way to be able to
warn the operator that your programis about to pause for the
cause. \Which is better than letting the interpreter decide
when it needs to be done, with no warning to anyone.

Continuing with ny prom se at the beginning of this chapter:
You could do sonething like A = FRE("") at arbitrarily fixed
intervals. Maybe at the start of a nenu-selected task, for
exanple. As a better alternative, in sone prograns, force a
gar bage cl ean up, upon conpletion of each mmjor task.

An alternative nethod of knowi ng when to signal for the dunp
truck, to get rid of your garbage, is to nonitor when it's apt
to show up unbidden. Pick an arbitrary waste figure, |ike
4,000 bytes, and periodically test to see if FRE(O) has fallen
bel ow this threshold. When it does, junp to your subroutine
that warns sonebody it's tinme for the machine to take a break.

A restart is another nethod that can be used. Sonetines. It
is not always easy to do, but if your union boss is sensitive
about unschedul ed breaks. ...

A sinple RUN resets everything, and no garbage clean up is

necessary (or done). |If a start-up involves opening files, or
i ncludes soliciting one-tine input froman operator, this idea
may not be too attractive. 1In a few cases CLEAR may be used

to avoid going all the way back to the procedural beginning.
Doi ng either of these, or anything simlar, may al so entai
havi ng a nmechani sm for renenbering what was in sone vari abl es,
to be able to keep on running as if nothing untoward had
happened.

The "anything simlar" hinted at above coul d invol ve novi ng

| arge string arrays outside of the program altogether. This

m ght be good salve for a sore spot, where it is the tinme that
cl ean-up takes, rather than the frequency with which it nust

be done. One nust consider where the strings for such an array
conme fromin the first place, of course. And whether or not
they could be kept in a file instead of an array. VDI SK can
sonetines be used as a viable alternative, for exanple, wth
only a nomi nal inpact on overall perfornmance.

The Blue Book About GW-BASIC and QuickBASIC -51-

A mddl e of the road answer for problens involving |arge
string-arrays nust be nmentioned, for the benefit of those who
just mght not have already discovered it. Short strings can
be stored in nuneric-arrays. Although they too take up space,
they do not slow down the garbage collector. For exanple:

DI M A(2000) "DEFDBL A is in affect

X$ = "hello " "any 8-bytes

A(999) = CVD(X$) "ERR = 5 if LEN(X$) < 8

LSET X$ = MKD$(A(999)) "looks just like it did before

Some of the sol utions suggested above straddle that fine

| i ne between "good progranmm ng practices" and the unorthodox.
(Chapter 10 gives ny argunents, pro and con, for making

prof essional, ethical conprom ses.) A well napped-out, well

coded program or set of progranms, should not have to resort
to makeshifts |ike having to announce the need to tine-out.

If nmy recommendati ons seemto you to be, to devel op coding
habits slightly different than what m ght be consi dered as
"normal BASIC', appreciate fromwhence they cone. M anbition
is to pass al ong experience garnered froma | ot of prograns.
Sonme were better than others. The best, invariably, were those
where | maintained a total cognizance of how the interpreter

wor Kks.

Thus my continuing contention: The same will hold true for
you. Your best progranms will be those that are coded in ful
consi deration of how the interpreter works. Bearing in mnd,

al so, the vagaries of the conpilers, prograns efficiently coded
for the interpreter will also behave efficiently if they are

| ater put into production as a conpil ed package.

The Blue Book About GW-BASIC and QuickBASIC -52 -

Chapter 5 = NUMBERS

My nost frequently used BASI C nanual devotes three whol e pages
to nuneric constants, and how they are stored in nmenory, using
highfalutin terns |i ke floating point, exponential notation,
and manti ssa.

Contrast this with the forty-odd pages devoted to "graphics”,
and ten or so nore to playing nusic. Sone call me cynical.
They should have to wite data processing prograns on today's
conmput ers using software nore akin to playing ganmes than doi ng
accounti ng.

Al'l of that pompous jargon that is used in those few pages
about nunbers is nmeaningful, no doubt, for those figuring the
nunber of atons in a billiard ball. Only a word or two can be
found, however, for those of us doing the nmundane wi th noney.
For noney, or for ourselves.

A small part of this chapter will deal with small nunbers; the
greater part, with the greater problem of dollars and cents.
Whi ch al so enbraces great big totals, like for Yen. Know ng

where nost of the chips in ny nmachine came from it would seem
those fol ks, at least, would critique our manuals to be sure
that we can conpute their export payments precisely.

Text books about conmputers invariably begin by tal king about
bi nary nunbers. W can skip that tediumhere. Only a short
review of the elenmentary is needed to set the stage for the
real bit busters.

The bits in a byte--all eight of them-are still just that,
no matter how that byte is offered up for the benefit of
human consunpti on.

Agreed: A pattern of 0100 0001 is the traditional way to
show the contents of a byte in binary. |In this case, if
shown as a hexadeci mal value, it would be 41. If shown as
a deci mal nunber it would be 65, or if treated as an ASCI |
printable character, it is the capital letter A

In all events, it is still an 8-bit byte. Howit is to be
exhibited is up to the person wi shing to communicate with
anot her human. The bits in the bytes thenselves, inside the
machi ne, are still just that. Sonme are on and sone are off.

The Blue Book About GW-BASIC and QuickBASIC -53 -

What ever that patternis, it remains the sane, no natter who
is eyeballing it.

Agreed: PRINT "A" and PRI NT CHR$(65) and PRI NT CHR$(&H41)
will all print the letter A, If X$ ="A", and Y$ = CHR$(65),
and Z$ = (&H41), then ASC(A$), and ASC(Y$), and ASC(Z$) will
all, also, equal 65, or 41H, and so on.

At | east we no |longer have to fool with octal, which we used a

ot on the old PDP-8 machi nes. Hexadecimal is still in vogue,
however. Perhaps because it is a shorter formof notation than
octal. And nonitors can display al pha characters as well as

nunbers. COctal had the advantage back when all we had were
digital displays; the digits 0-7 could be used to display very
| ar ge val ues, using nuch | ess space than woul d be needed to
show the sanme thing in decimal notation.

Now t hat we have big screen displays, and sel dom need to do
menory dunps to paper, it is unfortunate that even hexadeci nal
persists. Ganted, sone people may be i npressed by those who
can speak "hexadeci mal ".

The fol ks nost responsi ble for perpetuating the hexadeci nal

hex are probably those that contribute to the devel opnent of
assenbl ers; sone of themreally do seemto like it. (W nortals
grew up learning to count on our fingers. Base 10, not 16.)

Pick up any BASIC manual that has DEF SEGin it. The exanple
shown is always: DEF SEG = &HB800, the first address in screen
menory (CGA). Wiy i s hexadeci mal used and not decimal ? They
coul d show us: DEF SEG = -18432 (or DEF SEG = 47104! because

a negative address does | ook a bit perverse).

There is a very small advantage to using in-line hexadeci mal
literal s--&HB800 i s inbedded in a "tokenized progranf as two

byt es, whereas 47104 uses four--but this same advantage can

be had by using the negative conpl enent of 65536 (i.e., -18432).

Unfortunately, there is no "intrinsic function”™ in BASIC with
which to obtain the full range of positive nunbers that may be
stored in a 16-bit word.

Here are two "user defined functions" that can be useful for
overcom ng the clunsi ness of negative addresses.

The Blue Book About GW-BASIC and QuickBASIC -54 -

G ven: DEFSNG B: DEFSTR M "define data types

M= MI $(-18432) "start of CGA nmenory
Then: DEF FNB = ASC(M D$(M 2)) *256+ASC(M
O: DEF FNB = CVI (M - 65536* (CVI (M <0)

Now. PRI NT FNB produces 47104, rather than -18432
Performance is the sane for either of these; either will work
with the interpreter, but only the second one can be conpil ed.
(The conpiler will permt the first one, but gives an overfl ow
error at run time. It is extrenmely hard to anticipate what the
conpiler will do with your arithnetic expressions. |t abhors

mul ti plying and dividing nore than nost fourth-graders.)

Here is another one: DEF FNB = LOC(1)-65536*(LOC(1)<0). This
is useful to GET 1, FNB-1 because you can GET and PUT way beyond
32767, but the LOC function returns a negative file pointer if
you do. (Chapter 8 has |oads of hard-won info about files.)

So, 2-bytes, 16-bits, can represent 65,536 unique bit patterns.
If one bit is used as a sign-bit, we cut the capacity in half,

but now both negative and positive nunbers can be stored in the
same space; the range of nunbers possible is then froma | ow of
-32768 to a high of +32767. This is what BASIC calls integers.

Agreed: &HBBOO and -18432 are two different ways to "print"
the same thing. In nodern mcros--8080, Z80, 8086, 8088, 80286,
80386, 80486--nunbers are stored (in nmenory) in 2-byte words,
with the two bytes in reverse order if we are reading fromleft
to right.

If we assign -18432 to an integer variable, then find those two
bytes in nmenory using DEBUG -whi ch di spl ays nenory contents in
hexadeci mal --they will be seen as 00B8. Which is the sane as
if we had used &HB800 as a literal. See the simlarity, and
that the two bytes are "reversed".

Do not let the hyperbole in the manuals confuse things. It
does not matter to the mcro howthe bits in a word get set.
See this:

DEFI NT C-L: DEFSTR M Z "define data types
X = MKI $(-18432) "menory = 00B8

The Blue Book About GW-BASIC and QuickBASIC -55 -

| = ASC(X) "I =0

C = ASC(M D$(X, 2)) 'C = 184

PRI NT HEX$(1) "prints O

PRI NT HEX$(C) "prints B8

PRI NT C*256+I "prints 47104
PRI NT Cr256+I - 65536 "prints -18432
PRI NT HEX$(C*256+| - 65536) 'prints B80O

Suppose you want to print a character on the screen then nove
the cursor so that it is superinposed over that character

Here is one way to do it, slowy...

LOCATE 10, 30: PRI NT "?": LOCATE 10, 30
Here is a faster way...

LOCATE 10, 30: PRINT "?"; CHR$(29); '29 is a backspace code
Here is an even faster way ...

LOCATE 10, 30: PRI NT MKI $(7487) ; ' CVI (" ?" +CHR$(29)) =7487

See how the use of MKI$ in the above can output two bytes to
the tube (conceptually, a serial device). It can be done to a
sequential file too. So why all the bull about CVI, CVS, CVD
MKI$, MKS$, and MKD$ being for the benefit of random access
files? W do they think they are kidding: "BASIC stores data
in randomfiles in a conpacted form" What is in files is up
to the programrer that generates them (Chapter 8' s thene.)

"“Convert Variable Integer" was the original mmenonic intent of
Cvl. MI was a clunmsy acronymfor "Make Integer”. |In neither
case does anything get "converted" or "made". This is true for
CVS and MKS$, and CVD and MKD$, also. Al of these functions
are merely useful for telling BASIC how you want to store your
own data. It matters not at all whether that data is in a
fielded-variable (in a file buffer), or down in string space.

CI NT, CSNG and CDBL--Convert Integer, etc.--do, however,
convert nuneric data. Just as the manuals say. They have been
in the | anguage since the days when we saved our prograns and
data on audi ocassettes. They are as usel ess today as they were
back then.

The Blue Book About GW-BASIC and QuickBASIC - 56 -

Integers are stored in two bytes. Single precision use four,
and doubl e precision use eight. To "convert" numnbers from one
data type to another, sinply reassign the value to a variable
of the type wanted. (A =B or B=1, etc.) Upward conversions
al ways work, of course, but if the value in a source variable
exceeds the capacity of the target, an overflow error occurs.

An ol d manual said that C NT was useful for rounding deci mal
fractions to whol e nunbers. See this:

100 DEFINT C : DEFSNG B : DEFDBL A
110 B = 1245.55

120 C =B

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
RUN
1246

1246
-1246
-1246

44444, 56
44444, 56
44444, 5546875
44444, 5546875
Gk

X
3035

OZ'O'_,\;OZ'O

(B)
5.55

EII

-1

EII

,\
=

EII
T

~

4444, 55555555555#

D X
UJEW
>

UJ5£é25>

P
=
>

TU>TVP>VWIT>TVOTWILOD
I
E%
Z

P
=
>

Ok what? See that these "conversion functions" effectively do
nothing for us. And that rounding is done without regard to the
sign of the nunber.

Once upon a tine a nenory byte cost a buck. (Now they are nore
like ten for a penny.) Cost caused the invention of 2-byte,

The Blue Book About GW-BASIC and QuickBASIC -57 -

4-byte, and 8-byte nunbers. Presunably they persist in the big
machi nes because of performance costs. A savings of only a few
seconds of processing tinme each day in |large DP shops can anount
to as nuch as soneone's salary for that day.

Nei t her of these two cost factors have nuch significance in
today's "personal conputers”, but space can sonetines still be
acritical issue. A large integer array requires only one
fourth as much nenory as double precision. Agreed. Speed is
| ess often a design issue, however, in choosing which type of
vari abl e to use.

| use 24, 30, and 36 as yardsticks for estimating performance,
for doing integer, single, or double precision arithnetic. The
inplied ratio is: Single precision takes 25% | onger and doubl e
preci sion takes 50% | onger than integers. It does not natter
what the real tinmes are--mlliseconds, hours, days--these
rati os renmai n about the same. The factors are approxi mate.

Most of the differences in tinme for doing arithnmetic with 2,

4, or 8-byte words is caused by the tinme it takes to nove words
fromnmenory into the MPU and back. That tinme does vary anong
m cros depending on their data bus bandwidth (e.g., an 8-bit
bus vs. 16-bits.) The tinme required for different types of
calcul ations also varies, but that truth is responsible for a
much smal | er skew in the accuracy of ny rule-of-thunb ratios
for deliberating perfornmance issues.

Far nore critical to performance, usually, is choosing the best
techni que for "processing” |arge nunbers. Those decisions do
have to consider first, which data type should be used.

Assum ng the need to "conpute" dollars and cents--which is a
valid assunption in at |east 99% of mny prograns--begin by
reviewi ng the magni tude (size) capacity of the different types
of numeric vari abl es:

For integers it is $327.68- or $327.67, if insertion of the
deci mal point is delayed until print time, and presum ng
the dollars were converted to pennies in the first place.

Si ngl e precision variables can handl e up to one hundred
thousand dollars, precisely. Unformatted, as pennies, the
range is -9999999 to +9999999 (seven nines: $99, 999. 99).
Wi ch is enough capacity, so far, for the balance on nost
car | oans, but not enough for doing anortization schedul es

The Blue Book About GW-BASIC and QuickBASIC - 58 -

for many hone nort gages.

Doubl e precision variables can al nost handl e the nationa
debt: Up to Ten trillion dollars. (Anericans and Frenchnen
use trillion; British and Germans say billion.) Stored as
penni es, the range is -999999999999999 to +999999999999999.

Those 15 nines mght be printed as $9, 999, 999, 999, 999. 99- -
using a PRINT USING statenent, dividing what is actually in
the variable by 100, at print time. And that is THE KEY to
how to store noney in a mcro, in BASIC. As pennies.

Al'l totals should be accumul ated as whol e nunbers. Only. No
fractions. 1In the case of regular dollars and cents, if the
i nput source includes two deci mal positions, |NT(A*100) wil
produce a whol e nunber (of cents). Wich nakes sense.

INT (integer) works with all three nuneric data types. The INT
(or FIX) function should always be used when first assigning
floating point nunbers to single or double precision variables
to preclude possible cumulative errors caused by stray bits.
(Revi ew t he consequence of |line 250 in the above program)

Here is another exanple of what | call "stray bits":

DEFDBL A
A =1234.7
PRI NT A "prints 1234.699951171875

DEFDBL A : DEFSTR X

X = "1234. 7"

A = VAL(X)

PRI NT A "prints 1234.7

In the first case above, Ais real close to being right. If
PRI NT USI NG " ####. ##"; A is done in either of these cases, the
output is the sane (1234.70), and is correct, if we can ignore
what is not shown.

It is enbarrassing, to say the | east, to have an account ant
confront you with a Trial Balance listing that is in fact, out
of bal ance by even a penny or two. Especially when it occurs
after a program has been in use for several nonths.

The "cumul ative error” in (hidden) floating point fractions
can be self-conpensating for a long tine, over a long list of

The Blue Book About GW-BASIC and QuickBASIC -59 -

figures being added into a single total. This is especially
true where the list includes both positive and negative
nunbers. The risk of floating point errors is elimnated
entirely if only whole nunbers are used at all tines.

It also sinplifies the problemdescribed in the manual s about
doing I F-conditional tests involving floating point nunbers.
There are no m nute discrepancies to worry about if no junk
bits ever get turned-on.

Now is the time for some literal truth about literals; what the
manual s (erroneously) refer to as "constants": A constant is a
val ue that does not change during program execution. It may
have gotten into nmenory in the first place froma variety of
sources. Aliteral is a constant at the tine it is literally
stated in a programsource line. |If that statenent assigns the
value to a variable, whether or not that val ue remai ns constant
IS up to the person who wote the program

| mpreci se English can be ignored; inprecise BASIC descriptions
cannot. Take careful note: Double precision literals that do
have to include fractions nust al so have that pesky pound-sign
appendage. (bserve:

10 DEFDBL A

20 A = -1234.7 'no data-type appendage

30 PRI NT A*100

40 A = -1234. 7# "doubl e precision, for sure
50 PRI NT A*100

RUN

-123469. 9951171875

-123470

Qddl y enough, nillage rates can be correctly hard-coded w t hout
having to renmenber to append a data-type synbol if they can fit
in, and are assigned to, single precision variables. (An error
of only a fewnills will irk any tax assessor.)

There is another BOAB (bit-of-a-bitch) of difference between
integers and floating point variables. Negative zip. Wtch
out for this one:

1110 DEFDBL A
1120 A = -A
1130 X = MKDS$(A)

The Blue Book About GW-BASIC and QuickBASIC - 60 -

1140 PRI NT USI NG " ######. ##" ;, CVD(X)
RUN

-0.00
Ok

Ok ny foot! An Accounts Receivables statenment that shows what
is owed is a negative nothing can cause sone custonmers to have
second t houghts about doi ng business with vendors that enpl oy

i nconpet ent programers.

I f the above program i ncl uded

1150 FOR|I =1 TO 8
1160 PRINT ASC(M D$(X, 1));
1170 NEXT

we would see 0 0 0 0 0 O 128 0 and can infer that BASIC does
not always turn off the mnus-sign bit when successive nath
processes result in a value of zero. George Boole would rol
over in his grave if he could see this.

My conpiler manual tells nme that the high order bit of the
third byte is the sign bit, and that, if the fourth byte of
single precision variables is zero, the whole thing is zero.

It also says these things are true for doubl e precision (viz,
the seventh and eighth bytes). It does not warn nme to PEEK
before a PRINT USI NG however. None of ny interpreter manual s
nmention any of this, apparently preferring that we should | earn
for ourselves the hard way rather than back pedal (what this
country boy sees as) a bug in the math package. A bug that is
nearly old enough to grow a mnust ache.

The exanpl e used to denonstrate this not-so-funny phenonmenon

Is a contrived one (arbitrarily assigning a mnus-zero in |ine
1120). It does not matter. This sane thing can happen when
"conputing” with floating point variables. It is far better to
remenber this sinplistic exanple than to have a progranm ng
faux pas be seen by folks that do not trust conputers.

One obtuse solution to this problemis
| F ASC(M D$(X,8)) = 0 THEN LSET X = MKD$(0)

whi ch cleans up all of the bytes in double precision data
fields inrelative files. Wich can be a real problem Mny

The Blue Book About GW-BASIC and QuickBASIC -61 -

data files have a long life span. Some records may be updated
by a lot of prograns, often, and renmain in situ indefinitely.
(This sanme trick works, by the way, for single precision fields
by sanpling byte-4, and using MKSS$.)

Wiere care has been taken to ensure only whol e nunbers are ever
stored, there is a sinpler trick that can be used to ensure no
dangling sign bits get left behind. 1t too is kinky I ooking:

A = CVD(X "A is doubl e precision

LSET X = MKD$(A+0) "Xis an 8-byte string
The foll owi ng ever-so-slight variation of the same trick wll
not work (will not clear-up a m nus-zero):

A = CVD(X)+0

LSET X = MKD$(A)

It is not a bad idea, therefore, to adopt a habit of always
updating floating-point fields with a plus zero, as in
MKS$(B+0) or MKD$(A+0). The zero does not "hurt" the val ue
that is being stored, and in this case, the plus sign wll
not run afoul of any of Judge Boole's | aws.

See what is neant by remarks about the difference between what
is taught in school, and what we have to resort to out here in
the jungle. Adding a literal zero to anything | ooks as odd as
that old pun about coding two STOP statenents back-to-back in
prograns that run so fast that they sonetines skid through the
first one.

As nentioned el sewhere, nore than once, ny preference today is
to store all user-visible amounts in data files as formatted
ASCI | strings. Back when the capacity of a floppy was only
128kb, nost of us would do al nbst anything to save a byte or
two. Wich included using MKI$, MKS$, and MKD$ soneti nes.

On today's machines, with floppies holding better than a Meg,
and all serious users having at |east a 20nb hard di sk, we
can afford to spend a few of those bytes as a fair trade-off
for achieving better performance.

One argunent is: A sinple PRINT of a fielded-variable, as in

PRI NT X

The Blue Book About GW-BASIC and QuickBASIC - 62 -

is all that is needed to output what the user wants to see.
Contrast this with the "old fashi oned way"; sonething liKke..

A = CVD(X) : PRINT USING "#######. ##"; N 100

which is certainly a ot slower at output tine. The extra
storage cost, in this exanple, is two bytes--a 10-byte string
vs. an 8-byte "conpressed" MKD$. Two bytes tines 1,000

records = 2,000 bytes. Big deal. Even, assuming five fields in
each record were done this way, the cost is still only 10, 000
bytes conpared to 8-bytes per field the way we used to do it.

Anot her strong argunent for burning a few of the user's bytes
Is that it saves himnoney. |In programm ng costs. PRI NT USI NG
does a real good job of rounding, of both positive and negative
amounts. BASIC can do it better and faster than we can. No
matter what codi ng techniques are used involving ABS, |INT, and
FIX, or two or three IF-statenents, rounding can be a real pain
in the posterior for floating point val ues.

One caveat needs to be docunented here |lest you too waste hours
| ooki ng for mcroscopic bugs: GWBASIC and Qui ckBASI C do not

al ways produce exactly the sane answers when working with "l ong
fractions".

Suppose an operator typed 4654. 110217381453, and you stored it
in a double precision variable called AL And later you printed
what was in A using PRINT USING The output can vary dependi ng
on the mask used, and whether the conpiler or interpreter is
used.

Usi ng GWMBASI C

PRI NT USI NG " #####. #H#H##H#HAH##H#H" ; A prints 4654. 11021738145300
Usi ng Qui ckBASI C

PRI NT USI NG " #####. ####H#H#H#H##E" , A prints 4654. 11021738145303
That little "0" (or "3") on the far right in the above two cases
may or may not be significant to bankers and accountants. It nmay
be to sonme | and surveyors, and it is bound to be neaningful to

those taking pot shots at the nobon. Starwars programmers pl ease
t ake note.

The Blue Book About GW-BASIC and QuickBASIC - 63 -

We have witnessed a |lot of growh in DOS-based BASIC. A |ot of
addi ti ons have been nade to accompbdate new nechani cal gadgets.
It is unfortunate that they have not opted to add, al so, what
woul d have been nice to have had all along: PRI NT USING that
did not print, i.e., a function for generating formatted ASCI |
strings, in nmenory, in a string variable.

PS: The best BASIC that | have ever used, undoubtedly, (and
| have used better than a dozen) does have formatted-string
capability. And a lot of other goodies, and, its conpiler
and interpreter speak the sanme | anguage. It was authored by
a real pro, a fellow naned Ted WIlianms. He understands what
we poor application progranmers have to do to eat. From ny
chair, his product is analogous to the classical witticism
"The best answer is not always the correct answer.”" In this
case, because that BASIC is not DOS-based (his O S is called
THEQCS) it is not a viable option. Chapter 1 states ny case
for GeeWhiz. DOSis inthe nmgjority. M sense of ethics
keeps me fromconning ny clients away fromthe mainstream

Now, back to this mainstream PRI NT USI NG can be used to
generate formatted strings, without printing. It is not as
efficient as a built-in function could be, but it does work,
and it is nore efficient than can be done with a ot of MD$
and | F statenents. The way to do it is into a dunmy record,
in a dumy relative file (which some dummy started calling a
"random file", somewhere back down the line). The follow ng
dummy program denonstrates how this dunmy does it.

1000 DEFSTR X: DEFDBL A "define data types
1010 OPEN "dummy" AS 1 LEN = 16 "relative file

1020 FIELD 1,16 AS X "work field

1030 A = -359550# 'sonme noney

1040 GET 1,1 ‘reset record pointer

1050 PRI NT #1, USI NG " ######. ##"; A 100; 'format in buffer

At this point X =" -3595.50 “. Nowit is easy to LSET
as much of X as is wanted, into any string variable, be that a
fielded variable, in areal file, or in some work area. The

| ength of X can be set to whatever nmay be needed; it is a good
idea that it be nore than enough to tolerate the rare crap we
all suffer fromtine to time, when a USI NG mask does not define
enough print positions.

Hnt: This is also a sinple nethod to use to keep the world
fromever seeing "% 3595.50", and, to preclude screwed-up

The Blue Book About GW-BASIC and QuickBASIC - 64 -

columar alignnent of fields that are actually printed. By
doing this dummy print first, a sinple IF can be used to see
if what is not yet visible ought to be, or it ought to be
managed nore professionally than BASIC would do it. (How
nice it would be if we could error-trap this stinker. A box
of TD Forms W2 can be expensive; a |line-wap caused by this
type of "bug" could nmean an entire rerun would have to be
done. And guess who pays for the wasted forns.)

A few nore notes are needed to round off this proposed trick of
the trade. The CGET 1,1 is a nust, every tine this "function”
is used, to maintain the buffer-position-pointer in the sane
place. So is that trailing sem colon. See why this is a
dummy file: No PUT is ever done. Even so, when you close up
shop, DUMMY will be seen with DIR, with no records init. So,
just before END or SYSTEM you nay want to KILL "dumrmy".

An alternative to the dummy trick is to get PRINT USING strings
out of nonitor nmenory. Do a PRINT USING to a known | ocation on
the screen and then use PEEK or SCREEN to get ASCII characters
into a work-string. Like this:

X = SPACES$(20) ' DEFSTR X al ready done
L = CSRLIN
C = POS(0)-1
PRI NT USI NG " #####. ####H# " A
FORI1 =1 TO 20
MD$(X 1) = CHR$(SCREEN(L, C+l))
NEXT

In the above sinplistic exanple, an arbitrary 20-byte fetch
was done, and the trailing spaces in the USING mask are for
covering the eventuality that what we want has "slipped" to
the right because BASIC generated a precedi ng percent-sign.

In the event you do not want the operator to see what is
goi ng on, PRINT USING can be done to a "blank area" on the
screen with a preparatory statenment |ike COLOR 7,7 (when the
foreground and background argunents are the sane, what is
printed cannot be seen).

As a general rule, performance is about the sane for either,
SCREEN or PEEK. Using PEEK as an alternative for picking
up ASClII characters fromvideo-RAM has to contend with the
every-other-byte problem of course. (Text node characters

The Blue Book About GW-BASIC and QuickBASIC - 65 -

are two bytes: A video attribute byte, plus the character
code itself. See Chapter 6.) PEEK can still sometinmes be the
better alternative: 1In the event there is not enough "bl ank
space" on the screen, and you have a col or nachi ne, and want
to PRINT USINGto a currently invisible page. (Chapter 7,

ad nauseam)

There is another trick that can be used to obtain the result

of having used PRINT USING The "nunerics portion" of the

bi nary-to-ASCI| conversion that is done, is done up inside the
interpreter's working storage area before the PRI NT takes

place. Gven a default DEF SEG PEEK can be used to fetch those
characters. Like this:

1000 DEFSTR X
1010 X = STRI NG$(25, 0)
1020 PRI NT USI NG "hel | o ###. #####"; 123. 456
1030 B = 1545 ; interpreter working storage address -1
1040 FOR'I =1 TO 24
1050 MD$(X, 1) = CHR$(PEEK(B+l))
1060 NEXT
1070 | = INSTR(X, CHR$(0))-1
1080 PRI NT LEFTS$(X, 1)
RUN
123. 45600
Ok

Several variations of this schenme are possible, of course. Here,
a 25-byte work string was used, and the looping arbitrarily picks
up all 24 of the bytes that the interpreter uses for constructing
PRI NT USING strings. Wen it does it, if a mask has | ess than
the maxi mum of 24 digit positions, PEEK will return a zero-byte
follow ng the | ast-used position. (Thus the 25 zeros set up in
line 1010 will ensure the INSTR trick in 1070 wll always work.)

The key factor in this scheme is the address in line 1030. It
really should be 1546; B in this exanple is shown as one | ess so
that B can be added to | during the | oop.

See the | eading space at print time in this exanple. The first
byte of the string--PEEK(1546)--could be that pesky percent sign,
in the event that what is to be printed exceeds the nask.

Yes, this schenme is vulnerable (and profane). That address of
1546 is correct for GWMBASIC 3. 23--ot her versions of GWBASI C nay
use a different address. Trial and error probing can be done to
confirmthe correct address for a given software rel ease. And,

The Blue Book About GW-BASIC and QuickBASIC - 66 -

needl ess to say, forget this schene entirely for Qui ckBASIC
progr ans.

PRINT USING is useful also for "converting" exponentia
notation (so called) to the format we non-scientific types
prefer. And it is a way to solve those problens when STR$
wi Il not produce our preferred fornmat.

VAL is the "opposite"” of STR$, of course, and will convert
ASCI'| nunbers back to binary nunbers, regardless of their
format. Even VAL is not accurately described in the manual s,
however .

Nunbers that have been stored as formatted strings have to

di spense with conmas, |eading dollar signs, and the |iKke,
naturally, if you need to convert them back to nuneric val ues.
It is also necessary to be careful about what follows a
nunber-string. It used to be that VAL would automatically
term nate scanning, fromleft to right, when any non-nuneric
character was encountered. BASIC nmanuals quit prom sing that,
sonme time ago.

Now, VAL("12 34") returns 1234, for exanple. Stranger still

if astring of digits is followed by CHR$(28), or CHR$(29), or
CHR$(31), then VAL returns zero, no matter what the |eading
digits are. In G¥BASIC, that is. QuickBASIC still ignores
spaces i nbedded anywhere in a string of digits, but does manage
to stop scanning a string when any non-nuneric character other
than a space is encountered, and return a true nuneric val ue.

It is best to always code so that the I ength-argunent in
expressions |like VAL(LEFT$(X$,L)) is precise; if L enbraces too
many bytes, you may not be fond of the answer.

And we need sone other answers. Answers to questions that the
manual s provoke, but never explore. Viz, the permtted ranges
for floating point nunbers: "approximte ranges" are -1.7E+38
to -2.9E-39 for negative values and 2.9E-39 to 1. 7E+38 for
positive val ues.

Translation: These are "limts" in the sense of what can be
assigned to a variable wi thout causing an "Overflow error".
These ARE NOT the ranges of what can be stored and processed
correctly. (Renmenber, 7-digits or 15-digits are the pragmatic
limts, irrespective of a decimal, or its position).

The Blue Book About GW-BASIC and QuickBASIC - 67 -

Terns can be confusing too. Mantissa refers to the bit-string
that represents a nunber. Exponent is the (next) position in
that bit-string where the deci mal should be.

FI oati ng- poi nt nunbers are stored as bit-strings, in 4 or 8
bytes, as has already been said. |If we |ook at the 8 bytes
contai ning MKD$(2.2) we would see (left to right in nenory):

byte-1 byte-2 byte-3 byte-4 byte-5 byte-6 byte-7 byte-8
205 204 204 204 204 204 12 130
i n deci mal

byte-1 byte-2 byte-3 byte-4 byte-5 byte-6 byte-7 byte-8
CD cC cC CcC CcC CcC 0oC 82
i n hexadeci nmal

byte-1 byte-2 byte-3 byte-4 byte-5 byte-6 byte-7 byte-8
1100110111001100110011001100110011001100110011000000110010000010
in binary

The "mantissa bit string" (the nmagnitude) for MKD$(2.2) is:
10. 0011001100110011001100110011001100110011001100110011012

Reading fromthe left, the first bit is arbitrarily turned on.
This is the bit that the manuals call "inplied'. The next 7
bits are the 7 right-nost bits frombyte nunber 7, reading from
left to right. The renmaining 48 bits cone frombytes 6, 5, 4,
3, 2, and 1, reading the bits in each byte fromleft to right.

The high-order bit in byte-7 (the left-nost bit) is the sign bit
for the nunber being represented. |If this bit is 1, the nunber
IS negative; if this bit is 0, the nunber is positive.

Byte-8 is the "exponent byte"--it points to where the decinal
woul d be in the mantissa bit string, if in fact it was printed
as shown above. In this case, byte-8 reads 130 in decinmal, but

130 less 128 is 2 (128 accounts for the high-order bit in byte-8
being on). Effectively, the exponent cannot be |arger than 56,
that is, the decinmal cannot be beyond the length of the string
of bits that represents the mantissa. (The B manual says the
mantissa is 58 bits. Best | can deduce is that it is 56 bits,
the "inplied" 1 + 7 + 48.)

If the exponent byte is |less than 128 (the high order bit of
byte-8 is off) the nunber is a fraction--contains no integer

The Blue Book About GW-BASIC and QuickBASIC - 68 -

portion--and the exponent number indicates how many zero-bits
need to be inserted in front of the mantissa string.

Now, | ooking at the mantissa string shown above for MD$(2.2),
each bit position to the left of the decimal (the integer)
represents a positive power of two; each bit position to the
right of the decimal (the fraction) represents a negative
power of two. As in 1, 2, 4, 8, etc. |If abit is one (1) it
ison; if it is zero (0) it is off. Notice that the integer
manti ssa bits are stored fromright to left and the "l eadi ng
zeros" are dropped (the nunmber is "nornalized" according to
the manual s). The fraction nantissa bits begin i medi ately
after the "binary point", and are stored fromleft to right.

The foll ow ng shorty denonstrates howto "read the bits". In
this case Mcontains a string of ASCII ones and zeros that
correspond to the mantissa string for MKD$(2.2).

1000 DEFDBL A: DEFSTR M DEFI NT C-L
1010 M="10001100110011001100110011001100110011001100110011001101"
1020 E = 2 ' Exponent (note decimal position is "inplied"' by E)

To conmpute the integer-portion of the manti ssa:

1030 G =0 "G = powers
1040 FOR I = ETO 1 STEP-1 : C = ASCCMD$(M1))-48 'O or 1
1050 A=A+C*2"r"G: G=G+1

1060 NEXT

To conmpute the fractional portion of the mantissa:

1070 G = -1
1080 FOR | = E+1 TO56 : C = ASC(MD$(M 1))-48
1090 A=A+ C*272G: G=G1

1100 NEXT

1110 PRINT A

RUN

2.2

Ok

Al t hough an exponent of -127 is mechanically possible, the
"limt" of 2.9E-39 cannot be seen, per se. The books say PRI NT
USI NG can specify a "mask" of 24 digits; in fact that limt is
23, for fractions, because the decimal point counts as a "digit"
in a USING mask.

The Blue Book About GW-BASIC and QuickBASIC - 69 -

So: -2.9D-17 will PRINT as 2.775557561562891D- 17 or, as

. 00000000000000002775558 with a maxi mum al | owabl e PRI NT USI NG

mask of . #####H#HAHBHHHHRHAHAHA" (23 pound signs). The other
“"limt" of -1.7D+38 will print as .4995850990994722, or it wl|
be the sane string of digits followed by 7 zeros if a max-size
PRI NT USI NG mask is used.

Al'l of the above is true for single precision, which uses only
4 bytes for storage, but 8 for internal machinations (then the
nunber is "truncated").

Here is another way to observe the internal simlarities of
si ngl e and doubl e preci sion nunbers:

1000 DEFDBL A: DEFSNG B: DEFSTR MZ ' define data types

1010 M = MKD$(1234.7) "LEN(M = 8

1020 X = MKS$(1234.7) "LEN(X) = 4

1030 PRINT (X = M D$(M 5, 4)) ‘-1 if true, O if false
1040 PRI NT CVS(M D$(M 5)) "same as X

RUN

-1

1234.7

Gk

See that the four right-nost bytes of double precision nunbers
(8 bytes) are formatted the sanme as for 4-byte single precision
nunbers. Sonetines we can take advantage of this "fact". Like
this:

Assign a nunber to an 8-byte string, as in
M = MKD$(1234. 7)
then test to see if it will fit in only four bytes, with
| F LEFT$(M 4) = MKS$(0) THEN.. ..
which will allow us to "pack" nunbers in fewer bytes in data
files. Sonetimes. O course, when reading such files sone

mechani smis needed for determ ning which "fields" are 8-byte
nunbers and which are four.

Meanwhi | e, back to the story of the "phantombits". See why
IF A=0 may not work, even when we PRINT A and see it is zero.
When working with floating point variables it is inperative to

The Blue Book About GW-BASIC and QuickBASIC -70 -

remenber that many bits may be hidden fromthe casual observer.
And hi dden from casual (or anateur) programrers. And from sone
teachers, preachers and politicians, casual or otherw se.

There is also a "bit" of difference between those two BASIC

| anguage products (GWBASI C and Qui ckBASIC) that are supposed to
produce identical results. Wen fiddling with mnute fractions
be aware that MKD$ and CVD may not al ways translate as exactly
the sane nunber. See this:

1000 DEFSTR M DEFDBL A: DEFINT C-L 'define data types

1010 A = 6638.071237449458# " doubl e precision nunber
1020 M = MKD$(A) "LEN(M = 8

1030 FORI = 0 TO 15 "alter left-nost byte
1040 MD$(M 1) = CHR$(96+I) "96 = 60 in hex

1050 PRI NT HEX$(ASC(M), CVD(M '60, 61, etc.

1060 NEXT "until 6F in hex

RUN wi t h GW BASI C pr oduces

60 6638. 071237449458
61 6638. 071237449458
62 6638. 071237449458
63 6638. 071237449458
64 6638. 071237449458
65 6638. 071237449459
66 6638. 071237449459
67 6638. 071237449459
68 6638. 071237449459
69 6638. 071237449459
6A 6638. 071237449459
6B 6638. 071237449459
6C 6638. 071237449459
6D 6638. 071237449459
6E 6638. 071237449459
6F 6638. 07123744946

but if conpiled with Qui ckBASIC this program produces

60 6638. 071237449458
61 6638. 071237449458
62 6638. 071237449458
63 6638. 071237449458
64 6638. 071237449458
65 6638. 071237449458
66 6638. 071237449459
67 6638. 071237449459

The Blue Book About GW-BASIC and QuickBASIC -71-

68 6638. 071237449459

69 6638. 071237449459
6A 6638. 071237449459
6B 6638. 071237449459
6C 6638. 071237449459
6D 6638. 071237449459
6E 6638. 071237449459
6F 6638. 07123744946

whi ch at a gl ance seens to be the sanme output. Look again.

Gven that Mis an 8-byte string, and that the | eft-nost byte
contains the least significant bits of MKD$(A)--the trailing
deci mal digits--then | ook what happens when that byte is equa
to 65 (hexadecimal). GWBASIC "reads" this nunber to have a
final digit of 9. QuickBASIC says it ends in 8.

Now, suppose you saved some nunbers in a file with GW BASI C
And you read those nunbers back with a conpiled program O
vice versa. Wat you see may be different than what you saw.

The noral of this Iesson is the seesaw. Be alert when "m xi ng"
these two | anguages. It is nice to be able to do dynam c
debugging in interpretive node of prograns that are to be used
|ater in conpiled form but watch for gotchas like this. And
remenber that 2 plus 2 is not always 4, exactly, in BASIC (or a
| ot of other |anguages).

Revi ewi ng what | have just witten, | amconpelled to request
your indul gence, but not inclined to rephrase anything. No
of fense is intended toward those who teach. Their world has
real -1ife denmands too. For sure.

The systens software products we are obliged to use could

al ways be better too. For sure. Their developers are often
forced to abi de by econom cs-based deci sions, no doubt, even
when their expert acunen woul d dictate otherwi se. G anted.

What has been shown is how this old duffer has learned to
live with what exists. Critical cracks are neant to give
per spective; codi ng suggestions are neant to be useful advice.
Sporadic levity is meant to keep you fromfalling asleep

None of this should be construed as recomendati ons to use
anyt hi ng ot her than "good programr ng practices”". In ny world,
what is good, is, usually, what is profitable. |If you too can

The Blue Book About GW-BASIC and QuickBASIC -72-

profit fromany of this, neither of us has wasted our tine.

The Blue Book About GW-BASIC and QuickBASIC -73-

Chapter 6 = DEVI CES

Wien we have to wite a programthat can run in nore than one
envi ronment - -on vari ous nmakes or nodels of machi nes, varying
machi ne configurations, or updated software versions--then we
really begin to appreciate the challenges of interfacing with
the outside world. Challenges for us, and for all |anguage
devel opers.

Most | anguage devel opers try to remain al oof and avoid direct
contact with hardware devices, preferring to do all input and
out put via "device drivers" in the operating system Being one
rung further up the software social |adder, programmers |ike us
prefer not to consort with the peons at the ends of the cabl es,
either. But, we have no choice. W live in the real world.
Systens software witers seemingly live in urban cloisters.

G anted, our cultural positions are better today, in general,
than that of a few years ago. Nearly all "dunb devices" are
now "intelligent peripherals”. But, they still enjoy being
uni que. Sonetines their uni gueness goes beyond a cl ass-1|evel;
sonme individuals born only a few days apart will have traits
that resist legislation intended for the good of the majority.

Add to that observation that it often seens there is no single
| egislature. In fact, one is tenpted to think sonetines that
there is social conflict between conputer manufacturers, the

| anguage devel opers, and the operating systens witers. They
each tend to wite their manual s autononously, only now and
then alluding to the vagaries of the others.

VWi ch brings us to the point of this chapter. W can presune
those fol ks were paid for what they did. Qur reward depends
on making an application work. Not nmany clients will be very
synpathetic to an excuse that "the manual s" are vague, rem ss,
or even wong. The buck stops here.

Wtness: Wote a nice little application for the bookkeepi ng
department of a conpany that owned several conveni ence stores.
They called it an inventory program It was so sinplistic that
even that nanme seened highfalutin. But it did work, and did
what they wanted it to do, for a long tine.

Then one day, they hired a new operator. One that "knew a | ot
about conputers”. She wanted to fancy things up a bit. She
hel d down <Alt> and punched the nunber for a pseudo-graphics

The Blue Book About GW-BASIC and QuickBASIC -74 -

character. Know what happened when she | et go? Crash-o. The
next output on the nonitor was the operating system pronpt.

There she sat with files | eft open, buffers |oaded, data files
hal f updated, the FAT fractured, and no backup since | ast week.
My program was gone. The interpreter was gone. The operating
systemwas in |inbo. The operator was mad. And ny i medi ate
t hought s were about voodoo dolls and the natives that wite
syst ens manual s.

The BI OGS in that machi ne crapped-out on any <Alt>+nunber. The

keyboard was an ol der 83-key nodel. | finally deduced that the
BIOS would only tolerate the newer 101 nodels. Nothing in any
manual said so, yet, the machine was still configured just as

my client got it froma conputer store. (Rather than spend a
ot of tine developing a BICS patch, | opted instead to sinply
give themthe 101 keyboard that | had used whil e devel opi ng
their program M out-of-pocket cost to fix "ny bug" was

si xty bucks. Lab tine-to-find was over ten hours.)

Now, back to once upon a tinme, that tinme when the interpreter
itself was "the operating systenf. Wen you cranked up the
machine, it came up running BASIC. It was in charge. It could
predi ct what woul d happen when you used its conmands. Today,

it no longer has autocratic authority.

Today the interpreter is just another program It is now a
software peer of word processors, spread sheets, and ganes.
Any of these may run in the "domain" defined by the operating
system all of them are supposed to live by the | aws of that
ki ngdom Most are |aw abiding. Mst of the tine.

When it conmes to files and devices, when it is necessary for
the interpreter to nake calls to operating system services, it
can prom se you what the outcone will be, only to the extent
that it can assunme it will regain run-time control. And you
can wite your operator's instructions froma third world only
to the extent that when (if) your programregains control you
know, exactly, what is what, where what is, and what night

or m ght not have happened behi nd your back.

Renenber that operative word |IF when you read the foll ow ng
suggestions. Students trying to get an A in Conputer Sci 101
do not have to worry about Murphy's law. |If you are getting
paid to wite a programto do payrolls, nuch of the code you
wite, nost of the docunentation, probably over half of the

The Blue Book About GW-BASIC and QuickBASIC -75-

testing, and a predom nant influence on overall design has to
deal with precisely that. Wat |F.

If you want a punch-proof keyboard, good luck. W would Iike
to design "turn key" applications secure enough to prom se an
operator that they can do thenselves no harm no natter what
keys they hit on the keyboard. So....

If you have a nicely laid out data entry nmask on the screen,
and the operator is supposed to fill in the bl anks:

I NPUT wi Il not work, obviously. |[If the wong key is hit

the interpreter wll clobber your nice |ayout and tell the
operator to "Redo fromstart”. \Wich nakes no sense. The

| ast thing you want themto do is turn off the machi ne and
turn it back on. Meanwhile, the cursor is no longer sitting
where you last put it.

LINE INPUT will not work, either. |If a cursor-arrow key is
hit, all kinds of things nust be done to clean up the nmess on
the screen. Not to nention the problens of, if they type too
many characters, etc.

NP can be used, but it is a bad idea. It is in the sane

| eague as PEEK and POKE; bit-fiddle in toy prograns, but not
in real applications that may have to survive changes in
machi ne configurati ons, new nodels, or software updates.

| NPUT$ m ght be used, one character at a tinme, but not if
you want to see what is in the second byte of two-byte key
codes.

| NKEY$ is the remaining choice. Use it inside a WH LE/ \END

| oop, echo what you want, accept as many or as few keys as
are wanted, and BEEP when you want to. Yes, this solution
requires several lines of programming, at a mininmum Yes,
you are effectively having to wite your own keyboard driver.
Wth it set up as a subroutine--or a couple of specialized
ones--the overhead is not too bad. |If efficiently witten,
performance will likely be acceptable. Chapter 13 contains
suggested techniques for inplenenting this concept.

If you want a punch-proof keyboard, good luck. W would |ike
to design "turn key" applications secure enough to prom se an
operator that they can do thensel ves no harm no matter what

The Blue Book About GW-BASIC and QuickBASIC - 76 -

keys they hit on the keyboard. But....

If an operator hits <Print Screen> and the printer is on,
and on-line, that request is going to be carried out w thout
your perm ssion, or even, your awareness. And you thought
the printer was on line 40 of a 66-1ine page, mybe. O you
had been counting down to the top of the next W2 form or
what ever. Meanwhil e, the operator just dunped your nenu all
over their pay checks. And destroyed the continuity of your
next - check- nunber | ogi c.

If an operator holds down <Ctrl> and hits <Break> you may or
may not know it. The interpreter may go inmediately into
program editing node, or, it may trigger an ERROR 8. Wich
can confound your error handler, because you know there is
no "Undefined line" in your program And you cannot sinply
BEEP and RESUME NEXT. (See Chapter 9 about this, and other
strange encounters in the never-never |and of error traps.)

I f an operator holds down <Alt> and <Ctrl> and hits --
horror of horrors--we all know what happens. Just try

expl aining to sone, however, why they can do this on a whim
in a card ganme, but they had better not do it while posting
accounts recei vabl es transactions.

We can remap the keyboard, of course: Reassign the neaning of
some keys, and turn-off sone, altogether. But this is a bad
idea. It is too specific. It requires know ng exactly, what
keyboard, which operating system version, and what Bl GS-cl one
IS being used. Wich nmakes it tough to transport any program
to anot her machine, or survive upgrades.

On any (regul ar) request for keyboard input, the interpreter
transl ates whatever key-codes the underlying hardware and

software hands up. |If we stay within the real mof BASIC
accepting its definition of keys, it is reasonable to presune
that future upgrades of the | anguage will not obvi ate what

wor ked in the past.

PS: Sonme nmanual s encourage you to use ON KEY trapping;
some include sone "scan codes”. In ny shop we don't use
either. This trap is as nean as a bear trap, and, the
codes shown are seldomthe right ones for a given machine.

Simlarly, if we use INP, the interpreter sinply grabs a
byte fromthe requested port and hands it to us. It cannot

The Blue Book About GW-BASIC and QuickBASIC -77 -

do any translation for us. (The purpose of INP is to get an
unadul terated byte froma device port w thout any regards as
to what type of device is connected to that port.) These are
al so the codes we get if we opt to OPEN "KYBD: "--which stil
makes our program sensitive to specific keyboards, the BIGS,
and different rel eases of device drivers.

My noney is bet on the interpretation of keys by BASIC. Sure,

it chooses to ignore sone, |ike <F11> and <F12> and the sel dom
used <Scroll Lock> And it gives ne the same codes for those
dupl i cated gray keys and white keys. |If the operator wants to

nove up one line on the nonitor, it matters not to ne which
up arrow she hits. K I.S S

"Keep It Sinple, Stupid.” That advice is echoed in nearly al
books about progranm ng. Suffer ny passing it al ong one nore
time. It is fundanental to ny suggested solutions to keyboard
i nput probl ens.

To mnimze the risk of an unwanted <Break> tell your user
that they should never use <Ctrl> or <Alt> while running
your program According to KISS, there are too many keys
on the keyboard as it is.

In any |long running process, |like a sort routine, output
some indication fromtine to time that your programis

t hi nki ng, and not on cl oud ni ne because the <Pause> button
was hit inadvertently.

A war ni ng about the use of <Print Screen> should be enough.
Untinely use of that key is a risk, but, no nore so than
the many other things that can go wong while trying to
control a printer. Wich is a separate topic, later

And print a character. O nove the cursor. O change the
page. O blow the horn, or sonething, so that they soon get
used to the idea that they will get sone response from al
live keys, and the dead ones do not hing.

That | ast suggestion sets the tone for a few notes about that
real odd ball device: The nonitor. 1In ny book it deserves
only a few notes. To cover all of its variants would require
a hefty tonme, indeed. At any one point in tinme, probably only
two or three pages of such a book would be relevant to a given
appl i cation problem

The Blue Book About GW-BASIC and QuickBASIC -78 -

If we tally the current |ist of key words in BASIC we find that
over ten percent of themare unique to this one device. Added
to that, old-tiners |ike LOCATE have been stretched. Once upon
atime it required only two paraneters: |line and position; or
row and columm, if you prefer. Now as part of LOCATE, you can
turn the blinking cursor on and off, and you can specify what
the blinking block's size should be. And you can omt any of
the paraneters that need not be changed. So the manual says.

Exterm nators beware: There are bugs in that advice about not
having to restate |ine and col unmm paraneters. Try LOCATE ,,1
to turn-on the cursor, after having last printed something on
line 25 at position 80. ERR =5 is apt to occur. (Chapter 9
is the one, renenber, about many types of strange encounters.)

Not to malign the el oguence of Sir Wnston Churchill, but:
"Never has so nuch been done by so many, to acconplish so
little." Nay, this is not the Battle of Britain, but neither
need it be a battle of the bytes.

Fancy out put takes a |ot of code, a lot of tinme, and delimts
the environnents in which a programcan run. G anted, prograns
that are to be nmass marketed have to have sex appeal, sane as
boxes of cereal on grocery shelves. |If your client thinks he
wants his nmasks and nmenus in blue, and green, and yellow, and
red, he may change his mnd when you tell himthat each change
in color will cost a couple of hundred dollars extra. Wen you
tell himalso, that high intensity doesn't work on some brands
of nonitors, and that underlining will cause blurred text on
some, he may change his m nd about the worth of pretty.

Here are ny stock solutions for "conventional"™ nonitor output.
They appeal to sone, appease nost, and keep ny | abor charges
reasonable. They are sufficient for all data processing
progranms. (Pixel pounding is too far afield fromthe subject
of generic devices. Chapter 7 is dedicated to the graphics

gang.)

Wite all progranms so as to be sel f-adapting, to whatever
adapter is in the machine. M favorite technique during
programinitialization:

CLS 'so that it is blank
COLOR 0,0 "invisible
PRI NT "oops” "at position 1,1

The Blue Book About GW-BASIC and QuickBASIC -79-

BM = &HB0OOO ' Base Monitor address

CM = 12 "Cursor Max size

DEF SEG = BM "1st assunption (nono)
| = PEEK(O0)+PEEK(2) +PEEK(4) +PEEK(6) 'hash = ASC(o+0+p+s)
DEF SEG COLOR 7 "reset the defaults

I F 1-449 THEN BM = &HB800: CM = 7 "true = col or adapter
Note: An alternative trick is to do sonething "illegal"”

i ke PCOPY, for an assunmed nono-adapter, then |et your
error handler set a flag, then do a RESUME NEXT. This
can be a little tricky, however. WDITH 40 will trap in
interpreted BASIC (on a nono-adapter), but not if the
programis |ater conpiled. Read Chapter 7 for nore about
di fferences in SCREEN nodes, and about how the conpiler
and interpreter differ when addressing different nonitor
adapters.

From here on, BMis the DEF SEG value for the nonitor's nenory,
and CMis the second of the two values for sizing the cursor,
zero being the first value, of course.

When the interpreter is first loaded it self-initializes in

text node--WDTH 80: COLOR 7,0, 0--with an underscore-|ike cursor.
Because data entry operators glance up only now and then, a

| arger (full block) cursor--LOCATE ,,1,0,CM-is easier to spot
qui ckly. During field editing, when their focus is totally on
the screen, LOCATE ,,1,CM2,CMis good (a half block) for
indicating that they are in insert node, for exanple.

A note is needed about a seenming contradiction: DEF SEG nanes

a "hard address"; any tinme we resort to that we are vul nerabl e.
Some conprom ses are inevitable, however. This one is based on
cal culated risks. Having stored that address in a variable, in
only one (fixed) location in all programs, even if it does have
to be changed sone day, that effort should be m ninal.

PRI NT | esson: The character fonts are not the sane. This can
be seen in the hardware nmanual s, but not until it has been seen
on the screen, do you see what they nean.

Because the characters displayed by a nono-adapter are forned
in grids that are 9-dots per print-colum, and 14-dots high,
per print-line, they are nmuch crisper than a Col or G aphics
Adapter's 8 x 8 fornat.

The Blue Book About GW-BASIC and QuickBASIC - 80 -

Because of this, reversed video has to be placed | ow on your
list of options for highlighting text. In nono it can be done
nearly anywhere, any tine. To achieve an acceptabl e degree of
legibility with a CGA, the print-space above highlighted text
nmust al so be in reverse video. Even if that space is just
that, i.e., space-characters. (Thus, do not do reverse video
on |ine one.)

Anot her useful option in nono is underlining. Forget it, if
you want to design screens that will work on anybody's nachi ne.

Agreed, the above is basic to hardware, not to BASIC, but it
can still be an expensive lesson to |earn the hard way. Like
the one about the border-argunment for COLOR. Never use it,
either. Especially in prograns that need to survive the next
upgrade (to EGA/ VA, for exanple).

There are three ways to talk to the tube. Conventionally,
usi ng LOCATE, PRINT, and the |ike; POKE bytes directly into
nonitor menory; or, OPEN "CONS:" for OUTPUT as a file.

The third possibility is now nearly archaic. It can still be
done, but to no great advantage. In old machines (and stil
on big mainfranes) it was a way to output to video term nals.
Asynchronous devi ces. Were, when you PRINT, the output is
sent down a cable. \Were, the device at the end of the wre,
printer, boob-tube, or otherw se, outputs characters itself,
or does nechani cal functions such as a page sl ew dependi ng on
the codes that are sent to it.

A nonitor is different than a termnal, although, this is
hard to explain in ten words or less. The picture on a CRT
(Cat hode Ray Tube) display is being constantly repainted by
el ectron beans scanni ng over the face of the screen. A page
on the screen correlates to a block of nenory. When we do
output to a nonitor, we put codes directly into bytes of the
conmputer's nmenory. On a CRT-term nal, the codes are stored
renotely, in the termnal's own nenory.

Al t hough an operator thinks they | ook the sane, progranmm ng

a nonitor can be done quite differently than for a term nal.
Knowi ng we have a nonitor, and know ng whi ch page of nenory
is being displayed, and knowi ng which nenory bytes align with
whi ch row and colum on the screen, we can POKE codes j ust
where we want them This results in what will seemto be, an
i nstant change on the screen. And quick we nust be.

The Blue Book About GW-BASIC and QuickBASIC -81-

Cont enporary packaged progranms such as word processors are
hard to mmc when it conmes to doing data processing jobs in
BASIC. But, they have set a de facto precedent for operator
interaction with the machine. Ganted, sone are far superior
to others. Sonme adhere to basic principles of human factors
engi neering; some were witten by programmers unfamliar with
ergonom cs, bi omechani cs, and typography. Collectively, they
have becone what is expected: "All prograns work this way."

So mne work this way: All screens are BLOAD files. They are
built separate fromthe using program Rather than having to
do LOCATE and PRI NT statenents a zillion tinmes, which is slow,
and tedious, BLOAD is used |ike a shotgun. Not only is it fast
and easy, a lot of text can be blasted with a single program
statement. Working in text node, here are sone fundanentals:
(Again, see Chapter 7 if you like to punch graphics pixels.)

Each character on the screen uses two bytes of nenory. The
first byte is a character's code, itself. The next byte has
the preceding character's COLOR attributes. A screen shows
25 lines of 80 characters. A line in nmenory is 160 bytes; a
full screen in nenory is 25 tines 160, or 4000 bytes.

To quickly blast a screen "mask” do a DEF SEG = BM f ol | owed
by BLOAD "fil enane",0 (assum ng BM has been pre-loaded with
ei ther &HBOOO or &HBB0OO as shown in the earlier exanple).

The offset paraneter following the BLOAD is critical. If a
BSAVE screen was built on a nono-nmachine and the target one
has a graphics adapter, and you omt the offset when you do
a BLOAD, the file is ained at the wong place in nenory. |t
is |loaded at the address specified in the file-header, i.e.,
t he address from which the BSAVE was done. (All BSAVE files
have an extra 8 or 15 bytes added to what you save. More on
that in a mnute.)

By the way, if you do a BLOAD into a nonexi stent bl ock of
menory, no one will tell you. The bytes just zoominto the
et her.

In the programthat builds a screen, a mask, a nenu, or a
hel p page, do DEF SEG = BM fol |l owed by BSAVE "fil enanme", F, L
with F and L specifying Fromand Length. To save an entire
screen F = 0 and L = 4000. For partial screens it is easiest
to work with whole Iines. To BSAVE lines 5 through 10, for
exanple, to junp over the first four lines, F = 4*160 and the

The Blue Book About GW-BASIC and QuickBASIC -82-

length (to save) is, L = 10*160-F.

VWhile a programis running--while an operator is entering
data in fields on a mask, for exanple--an existing page can
be saved, as is, before doing "pull down" overlays such as
hel p screens. Do a BSAVE of the as-is screen, BLOAD the
overlay, and when ready to resunme, BLOAD the one that was
saved in the hold-this-picture file. |In this case, because
the programthat is doing the BLOAD is the sane as the one
that did the BSAVE, no of fset needs to be specified with the
BLQOAD.

Anot her by the way: BSAVE can be a little slow, depending

on where you send the file. Going to a floppy is slow hard
di sk is much qui cker, but the very best place to hold work
screens is VDISK. That is quick, both for the BSAVE, and the
BLOAD to bring it back. Forget PMAP, PCOPY, VIEWand their
kin, if you want to run on any nachine. (Sales of nonochrone
nmonitors is likely to continue to outpace color. They stil
cost a lot less.)

Most of the above can be deduced by carefully reading all of
your systens manuals from cover to cover, in nmaybe somnething
| ess than thirteen passes. Here are sone tidbits garnered by
trial and error; sone errors can be real trials. Gven this
hi ndsi ght, on your next pass through the manuals watch for
these. They are nostly there, even if not easily discerned.

The first byte of a file that was created by a BSAVE is a
file-type indicator. It is equal to 253 in decimal. It is
foll owed by three, 2-byte words.

The first pair of bytes follow ng the 253-code are equal to

BM the value you used with DEF SEG = BM The next pair of

bytes are the offset, and the next pair are the | ength that

was specified with BSAVE. (In machine | anguage context, the
bytes in 2-byte words are reversed, renenber.)

The 7-byte file header is followed by a continuous string of
bytes, just as copied directly fromnmenory to disk. Wich
nmeans, for text node files, a character-byte, followed by its
color attributes, followed by the next character, and so on.
Ergo, what was on the screen, colors and all, blinking and
what have you, can be brought back to the screen, just as it
was, at the nmonment the snapshot was taken.

The Blue Book About GW-BASIC and QuickBASIC -83-

Incidentally, the nenory-inage file block used to be foll owed
by a copy of the same seven bytes that are in the file's
header, plus one nore byte, a control-Z, code-26. In sone
recent rel ease, three-point-sonmething-or-other, that extra 7
bytes at the end no |onger occur. Find that little gemin a
manual, if you can. (Another example of: |If they never told
us in the first place, they can skip telling us they changed

it.)

Two nore notes need to be made; they are in the books, but,
not noticeably so. COLOR,,(border) is a global aspect. It
relates to an entire screen; it is not an attribute of any
one character so it is not saved in a BSAVE file. (PS: Do
not use the border-argunent. Forget it. You can spend many
hours trying to fix prograns that are noved to a nmachi ne that
has a different nonitor adapter.)

The other note at hand is, think of the cursor as a figment

of a nonitor's imagination. The cursor's location, size, and
current on or off status are all mmintained by adapter-driver
software; it is not a character, per se, in a byte, in menory.

Hnt: | have been known to save these values with ny BSAVE
files, anyway. Reserve a few blank spaces somewhere. Make
t hem hi dden as in COLOR 7,7 then PRI NT CHR$(val ue-to-save).
After a BLOAD, use SCREEN or PEEK to retrieve those val ues.
(See Chapter 12 al so, about using the nonitor's menory for
storing data, and for inter-program conmuni cations.)

G ven the above, the possibilities are nunerous. It is not a
very big chore at all to wite a programthat can nake BLOAD
files out of text files. O vice versa. O to wite filters
that can change the colors of existing nmasks and nenus, a rea
solution for transporting sone applications from CGA nonitors
to nmonochrone, for exanple. (Like for converting what was
blue, to bright, maybe, to get rid of unwanted underlining.)

Chapter 12 tells nmy nethods for easily creating BSAVE nmasks
inthe first place. GCetting back to the thene of this chapter,
here are a few nore notes about making a nonitor act |ike you
programmed in C, or sone |anguage that clains to be "closer to
the netal"” than interpreted BASIC

Movi ng highlighted words: A lot of menu techniques |let the
operator select a function by using the cursor-arrow keys
to change which text string is currently being displayed in

The Blue Book About GW-BASIC and QuickBASIC -84 -

reversed video (or underlined, or a different color, etc.)

Conventional BASI C woul d expect you to do a COLOR, a LOCATE
and a PRINT (to do not-highlighted-video) of the text you
are noving away from And then do, another COLOR, a LOCATE,
and a PRINT of the noved-to text. That is slow No matter
what souped-up nachi ne you are prograntm ng on.

Mne is a nuch faster trick, unconventional though it is:

Cal cul ate the offset (DEF SEG = BM to the address of the
first highlighted character's attribute byte. Use FOR/ NEXT
with a STEP of 2 and POKE the code necessary to turn off

the highlight. Now calculate the offset to the address of
the target area and use a 2-step FOR/ NEXT again, to PCOKE the
attribute bytes of the new string of text to be highlighted.

See that POKE to a character position is simlar to PRINT.
And when you PCKE to attribute positions you are doi ng what
the interpreter would do with the first two values used in a
COLOR statenent (but it doesn't do it until you PRINT).

Simlarly, a SCREEN (function) can be m m cked with PEEK, but
faster. \Wien you specify two paraneters with SCREEN t he code
that is returned is the sane integer value that you woul d get
usi ng PEEK addressed to a character-byte. A third, non-zero
paranmeter in a SCREEN function will return an integer val ue
corresponding to the bit pattern of an attribute byte, the
same as would a PEEK to that sane address.

Granted, if you are accustoned to using LOCATE to get to a line
and a position, and have devel oped instant recall for the digits
to use to get the COLOR you want, PEEK and POKE tricks may seem
nore conplicated. Initially, anyway.

Li nes and positions are not difficult to calculate if you use
your imagination instead of |ooking at the screen. 1In your
mnd' s eye see that each line is 160 bytes, not 80. The codes
for characters are in even-nunbered positions (beginning wth
position zero). The color of each character is in the next

adj acent, hi gher nunbered byte.

If you enjoy bit banging in BASIC go ahead and unscranbl e the

attri bute bytes so that you can see what nunbers woul d be used
if they were created by a COLOR statenent. But you don't have
to. Just PEEK a byte that already has the desired flavor and

make a note of that nunber; it is the seasoning to use in a

The Blue Book About GW-BASIC and QuickBASIC -85 -

POKE statenment |ater, with no inpact on your gastrointestina
system

Meanwhi l e, | ose no sleep worrying about being a hypocrite. M
constant inference that PEEK and POKE are vul gar nust be vi ewed
I n perspective. Used wthin the nonitor's nenory, they are

tolerable, even if not Platonic. They still should not be used
in mxed conpany. Bit fiddling el sewhere, in prograns built
for others, is still considered sinful on ny farm

Rem nder: DEF SEG = BMis critical before doing POKE or
BLOAD, or you are apt to get shot right out of the saddle.

Putting data on the screen, quickly, is a horse of a another
color. \Whether we are working with COLOR or not. PRINT is
the pragmatic choice, but, the fewer the better. Consider:

PRI NT X$;: PRINT Y$;: PRINT Z$

This could be done as PRI NT X$; Y$; Z$. Cbviously. Wat is not
obvious is the performance difference for singular instances.
For a one-liner, on one screen, followed by interaction with
the keyboard clerk, the perfornmance differential of these two
alternatives is insignificant. For twenty lines in succession
however, the difference is very noticeabl e.

For exanple: X$, Y$, and Z$ are fields in records; they are
for the account code, nane, and phone nunber of custoners. On
screens that halt for operator input after each one is shown,
no problem If you have to display say, twenty records per
page, your operator will appreciate faster page-paint tine.
Count the difference. Sixty PRINT statenments vs. twenty.

Better still, use one variable instead of three. Chapter 3
tells howlong it takes the interpreter to find your vari abl es;
common sense is enough to know that the tinme for twenty has to
be less than for sixty. This is a good exanple of where conmon
sense can produce better results than textbook doggerel.

[f, in the above case, X$ and Y$ and Z$ are fielded variabl es
in records, naned one after another in a FIELD statenent, the
record could be redefined so that one variabl e enconpasses all
three fields as a continuous string.

Bef ore pondering the question of what to do if the fields that
are to be displayed are not juxtaposed in the records, ponder

The Blue Book About GW-BASIC and QuickBASIC - 86 -

first why they are not. Wo designed the record |ayout? How
was it decided which fields should conme first, second, and so
on? Wen it conmes to adding to an accounting bal ance it does
not matter where in the record that data field is; not nmany
peopl e watch a conmputer conpute. When you are outputting data
to a nonitor, however, sonebody is going to be watching.

Now, extend the above two suggestions all the way: Arrange
data in records in the order they will nost often be shown.
Store nuneric anmounts as strings, already formatted. To heck
with PRINT USING do the "using" when you do the conputing, and
store the result in the records so that it can be shown as is.
For bl ank space between fields, put those spaces in the records
also. Wth the capacities of today's disks we no | onger have
to be as stingy as we once were. (Chapter 5 tells how to save
formatted nunbers in data records, easily and quickly.)

My favorite payroll application has a master-file layout with
1200 bytes in each enpl oyee record, mapped as 103 data fields.
Only one PRINT statenment is needed to display an entire record.
It blasts three lines for each of five (240-byte) vari abl es.
That is quick. It is nearly as fast as a word processor that
is holding all it knows, in menory.

PS: Miltiline PRINT statenents can be tricky. Printing
begins at the colum where the cursor is currently sitting.
Supposedly. O, it commences in colum one of the next |ine
down if what is to be printed is "...w der than the screen”
Predicting just what "wi der" neans is not easy. Conpiled
prograns behave differently than interpreted ones: BASIC
BASI CA, GWMBASIC, and Qui ckBASIC all play by different rules
when you are near the bottomright corner of the screen.

Back to payroll: A BLOAD "mask"” is done first, with all the
pretty |ines, and boxes, and field descriptors. The cursor is
sent toline 1, colum 1. GET loads ny five fielded vari abl es,
then | do a one-shot PRI NT US$; V$; X$; Y$; Z$. Which outputs a
total of fifteen 80-character |ines of data.

Sure, there is some waste. To nmake adjacent fields straddle
ny pretty lines, they are separated by a CHR$(28) byte, which
works as a right-arrow key would. To skip over col umm-header
lines on the mask, |ine-advance codes are permanently i nbedded
in the records at fixed | ocations. Total waste is about 200
bytes per record. For 100 records, it is about 20,000 bytes.
VWhich is |l ess than one percent of a 20Mb hard disk. |If that

The Blue Book About GW-BASIC and QuickBASIC - 87 -

still seenms extravagant, do sone counting of the junk bytes in
a typical word processing or spreadsheet file.

Thi s concept of ready-to-show record formats has to consider
that other "standard output device": The printer. You say
LPRI NT or PRI NT #<file-nunber> and a string of bytes--codes
and characters--get sent down the wires, one at a tine. The
i nterpreter sends whatever you tell it to, and, it sends sone
codes of its own choosing. Like, after each print statenent
(that has no trailing sem-colon or comma) it sends a pair of
bytes, to tell the printer to jack the paper up one line.

The <Print Screen> function works simlar, but the data that
is output conmes fromthe nonitor's nmenory. It is sent by the
operating system not by BASIC. They do not work in exactly
the sane way. Nor do they know what the other is doing, how,
or when.

The interpreter is (marginally) smarter than the operating
system You can use WDTH (printer) in a program or OPEN the
printer as a "randomfile", to pre-condition the interpreter
to know when to, or not to, issue |ine advance codes.

The <Print Screen> key invokes a direct service call to the
operating system It has no idea what is going on inside the
interpreter. It outputs 25 full-length, 80-byte |ines, al
2000 of the character-bytes in a nonitor nenory page, skipping
over the attribute bytes. Wich explains why, by the way,

hi dden characters on the screen will not be hidden when they
get to the printer.

What happens at that end of the Iine is another matter still.

Even the cheapest printers are today, "intelligent". So nuch
so, you have to be clever to get themto do what you want, and
you have to be careful or they will outsmart you.

Because there are so nmany nakes and nodel s avail abl e, and they
seemto get smarter every year, trying to anticipate what wl|
happen is not unlike trying to predict what nay happen when a
teacher has to | eave the classroom nonentarily. How to best
cope with adol escent children is a subject for experts. The
suggestions that follow are nerely for unruly printers.

Al ways OPEN the printer as a file device and do output to it
via PRINT #<file-nunber> statenents. The alternative is to
spend several days trying to figure out why LPRINT is causing

The Blue Book About GW-BASIC and QuickBASIC - 88 -

odd "File already open"” errors. This nust be triggered by,
apparently, an internal conflict related to doi ng BSAVE/ BLOAD
operations. \Wether this is the true culprit, or common to all
versions of the software is unknown to ne. At a point | quit
experinmenting with kluges to get around the probl em and j ust
accepted that LPRINT was practically usel ess.

Cardinal design rule: Plan all print lines to be one byte |ess
than the wdth of a full line. On an 80-character printer, for
exanple, format your lines to print only 79 colums. This is a
pragmatic rule. Too many others want to help decide when it is
time to do a |line advance. The interpreter has its own screwy

and i nconsistent ideas. Mst nodern printers try to get in on

the act also, but each has its own theory about what is best.

Far less tine (and paper) will be wasted during testing if you
keep it sinple and use a sem colon to continue-on-a-line, or

no sem colon to print-and-advance, never letting the printer
get to colum 80 (e.g.) where soneone else is apt to contradict
your intentions.

Printer programmng maxim Portability problens precludes all
pretty printing. The "lInstall" prograns supplied with nany
packages are sonetinmes bigger than the end-use product because
there are so many different printers out there (that nust be
programmed in so many different ways). Aesthetic output is a
demand of word processors. For ny noney, accounting reports
can be fully useful rendered in sinple ASCII. Pretty printing
can cost a pretty penny, and have nore inpact on the bottom
line than can be cost justified.

One bent coin, a CHR$(27), can cause nore problens than a sack
of slugs in a casino. Escape code sequences date back to the
earl i est days of nechani zed data processing. The tradition
continues today that a byte that | ooks |like 1B in hexadeci nal
is to be seen by a receiving device as a warning that, what
comes next are device paraneters, not printable characters.
See this:

On a nonitor, a CHR$(27) is an attractive left-arrow synbol.
Sent to a printer, with <Print Screen> or otherwi se, it can
reek havoc. Transmtted unintentionally, the next one, or
two, or several bytes, are bound to be m sunderstood. Even
printers that are supposed to be "conpatible" may switch to
italics, underlining, or whatever, differently. Al of them

The Blue Book About GW-BASIC and QuickBASIC -89 -

will react to an escape-code sequence--not many will react
in exactly the sanme way, for a given series of codes.

This is no less true whether comng fromthe nonitor, or sent

i nadvertently in a string of data comng fromfiles or coding
bugs. Caveat. |In Latin, English, or any |anguage, a code-27
byte is not profane to a machine, but it can provoke strings of
profanity from humans.

The other | ow order codes in the ASCII chart--those bel ow a
space character, CHR$(32)--are |less pernicious. Sonme my
cause only mnor problens; sone, severe migraines. Sticking
to decimal notation, here is ny general attitude toward these
naughty ki ds.

Code-12 is one of the nost dependable. It is useful to slew
the paper to the top of the next formor eject a page. It
nmust be used consistently, however, to achi eve consi stent

al i gnment on successive pages. |If CHR$(12) is followed by

a sem colon, the next thing printed begins on the current
(now top) line. No semicolon (or comma) after CHR$(12)
produces one blank |ine after the slew, because, BASIC
sends a carriage return code after your top-of-form code.

Code-28, as cited in the exanple earlier, has not caused ne
any grief thus far. On the nonitor it bunps the cursor one
position to the right, like a nondestructive space character.
To date ny experience with a variety of printers has been
that this code is synonynous to a code-32 space character.

Code-13 is usually foll owed by code-10; seen in hex as ODOA.
This pair is what the interpreter sends for you, to cause a
i ne advance and a repositioning of the print head to the
begi nning of the next line. |If these codes are inbedded in
your records, you may need to use a sem colon after the | ast
variable, to keep fromgetting an extra |ine advance.

PS: That old green manual --circa 1986--is m sleading. It
says BASIC sends out only a CHR$(13) and leaves it up to
the device driver to send the foll owon CHR$(10). Makes no
difference to ne who is doing it. Fact is, when using
"standard" software, all sequential output--to a printer

or a data file--always includes the 13/10 pair of codes

at the end of each |ine.

Avoid all of the other codes bel ow 32 unl ess your boss is
liberal wth overtinme. Code-0 is a funny one, for exanple.

The Blue Book About GW-BASIC and QuickBASIC -90 -

A zero-byte will be seen on your nonitor as a space, sane as
a code-32. Printers have mnds of their own, renenber. Sone
will also produce a space. Sone just discard a zero-byte,
pretending it was not received at all

The hi gh-order codes--those above 127--can be brats al so.
Especially those from 128 t hrough about 155. Notice that 128
plus 12 is 140. O conversely, in terns of bits in a byte, if
the left-nost bit is ignored, decinmal 140 becones 12. Thus,
what | ooks like a |lower case letter (i) wearing a hat, on the
nonitor, causes a page slew on a lot of printers.

In short, if you want to al ways know what col um, what |ine,
and what page you are on, no matter what printer is plugged
in, be cautious of the codes you send. Those from 32 through
127 are pretty predictable. The others may be pretty, but
pretty onerous when used in peculiar circunstances.

Thus ends ny notes on what can or cannot be printed with
confidence. Wich assunes that what we send actually gets to
the printer. Mre nust be noted before we can be confident
of that.

Before printers becane so educated ny prograns used to halt

and give the operator advice when they ran out of paper. In
this case, or in the event soneone accidentally kicked the
plug out of the wall, ny programwould wait patiently until

told to carry on. That is the way we did it a long tine ago,
back around 1982, or so.

In fact, an old (1986) Big Blue manual says printing is

asynchronous wth processing. That is so nmuch bull. It was
bad advice then, it is now, and it will |ikely be wong from
now on.

BASI C still thinks that what is happening is asynchronous.

It sends bytes to the adapter. The adapter sends themto the
printer, and the interpreter nonitors the adapter to see if
the printer sends back a problemsignal. The tine interval
bet ween your PRI NT and what is happeni ng on paper defies

the word asynchronous. Big buffers is why.

Alittle six pound two hundred dollar printer has a whoppi ng
8, 000-byte buffer. Enough nenory to hold the print-inmage for
six or eight paychecks, maybe. |magi ne the problem of, when

The Blue Book About GW-BASIC and QuickBASIC -91-

the stack of bl ank checks runs out, five checks before the end
of the payroll. Nobody knows it.

The printer's cry for help will probably not be heard. You
sent the check lines out as fast as you could, trusting that
they would all get printed. Then you closed up shop and
returned to your start-up nenu, or worse yet, branched to the
routi ne that does a batch update of your master file.

There are nunerous error codes in BASIC that can be triggered
by printer related statenents. Any one code would suffice. It
really nmakes no difference to me what is wong. M response is
invariably the same: Abort. Noisily, of course.

Most of the time a BEEP is not enough. It would be hel pful to
your operator, and both of us, if the manuals were clearer on
how to discern just what is wong. Here are sonme things

| earned the hard way.

If you do an OPEN and get ERR = 68, "Device unavail abl e",
it 1s because there is no adapter in the machi ne for that
printer port (or the adapter is kaput).

On the other hand, if a working adapter does exist, no
error is triggered on OPEN, even if the printer is off,
off-line, or it has been stolen. (Contrast this with an
OPEN to a data file; if it doesn't exist, but should, you
get an imredi ate error.)

If you do LPRINT or LLIST to a non-existing or non-worKking
adapter you will get ERR = 57, "Device |I/O Error". Maybe.

If you do WDTH, as in WDTH "LPT1:", for exanple, no error
occurs no matter what exists, does not exist, or is not
wor Ki ng.

Havi ng succeeded in doing WDTH, which always succeeds if
everything is spelled correctly, if you then do an OPEN, an
LPRINT, or LLIST to an absent or |azy adapter, it seens the
interpreter changes its mnd because it will then generate
ERR = 55, "File already open". Wich is crazy. O at

| east, illogical.

Three other error codes are possible when one variant or
anot her of PRINT is done. |If it fails. Wen you read the
manual s see why | consider error codes 24, 26 and 27 as if

The Blue Book About GW-BASIC and QuickBASIC -92-

they were all alike. Once upon atime it was nice to be able
to react differently to each. Today it is a blaned nuisance

that there are three. As it has always been a nui sance t hat

a sinple range test was not an exact techni que, because that

odd error code (25) has nothing to do with I/QO

A wel | -desi gned application has to anticipate that many kinds
of failures can occur while printing, and provi de sone neans
to do a restart froma mdpoint, or, allow for a conplete
rerun wi thout doubl e whacking al ready updated files. Wen a
printer does cry for help, there is no way to correl ate what
you just sent with whatever it just got around to trying to
print. And, postoperative cries for help will fall on deaf
ears.

Even though software and hardware technol ogi es are advanci ng
rapi dly, but not always at the sane pace, it would seemthat
the manuals witers could give us sone indication as to what
is contenporary and what is archaic; what is useful and what
is not; what works and what doesn't.

Hopeful ly this chapter has provided sonme of that, and a bit
nore, for those three normal devices: the keyboard, nonitor,
and printer. Wat is abnormal in ny book, still, is things
i ke a nouse, a light pen, and nmaking nusic. Fun, yes, but
irrelevant to the business of doing serious data processing.
W can do that, but we have to be nore clever than ever, to
do it in BASIC, on machines that are nore adroit at playing
ganmes than producing profit for their owners, or you, or ne.

The Blue Book About GW-BASIC and QuickBASIC -93-

Chapter 7 = GRAPHI CS

Graphics can be fun. Especially so, in the context of a gane.
A gane, in the sense of, an intellectual challenge: Can you
learn to do it armed with nothing nore than a machine with the
nmechani cal capability, BASIC | anguage manual s, operating system
manual s, and hardware reference books.

Be prepared for a real contest. M gane has not yet ended. It
likely never wll. At this point we have reached a stal emate.
My unnaned opponents (that wote the nanual s) won a coupl e of
rounds. What follows are things |earned fromthe rounds | won,
before ny stam na began to wane, and ny budget gave out.

To wite a technical work that would accurately cover all of
the different types of adapters and nonitors would require a
| ot of hands-on testing. And a |lot of noney. And the book
woul d never get printed because new hardware of this genre is
born everyday, so it seens.

What is included here covers MDA, CGA, and EGA. The Monochrone
Di spl ay Adapters have been around the |ongest (1981). Col or
Graphics Adapters were the first machi nes that provided nonitor
output in color (1981 also). Enhanced G aphics Adapters were
next, offering nore colors and higher resolution i mages (1985).

VGA- - Video Graphics Array--is so newit is not yet naned in the
BASI C nanual s (1987). The Hercul es Graphics Card (1982) is not
identified, as such, either.

Thus far ny experience has been that what worked on the ol der
har dware works on the new. To take full advantage of the new,
or the old, requires technical know edge of a specific piece
of hardware, and a basi c understandi ng of how BASIC tal ks to
any of them

This chapter has two goals: To bridge the gaps between the
manual s, and to provide sonme freeze-dried code that is useful.
The manuals are all witten so as to stand al one; they sel dom
allude to each other. The coding exanples in the BASI C manual s
are meant to convey concepts; they are rarely usable as shown.

A logical first nove for this gane is to state what is neant:
In BASI C, any SCREEN st atenent whose first argunment is other
than zero puts you in "graphics" node. Conversely, SCREEN O

The Blue Book About GW-BASIC and QuickBASIC -94 -

is "text" npde.

One fundanental difference between these two nodes is in how
printable characters are stored in video nmenory, and where
they come from So, a second nove in this gane should be to
review where PRINT gets its characters from for both, text
and graphi cs nodes.

The upper range of characters in the adapter's font set--
CHR$(128) to CHR$(255)--are sonetines called pseudo-graphics
characters. Just why "pseudo" is used, is beyond ne. Agreed,
they are non-ASCII. They are just as useful when in graphics
node as they are in text node, however.

This is equally true of those |lowball characters that are in
ASClI | range (0-127), that are pretty, but not, "pure" ASCI
That standard says codes bel ow 32 are control codes and their
exact meani ng can be further defined by a manufacturer. Thus,
t hose codes have been further defined as printable characters.
Sonetinmes. Depending on...

Al'l of the characters that can be shown on a nonitor attached
to a nonochrone adapter cone from dot patterns burned into ROM
on the adapter board. That font set covers the full range of
256 character codes (0-255).

This is true for the graphics adapters, too, when in text node.
When an adapter is commanded to switch to graphics node, the
character set, or part of it, is "soft"; the dot patterns for
sonme characters may conme from RAM rather than from ROM

Distinction: RAM-short for Random Access Menory--can be
changed via software. ROM-short for Read Only Menory--
cannot be changed. While ROM can be read, "random y", what
is stored init is pernmanent; it was burned-in (as software)
electronically, by the manufacturer. Thus, bits in ROMare
frozen, as is, with or wthout power.

VWi ch brings up the issue of GRAFTABL.COM A "soft" character
set that is needed on CGA machines if you want to PRI NT or use
the function-version of SCREEN, for character codes that are in
the 128-255 range. The nore expensive graphi cs adapters have
this set of characters stashed in ROM also, in addition to the
| ower - 128 set of codes. |If you load a soft-set of characters,
however, such as in CGRAFTABL, all graphics adapters quit using
their "default"” font set for codes 128-255, in favor of the
soft ones, when operating in graphics node. (In text node they

The Blue Book About GW-BASIC and QuickBASIC -95-

use the standard 0-255 font set, no matter what has been | oaded
by GRAFTABL.)

Now, for the next nove: |In text node characters are stored in
vi deo nenory as codes. Adapter electronics continuously scans
the nonitor and that nenory. Each print position on the screen
correlates to a specific byte in nmenory. As those bytes are
scanned, a character-generator chip on the adapter repeatedly
converts the codes into correspondi ng pixel (picture el enent)
patterns.

When in graphics node the character generator chip is bypassed.
What are shown on the screen then, are pixels that correlate to
bits in video nenory. In concept this is sinple; if a bit is
set on (a binary one), a dot on the screen is illumnnated. If
a bit is off (a binary zero), a blank spot occurs.

Which bits (of certain bytes) align with a given dot-position
on the screen can wait a couple of pages. At this point note
that, when we PRINT a character in graphics node, the code that
woul d normally be stored in nenory is i nmedi ately decoded, and
the character is stored as individual bits, rather than as a

1- byt e code nunber.

Thus: Graphics node characters are "soft"; they are made up of
dots (bits on or off). Text node characters are al so shown as
dots, but they are stored as codes, and are repeatedly decoded
by adapter electronics. Knowing this basic difference, see how
PRI NT produces a "canned i nage" of pixels, but, after they are
printed (decoded) in graphics node, they are stored in nenory
at that point as primtive bit patterns.

When we programin graphics node the commands we use al so
create bit patterns in video nenory. This may be done on the
basis of one pixel at time, or wwth sonme commands, nultiple
sequences of pixels. Wich is how we create i mages |ike boxes
and circles. In concept, see that PRINT is really no different
than other "macro statenents" that generate conplete "icons"

A new DOS-native capability was added in Release 3.3: DLL,
i.e., Down-Line-Loadable code sets for printers or nonitor
adapters (or any other device that plays by the sanme rules.)

This new feature of DOS is generically called "Code Pages". It
was conceived primarily for use with foreign | anguages. It is

The Blue Book About GW-BASIC and QuickBASIC - 96 -

conpl i cated, however, and the manual's descriptions of howto
make good use of the capability is so confusing that if you are
so inclined, reserve a hefty chunk of court time; it is going
to be a long tournanent if you are determned to w n.

The maj or difference between devices that support DLL Code
Pages (viz, EGANVGE), and those that do not, is that the entire
range of codes (0-255) can be overwitten by software supplied
bit patterns. They can al so be changed on the fly, and used

in both text and graphics nodes. On the fly neaning from DOS
not from BASIC. Meaning, before | oading BASIC, or via SHELL

As is always the case, SHELL is risky. Read the definition of
SHELL in the BASIC nmanuals with one eye closed. GRAFTABL, for
exanple, is a single-shot DOS command. Only parents can do it.
Do not try it using SHELL. Run as a child process, GRAFTABL
has no respect for its parents and will |ikely hang the whole
famly. It will not let you return to BASIC, it may even force
a manual reboot. Once done, successfully, what is |oaded is
what you live with until the next reboot. There is no neans
for getting rid of it, and a second "load" will not work to
overlay a previously | oaded font set.

At about this point sone books would refer you to an appendi X
to see what the printable characters | ook |ike, and which codes
are assigned to each. Forget it, if you want to know for sure.

Charts in hardware manual s can be trusted nore so than those in
software manuals but, it is not unusual to find differences in
what any of the books show, and what characters really do | ook
like. The following tiny BASIC program can be trusted to tel
the truth, on any machine, at any given point in tinme, for the
t ext-node set of characters then in residence.

10 CLS: LOCATE 16,1 "cl ear and nove the cursor
20 DEF SEG = &HB800 "for nono use &HBOOO

30 B=0 "1st offset into video RAM
40 FOR'I = 0 TO 255 ' 0- 255 character codes

50 POKE B,1:B = B+4 "show one: bunp offset by 4
60 NEXT

Take note that, in the above routine POKE puts codes directly
into nenory. BASIC has no idea why you are doing it, so it
does not attenpt to translate your intentions. POKE was used
because BASIC will not PRINT all of the characters possible.
It will print themall save for the foll ow ng codes when used

The Blue Book About GW-BASIC and QuickBASIC -97 -

in a CHR$ statement (for exanple):

deci mal ASClI | neani ng BASI C behavi or
7 BEL - alarm BEEP, print nothing
9 HT - horizontal tab prints 7 spaces
10 LF - line feed down 1 line, position 1
11 VT - vertical tab home (sanme as LOCATE 1, 1)
12 FF - formfeed clear (same as CLS)
13 CR - carriage return wor ks sane as code 10
28 FS - field separator reposition 1 space right
29 GS - group separator reposition 1 space |eft
30 RS - record separator up 1 line, sane col um
31 US - unit separator down 1 line, sanme colum

What i s happening here is, BASIC "transl ates" what you say to
print--as in PRINT CHR$(9)--and does function calls to the

BI CS, or otherw se commands the adapter, rather than transmt
a character code, per se.

BICS: Basic Input/Qutput System which is boot-ROM and DOS
rel ated. The acronym BASIC has no kinship to the BIOS's first
nane. Also: In the new PS/2 machines there is an ABIOS and a
CBICS, to support OS/2 and the old DOS. As used here, BICS is
a handy nane for them all

Add to this wealth of trivia, the BIOS for video output nmay be
in one of three places. For MDA and CGA it is an integral part
of the systemBICS, i.e. it is on the nother board. For EGA
and VG, all interrupts for video services are rerouted to a
speci al i zed set of BIOS routines contained in the adapter. The
Her cul es-1i ke adapters (and sonme other newer types) depend on
software drivers. On boot up these device drivers are | oaded
into menory, and the interrupt address for video services is
nodi fied to point to these product-specific drivers.

How to spell all of these acronyns correctly, and who invented

them when, is somewhat trivial. Progranmng in BASIC, the rest
is trivial also when we depend on the interpreter to do what
we ask it to. It does provide an easy, dependable, interface

to all of these lowlife mechanics. An intellectual awareness
of what is happening down bel ow, however, can nake it easier to
see what we are seeing. On the screen, and in the nmanual s.

Most of the above is really basic, including that about BASIC
In text node, all characters are stored in video RAM as 1-byte

The Blue Book About GW-BASIC and QuickBASIC - 98 -

codes (0-255), each one followed by an attribute-byte. How to
address those bytes is covered in Chapter 6. G aphics adapters
of fer nore capability than nonochrone. Staying with text node,
for the nonent, here are some new opportunities.

W DTH 40: Character fonts are the sane as WDTH 80, but are
two print colums w de, per character. On the screen. They
still use 1-byte of storage per, so a line on the screen is
40 colums; a line in video RAMis 80 bytes.

PCOPY: The fastest gun in the west when it conmes to having
to "switch" screens. (BSAVE and BLOAD are still useful, and
are described in nore detail, later. PCOPY is a much better
alternative for sone screens.)

MEMORY: Video RAM i s hardware mapped. Regul ar software does
not load into this nmenory space, so it is a safe place to
"put things of your own", w thout worrying about corrupting
ot her software that may be in nenory. (Unless, of course,
sonmebody el se uses this space in a simlarly uncouth manner.)

How nuch nenory is an interesting question. The business of
usi ng PCOPY, for exanple, requires that you know this little
fact. Suppose your machine was a flea market special, and it
came with no docunentation. (O, it cost a small fortune, but
you have no confidence in the docunentation, or your ability to
count the chips accurately.) There is a relatively painless
way to get the machine to help you. PCOPY itself can be used
to help determ ne the anmount of video RAM avai l abl e.

Working in text node, WDTH 80, each full-screen page requires
4kb. So, if PCOPY 0,3 works, but PCOPY 0,4 gives an "Il ega
function call", the adapter has 16kb. That is, 4 pages of 4kb
each; the pages are nunbered 0, 1, 2, and 3.

I n SCREEN- O- W DTH- 40 node, the nunber of PCOPY pages doubl es

because each full "page" uses only 2,000 bytes. (Renenber that
PCOPY is always illegal on a nonochronme adapter. BASIC manual s
say that PCOPY works in all screen nodes; another instance that
belies their use of the word "all".)

Presumably you know what kind of adapter is in your machine.
To be able to wite prograns that are self-adapting, in the
event they are supposed to run on any nachine, it may al so be
necessary to determ ne which graphics adapter is in use. (If

The Blue Book About GW-BASIC and QuickBASIC -99 -

SCREEN 0: PCOPY 0,1 fails, the issue is nmute: Monochrone.)

One tell-tale difference between CGA and EGA is in how nenory
is used by the adapter. See this, assum ng PCOPY 0, 3 works:

10 SCREEN 0: CLS

20 DEF SEG = &HB800
30 POKE 16384, 65
RUN

Ok

If what is shown in the upper left corner of the screen is "AK"
rather than "Ck", the adapter is CGA and not one of its fancier
successors. This exanple is useful to denonstrate the need for
techni cal awareness when we opt to "go around” the interpreter.

Video RAMin a CGA begins at address &HB800 and consists of a
full 16kb, up to, and including address &HF7FF. Using deci nal
nunbers, 16kb is 16384, and the address range is 47104 through
63487. A not so trivial piece of trivia for a CGA is the next
16kb. It too can be addressed, with POKE for exanple, but it
is phantom nenory. The adapter "wraps" this second 16kb range
of addresses to nmatch the base address that begins at &HB80O.
(Whi ch accounts for the "Ak" seen above.)

EGA, on the other hand, has an honest 64kb of nenory, and VGA
has 256kb, addressed as 4 bl ocks of 64kb, each. At least. Not
all of this nmenory is video RAM however. Part of this address
space contains the video services BIGS, nostly in ROM chi ps.

The above nenory figures are honest assunptions. Yours, mne,
and the BIOS routines. Wat actually exists, in chips plugged
into the adapter, may vary. PEEK and POKE can be used to find
out the truth, if the truth need be known, which is needed, if
you want to use PEEK and POKE. Even so, be watchful of Iies,
like in the case of the CGA's tricks with nenory addresses.

An easy way to determne CGA vs. EGA, and to determ ne which
type of nonitor an EGA has been switch-selected for, is to
experiment with different SCREEN statenents. Any SCREEN node
argunent larger than 2 will cause an error on a CGA (ERR = 5).
SCREEN 7 and SCREEN 8 are valid--will not cause an "Il|ega
function call"--on any of the nore sophisticated adapters.
SCREEN 9 and SCREEN 10 are usable with an EGA adapter, but only
if the option switches on the adapter are set for use with an
"Enhanced Di spl ay"” nonitor (as opposed to a "Color Display",

The Blue Book About GW-BASIC and QuickBASIC - 100 -

e.g. REB: Red, Geen, Blue).

Sonme texts woul d encourage you to use operating system "service
calls" to find this out. M habitual inclination is to not go
native unless there is no practical alternative.

One reason for this attitude is, you cannot always trust the
answers you get by sanpling BIOS bytes. It can take unpteen
hours to determne their truthfulness. And truth is relative.
Let BASIC nmeke its own determi nations. Even when it decides
incorrectly, we are bound to abide by its judgnent, anyway.
(I'f we want to use the natural capabilities of the | anguage.)

Wi ch techni que to use, and when, depends on your confidence

in the configuration data stored in the BIOS. Wich is where
BASI C gets its advice from Al of which depends on the "tech”
that installed the boards, and whether or not he set the little
switches and junpers correctly. And whether or not he who made
that board followed the "standard" rul es about sw tch neani ngs.
And on, and on, and on.

Now, on with the show How to show what you want to see. 1In
BASIC. An opening nove for this phase of the gane is to see a
list of the key words that are peculiar to doing graphics, and
those that are useful otherw se, but behave peculiarly in this
node.

The following Iist of key words are those invented especially
for graphics. These are the ones that will generate run tine
errors (ERR =5, "Illegal function call") if SCREEN O is in
force at the tine they are encountered.

Cl RCLE PO NT
DRAW PRESET
PAI NT PSET
PALETTE VI EW
PMAP W NDOW

Two key words that existed before graphics was invented can now
be used in a different context: GET and PUT. They date back to
the early days of disks. Now, while in a SCREEN node of other
than zero, they can be used to exchange bl ocks of bytes between
the adapter's nenory, and nunmeric arrays in your own program
VWhich, as we will soon explore, can be nore fun than a chicken
pl ucki ng contest in June, any tine.

The Blue Book About GW-BASIC and QuickBASIC -101 -

Two of the key words that were invented when graphics made its
debut are useful in both text and graphics nodes (and with a
nonochrone adapter): COLOR and SCREEN

Four ol d key words--LINE, PRINT, STEP, and USI NG - now pl ay new
rol es when used in conbination with the key words that were
i nvented just for graphics.

Two of the oldest words in BASIC are WDTH and CLS. They were
in MBASIC, even, back in the seventies, in the real mof CP/M
In those days the manual s described them accurately. Their
nmeani ng and behavi or has been nodified so nany tines since, it
is no small wonder that the people who wite the manual s cannot
preci sely descri be what they do, how they work, or when to use
t hem

Here are sonme notes fromthe margins of ny manuals. Thankfully
they leave us a |l ot of white space for such jottings.

CLS: In text node, all character bytes are set to CHR$(32);
all attribute bytes are set according to the second ar gunent
of the nost recent COLOR statenent. M newest nmanual refers
to "al pha node"; it nust mean text node (or maybe a beta node
is comng). CTRL-HOVE clears the sane as CLS, but that only
works if (when) the program has halted for keyboard input.

If function-key |egends are being displayed, line 25 is also
cleared in nmenory, but it is then imediately restored to
what is being shown; both the text, and their conpanion

attri bute bytes.

W DTH (GMBASIC): Does nothing if the argunment used (40 or
80) is the sanme as what is already in force. An easy test
for determning the current setting is to LOCATE 1,41. This
will error trap (ERR =5) if the current wwdth is 40; if no
error, current width is 80. Do not use the WDTH " SCRN: "
formof syntax. |If in 40-colum node and an illegal argunent
is used--not 40 or 80, as a literal, or froma variable--the
interpreter gets confused. Fromthen on it thinks 80 is 40,
and vice versa. Wich can really drive you up a tree. (The
only way out of this ness, for sure, is to quit and go back
to DOS and reload the interpreter.) Now, see this:

1000 CLS : DEF SEG = &HBB0O0O 'prepare to |load a BSAVE file
1010 BLOAD "PI CTURE. MBK", O "a graphics screen "nmask"
1020 WDTH 80 "ready to print text

The "note" in the manual is wong. Do not expect WDTH to

The Blue Book About GW-BASIC and QuickBASIC - 102 -

act like CLS. If the above programis junp started--as in
GWBASI C <prograne--the screen will be blank and the PCOPY
page-0 will be "clear”. |If you BREAK and do a RUN--as we
do when debuggi ng--nothing gets cleared. (This is also
true if line 1020 had said WDTH 40.) The noral to this
story is: Always issue a SCREEN-W DTH CLS sequence if you
want to be sure of what will be seen, and, what the not yet
visible parts of video nmenory |ooks like. PS: Al ways do
it before a BLOAD, if what is being | oaded was not saved in
t he current node.

WDTH (Qui ckBASIC): Al bets are off about the 40 vs. 80
busi ness. The conpiler permts WDIH 40 or WDTH 80, and the
result is "conpatible" with the interpreter. 1t goes beyond
the interpreter, however, and permts 0-255 to be used as an
argunment for WDTH "SCRN: "--al though, if WDTH "SCRN:",0 is
encountered, an error will be provoked at run time. There is
no easy trick that can be used to find out what WDTH is in
vogue while a conpiled programis running, so it is up to you
to keep track of it yourself.

PCOPY: The manuals say to see CLEAR for nore information
Which is interesting reading material, but it has nothing to
do with PCOPY. (An old typo nost |ikely; probably should say,
see CLS.) When editing programlines, DO NOT use PCOPY in

i mredi at e execution node. Especially on an EGA. The snal
variations in video services between the system Bl OGS and the
one on an EGA can sonetimes cause the BASIC editor to garble
your program

VIEWPRINT: Don't. Not if you want to LOCATE on |ine 25,
and the programis supposed to run on anybody's machine. In
the event you establish a text window, then later attenpt to
revert to using the whole screen, a LOCATE to |ine 25 may
cause an error (ERR =5). This is probably related to BI OGS
variations, also. M only known cure, if this happens, is
to dunp everything and reload the interpreter.

"Viewport": This termis not defined, as such, anywhere.

We are supposed to infer its meaning by reading the separate
pages on CLS, VIEW WNDOW and their kin. Because they are
i nconsi stent in term nology, and because this "concept" does
not produce consistent results anong the different adapters

(various BIOS inplenentations), and because the interpreter

and conpil er behave with slight variations, the best advice

is: Don't rock the boat. In a given machine, working with

a given release of software, this concept can be appealing.

The Blue Book About GW-BASIC and QuickBASIC - 103 -

It is not unlike atom c isotopes, however. The half-life of
a given program nmay be dramatically different, depending on
t he nunbers involved in the nucleus in which it was witten.

SCREEN (function): The newer manuals say this only works in
"al pha node". (The ol der books did not warn us this may not
work in graphics nodes.) The truth, in any event, depends on
the 1Qof the BIOCS that is providing video services. Because
characters becone just so many bits in graphics nodes, to
respond to a BASIC request for a character's code the BI OS
has to unscranble the bits to see what character they match
Sone can do it, and sonme cannot. Also: In a CGA which can
re-encode characters from pi xel patterns, it can do it for
codes 128-255 only if GRAFTABL is in residence. 1In all cases,
it is critical that matching font sets are involved. A BSAVE
i mge, for exanple, can be interpreted correctly only if the
character set then in residence exactly matches the one used
at the tinme the i mage was generated. Wi ch neans you have to
be very careful when witing prograns on one machine that are
destined for another. (This applies to entire character sets
now t hat DLL Code Pages lets anyone fiddle with the fonts.)

SCREEN (statenment): The books all say the page argunents are
usable only with EGA. Nothing prevents you from doi ng the
same thing on a CGA, effectively, using POKE and PCOPY (for
text), but it does take sone progranm ng work, and poki ng
verbose text takes a | ot of execution tine. A real effective
trick is to BLOAD text pages directly into video nenory slots
that correspond to PCOPY page nunbers.

So goes ny hone renedies for the key words that give the worst
headaches. One nore note is sorely needed, but there is no
handy place in the manual to wite it. Except maybe, up front.
One of the neanest |essons to learn the hard way is to not edit
a programwhile in any graphics node. While debuggi ng graphics
progranms it can be a nuisance to have to keep switching back to
text node, but there is a real risk that the editor will garble
a programthat is nodified while in any of the graphi cs nodes.
(This relates to ny earlier notes about PCOPY, by the way.)

Now for sone free code out of ny nodules library. These BASIC
routi nes are useful to show how sonme of the graphics statenents
can be used. They are not textbook exanples. They are bona

fi de chunks of code from products that have been delivered to
live clients.

The Blue Book About GW-BASIC and QuickBASIC -104 -

The first two nodul es are useful for enlarging i mages; the next
two are for rotating objects about their own axis. Al four of
these use PONT to "read" pixels already on the screen and PSET
to "write" pixels where they are wanted. Because they conform
to conventional programm ng practices, they are equally useful
in all graphics nodes, and work with either the interpreter or
the conpiler.

From now on assunme DEFINT C-L. Wiile not critical, performance
is better with integer variables. Wth the interpreter, they
are all faster if remarks are omtted, and logic is condensed
into nultiline statenents. (Chapter 10 shows how codi ng style
i npacts interpreted prograns, and how to choose techni ques that
gi ve the best possible performance.)

To double the width of an inmage:

1000 SCREEN 2 : DI M D(15) "dot tank
1010 LOCATE 2, 2: PRI NT "W 'an 8 x 8 test icon

1020 FOR E = 8 TO 15 "row | oop

1030 FOR F = 8 TO 15 " pi ck-up | oop

1040 D(F) = PONT(F, E 'save dots on 1 row
1050 NEXT : C =8 "C = first colum
1060 FOR F = 8 TO 15 "replot 1 row

1070 PSET(C, E), F) "put 1 dot

1080 PSET(C+1, E), D(F) 'second put, same dot
1090 C=C+2 "bunp col um count
1100 NEXT "finish 1 row

1110 NEXT "finish all rows

To doubl e the height of an inmage:

2000 SCREEN 2 : DI M D(15) "dot tank

2010 LOCATE 2, 2: PRI NT "H' "an 8 x 8 test icon
2020 FOR E = 8 TO 15 " col unms | oop

2030 FOR F = 8 TO 15 "pi ck-up | oop

2040 D(F) = PO NT(E, F) "save dots in 1 colum
2050 NEXT : L =8 "L = first row

2060 FOR F = 8 TO 15 "re-plot 1 colum
2070 PSET(E, L), D F) "put 1 dot

2080 PSET(E, L+1), D(F) 'second put, same dot
2090 L = L+2 "bunp row count

2100 NEXT "finish 1 colum
2110 NEXT "finish all colums

The Blue Book About GW-BASIC and QuickBASIC - 105 -

To invert (flip) an inage on its horizontal axis:

3000 SCREEN 1 : WDTH 80
3010 LOCATE 2,2 : PRINT "L" "an 8 x 8 test icon

3020 FOR H =8 TO 15 ' col umms | oop

3030 | =8 : E =15 "l = 1st row: E = end row
3040 WH LE I<E "fromlst to end

3050 J=PO NT(H, I) 'save dot at H,

3060 PSET(H, 1), PONT(H, E) '"replace H, 1 with dot fromH E
3070 PSET(H, E), J "replace H E wth saved dot
3080 | =1+1 : E=E1 "down 1 row : end = 1 | ess
3090 WEND "finish 1 vertical line

3100 NEXT "finish 1 horizontal |ine

To reverse (spin) an image on its vertical axis:

4000 SCREEN 1 : WDTH 80
4010 LOCATE 2,2 : PRINT "C'" "an 8 x 8 test icon

4020 FOR H = 8 TO 15 "rows | oop

4030 | =8 : E =15 "l = 1st col : E = end co

4040 WHI LE I <E "from1lst to end

4050 J=PA NT(I, H) 'save dot at I,H

4060 PSET(I,H),PONT(E,H 'replace I, Hwith dot fromE, H
4070 PSET(E, H), J "replace E,Hwi th saved dot
4080 | =1+1 : E=E1 ‘right 1 col : left =1 less
4090 VEEND "finish 1 horizontal |ine

4100 NEXT "finish 1 vertical line

An interesting trait of PO NT and PSET (and PRESET) is that
they can be vectored into thin air. Even so, as the books say,
their argunments nust stay within the natural range of integers
(-32768 to 32767). In the above routines the coordinates that
are shown align with the positioning nmechanics of LOCATE, i.e.
uni form spacing in increnents of 8 colums (16 if WDTH 40) and
8 rows. This does not have to be, of course; the logic itself
can be used for any size of rectangul ar icon, placed anywhere,
by changing the start and stop argunents for the | oops.

This next routine uses DRAW CIRCLE, and PAINT to draw a big

clock in the mddle of the screen, in "nediumresolution". M
term Various texts play with this. Sonme used to call this
“hi gh resolution”. Wen higher resolution inmages cane al ong,

medi um hi gh, and very high resolution becane state of the art

The Blue Book About GW-BASIC and QuickBASIC - 106 -

term nol ogy. (Interestingly enough, "low resolution” is not a
popul ar term)

Here, in SCREEN 1 or SCREEN 2, with WDTH 40, this shorty uses
graphi cs statenents, and LOCATE and PRINT. And DRAW which is
a handy way to dangle the angle of clock hands.

5000 DEFI NT C L: DEFSTR M Z "define types
5010 T5=SPACE$(5) "time$ tank

5020 SCREEN 1, 0: WDTH 40: CLS 'screen set up
5030 LSET T5=TI MES$ 'get systemtine
5040 L = 360-(30*VAL(T5)+VAL(M D$(T5,4))/2) 'long hand angle
5050 H = 360-(6*VAL(M D$(T5,4))) "hour hand angl e
5060 Cl RCLE(160, 100),7,2 "dot at junction
5070 PAINT(160, 100), 2

5080 DRAW "C2 TA=L; NU36" "draw | ong hand
5090 DRAW " TA=H, NU50" "draw hour hand
5100 FOR I = 86 TO 90

5110 Cl RCLE(160,100),1,2 "rimaround cl ock
5120 NEXT

5130 LOCATE 6,19 : PRINT 12 : LOCATE 20,20 : PRINT 6
5140 LOCATE 13,11 : PRINT 9 : LOCATE 13,28 : PRINT 3

5150 Cl RCLE(198,52),1 : CIRCLE(198,150),1 'dot @1 & 5
5160 CI RCLE(222,72),1 : CIRCLE(222,126),1 'dot @2 & 4
5170 Cl RCLE(122,52),1 : Cl RCLE(122,150),1 'dot @7 & 11
5180 CI RCLE(98,72),1 : Cl RCLE(98,126),1 'dot @8 & 10

As used here, DRAWIis handy. It is used to draw two short
lines. Wich could be done with LINE. In this case, it also
takes care of the angle of those lines. Wich is one of the
few good uses of the "G aphics Macro Language".

Exanpl es of DRAWIin the ol der manual s use string concatenation.
For other than observation, such exanples are useless. (See
Chapter 4; it dwells at I ength on why concatenati on shoul d not
be used in real prograns.) The alternative is to set up a base
set of "command strings”, then use M D$-type nechanics to alter
t hem duri ng program execution, or to code one whale of a |ot

of quoted strings. In the end, because of all of the overhead
needed to avoid nenory fragnentation, you too nmay concl ude:
DRAW i s handy, but not as often as its advocates would | ead us
to believe. More personal cynicism Gaphics progranmng is
hi ghly hundrum no matter how you do it.

In the routine above, see the tediuminvolved in plotting the
dots that are used in place of nunbers on the clock face. In
fact, this short programtook over eight man-hours to devel op.

The Blue Book About GW-BASIC and QuickBASIC - 107 -

Wi ch included the tinme to design, code, debug, and test, wth
CGA, EGA, and VGA, for both SCREEN 1 and 2, using interpreted
BASIC. (DRAWiIn the early releases of the Qui ckBASI C conpiler
could not include the syntax used here, forcing us to use the
cunber sone VARPTR alternative. And that is very hunmdrum)

In the interest of saving tinme, which is of prine interest to
those of us programmng for a living, the need for a graphics

t ool soon becones obvious. MW own, coded entirely in BASIC

is not unlike a lot of the "paint" progranms in the stores. (In
fact, it was devel opnment of that tool that first gave birth to
the early routines nowin ny nodules |ibrary, including those
above that can enlarge and rotate icons.)

The bi g advantage to a honenade tool, witten in BASIC, is the
ability to generate "cut and paste" images that can be stored

in an icons-library; inages that will be "conpatible" with any
end- product application programalso witten in BASIC

Two different techniques can be used. BSAVE and BLOAD are best
for full screen "masks". They inpose no nenory burden for the
end-use program PUT and CGET are best used for partial-screen
i mges, and for assenbling full page nontages to be stored as

a final BSAVE file. But PUT and GET do require vast chunks of

tenporary storage, for both, the generating program and the one
that needs to nmerely do a GET so that it can then PUT what was

gotten.

The easiest of these two techniques to inplement is BSAVE and
BLOAD. All that need be known, basically, is how much nenory
to save. PUT and CET demands a tad nore than can be gl eaned
fromthe manual s. Taking the easiest first, see that BSAVE and
BLOAD of graphics screens is simlar to doing it in text node.
(Chapter 6 gives that detail.)

Graphi cs pages are mapped in 16kb blocks. In SCREEN 1 or 2

for exanple, the size-to-save argunent is 16384, which is the

inclusive total of fromO to 16383, counting position-0 as 1.
Thus: BSAVE "picture. nmsk", 0, 16384 stores an entire screen.
Then: BLOAD "picture.nmsk”,0 will reload (redisplay) it.

O course, DEF SEG = &HB800O nust be issued first, in either of

these cases. As a matter of habit, do a default DEF SEG as
soon as possible after whatever it was that required that it be

The Blue Book About GW-BASIC and QuickBASIC - 108 -

changed in the first place. That advice is in the fine print
in the manual s, but they do not say why. M advice is based on
an awareness that the interpreter can run anok once in a while
because it uses the "default address” itself. It is not easy
to get a handl e on just when, however.

One rarely docunented piece of trivia affords an opportunity
when doi ng a BSAVE of 16kb graphics screens. There is a hidden
string of 192 bytes that are not used for anything, but they
are saved in a BSAVE file, and therefore, rel oaded by BLOAD.

The advantage: COLOR, per se, is not saved with BSAVE, nor
for that matter, is the 1 or the 2 used for a SCREEN node, or
whet her WDTH 40 or 80 was in effect at that tine. So, POKE
can be used to store these values in a file that goes to di sk,
so that a using programcan automatically conformto whatever
adapter settings existed when the file was generat ed.

This can be done in one of two ways: Do the BLOAD then use
PEEK to condition COLOR and WDTH statenents, etc., or by
opening the picture-file first, as a relative file, so that

a CET can be done to obtain the values needed to condition the
adapter prior to doing BLOAD.

The (al nost) secret 192 bytes are | ocated between the two 8000
byt e bl ocks that make up a 16kb graphics page. The first byte
of that free space can be seen by: DEF SEG = &HB800, then a
PEEK(8000). To discern the magic of 192, renenber that 8kb is
really 8192, and two tinmes 8192 is 16384, which is the sizing
argunment needed to BSAVE all of a 16kb graphics page.

Here is how to see the beginning of that "hidden" string of
bytes before a BLOAD i s done:

OPEN "picture.nsk”" AS 1 LEN = 1 "relative file
FIELD 1,1 AS X ' DEFSTR X al ready done
GET 1, 8008 "1st byte is nowin X

The record (byte) pointer is determ ned by adding 8 to 8000,
to account for the 7-byte header in a BSAVE file. (Wat the
header bytes contain is covered in detail in Chapter 6, also.)

When opting to go this route, be sure to CLOSE a file that is
about to be inplicitly opened by BLOAD, or you will trigger a
"File already open" error. PS: BSAVE and BLOAD bot h cause an
inmplicit OPEN and CLOSE sequence; another little omssion in
t he | anguage manuals that is irritating to have to | earn by

The Blue Book About GW-BASIC and QuickBASIC - 109 -

trial and error.

As we have cone to expect, trial and error is the only sure way
to find out the full truth about the use of PUT and GET, al so.
Here are a few nore notes fromthe margi ns of nmy manual s; they
m ght save you the aggravati on of sone of ny errors.

To GET an image fromvideo nenory into an array, the name of
the array nust be specified in the GET statement. k. They
forgot to tell us that the array nust have been explicitly
di mensi oned beforehand. (Traditionally, in BASIC, DI Monly
had to be specified if any of the dinensions was |arger than
ten.)

PUT cannot be used if no GET has yet been done. At a gl ance
it would seemthat one would only want to PUT after a CGET

In practice, however, it is easier to code routines that are
supposed to PUT what used to be, before doing a GET at a new
| ocation. To make this possible, inmediately after a D M of
a pixel tank, force-load dunmy "image di nensions" into the
array. This can be done in one of two ways:

DI M D(100) : GET(O0, 0)-(0,0)
or
DIMD(100) : D(O) =1 : D(1) =1

The second trick shown here is the equival ent of what woul d
have been the natural consequence of the first one, assum ng
that DEFINT D had al ready been done. The advantage of the
the first method is that a first PUT will reproduce whatever
already exists at that initial location. (Assum ng PSET is
the "action verb" follow ng PUT.)

The ol der manual s (1986) did not give us a clue about how to
conmpute how | arge an array had to be, to hold an i mage of a
gi ven rectangul ar di nension. This oversight forced ne to do
a |l ot of probe coding; "lllegal function call" is not very
instructive.

The newer nanual s provide a formulae, which is nice, and it
works. One nore bullet would have been better still, to keep
you fromgetting shot down inadvertently. The fornul ae shown
requi res an awareness of how many pixels are used in various
SCREEN nodes. \When you follow their cross reference to the

The Blue Book About GW-BASIC and QuickBASIC -110-

description of SCREEN to find this out, you still may conme up
short. WDTH 40 requires twice as nuch array space as does
W DTH 80, in any of the graphics nodes. 1In fact, it would be
nice if they went all the way, and expl ai ned that graphics

pi xel - mappi ng i s established by the conbination of SCREEN and
W DTH, not necessarily by a SCREEN st atenent al one.

The formul ae shown in one of the BASIC manual s i s echoed here,
in the event yours does not have it. Use this (if WDTH 80,
divide this by 2) as the DiMsize for the small est possible

I nteger array:

4+ NT(C*I1 +7)/8) *L
where C = colums, | = bits-per-pixel, and L = lines (rows).

It is equally nice that the description of PUT warns us that
an "lllegal function call”™ will occur if the inmage to be PUT
is too large to fit on the screen. Because the error-trap
mechanics in BASIC are sonewhat flaky (read Chapter 9), it

is better to know what is legal in the first place. Then you
can deci de whet her or not you want to take a chance on the
sheriff catching you

Sticking with integer-arrays--which is practical because
there is no advantage to using floating point arrays--the
first two array el enents contain the columm-count, and the
rowcount, of an inmage captured with GET. By testing these
two val ues just before a PUT, we can determne if we are apt
to go over the edge and bring down the |ong armof the |aw

Assum ng OPTI ON BASE 0O--which is a safe assunption because
BASE 1 has never been seen in any of ny prograns--see this:

GET(0,0)-(C L), D 'D(0) = C+1 and D(1) = L+1

These are pixel position counts, e.g., if D(0O) is ten, add 9
to the first argunent in a PUT to see if there is enough room
for the wwdth of an image. |In the same way, if D(1) is five,
add 4 to the second argunent of a PUT to see if the |length of
an image wll fit. PS: Mintain an awareness al so, that the
C-factor (colums) is the one that is double for WDTH 40 vs.
W DTH 80. The value in D(0) is the actual nunber needed if
no change in wdth occurs between the GET and PUT.

Now t hat our manual s have been illum nated, we can get on wth

The Blue Book About GW-BASIC and QuickBASIC - 111 -

the business of creating icon files. Wich is fairly sinple:
BSAVE "icon. nsk", F, L--none of which has anything to do with
gr aphi cs, because BSAVE can copy any chunk of nenory into a
"binary file" on disk

Continuing with the sanme nanes in the above one-liners, the
value for F--the "from address"--is equal to VARPTR(D(0)).

Not to beat a dead horse, but notice that the default DEF SEG
IS the correct one to be riding before a BSAVE, for anything
coming froman interpreted BASIC programi s own worki ng storage
area. (For LNA addresses--"Large Nuneric Arrays"--a term
invented by the conpiler witers, see the Qui ckBASI C nanual s.)

The L-for-Length factor, the nunber of bytes to be saved from
an array, nust be at |east as |large as the GET-i mage required.
It does not have to be as large as the array itself, of course,
in the event you are using a |arge, general purpose dot-tank to
hol d i mages of various sizes. Again using the precedi ng nanes
of variables, here is ny fornmula for determning L, which is

a mnor variation of the one used for calculating the size of
an array needed for CET:

4+1 NT((D(0) +7) / 8) * D(1)

The difference being, obviously, the bits-per-pixel factor is
omtted here, since it has already been accounted for.

The BLOAD counterpart to BSAVE, for home-brew icons, is rather
sinple too. Use VARTPTR(D(0)) as the offset argument in BLOAD,
and do a PUT of array D. To preclude an undesirable run tine
error, the same test suggested earlier can be used to ascertain
whet her the image to be output will have enough roomtoward the
right, and downward, fromthe vector naned in PUT

There are tinmes, here too, that it would be nice to know what
graphics node was in use at the tine an array-icon was saved.
An easy way to nake an icon file self-identifying is to store
a few pointers in the array, just before a BSAVE is done.

As a convention, for exanple, to flag WDTH 40 vs. 80, set D(0)
to a mnus, and tell everyone that when they first BLOAD an
icon, to ascertain the sign of D(0), then immedi ately force it
to be positive; like D(0) = ABS(D(0)). (This is essentia

bef ore doi ng any PUT.)

In tight corners, to nmake sure that a dot-tank array is |arge

The Blue Book About GW-BASIC and QuickBASIC -112 -

enough to hold an anticipated icon file, the size of the file
itself can be exami ned. Like this:

OPEN "icon.nmsk” as 1 : B = LOF(1) : CLCSE 1

The smal |l est integer array that can hold this file will be one
with a DIMnot less than: (B-8)/2. This is valid for newer
rel eases of BASIC, in days of yore, (B-15)/2 would be correct.
Since B-8 is a tad larger than B-15, just stick to B-8 and not
worry about which specific software rel ease quit replicating
the file-header bytes on the tail end of BSAVE files.

For the sake of safety, a parting caveat is needed: An icon
file about to be | oaded nust be able to fit into an already
decl ared array; BLOAD does not concern itself w th anybody

el se's fate. You can accidentally cl obber your programif an
incomng file overlays nenory areas that it should not. Read
Chapter 3 if you are interested in how arrays are stacked up
in menory by the GMBASIC interpreter

For those notivated by such things as productivity and profit,
this chapter has, hopefully, favorably enhanced at |east one
or the other. For those enjoying the graphics gane, hopefully
some of this has clarified the rule books, at I|east.

For pixel poking cowboys, the follow ng program nay be of use.
It wll draw a border around the screen, in SCREEN 1 or 2, no
matter what W DTH has been established. To be able to PCKE

pi xel s, rather than to use the high-level |anguage capabilities
of BASIC, it is necessary to know which bits to shoot at.

How to draw a bead on particular bit positions can be discerned
fromthe argunents inbedded in the code. For the high priced
adapters, they are valid for SCREEN 1 and 2, but not for nodes
7 and above. If you are inclined toward the big gane, change
the DEF SEG to &HAO0O, and experinment with the offsets until

you get what you want to see. And have fun.

6000 DEFI NT |

6010 DEF SEG = &HBB80O0 ' CGA nenory

6020 SCREEN 1

6030 FOR | = 0 TO 7999 STEP 80 'vertical lines

6040 PCOKE |, 240 "bits 4-7 cols 0-3
6050 POKE | +8192, 240 "bits 4-7 cols 0-3
6060 POKE | +79, 15 "bits 0-3 cols 76-79
6070 POKE | +8192+79, 15 "bits 0-3 cols 76-79

The Blue Book About GW-BASIC and QuickBASIC -113-

6080
6090
6100
6110
6120
6130
6140

NEXT

FORI =0 TO 79 "hori zont al
PCKE 1, 255 "bits 0-7
POKE | +8192, 255 "bits 0-7
POKE | +7920, 255 "bits 0-7
POKE | +7920+8192, 255 "bits 0-7
NEXT

i nes

line O
line 1
line 98
line 99

The Blue Book About GW-BASIC and QuickBASIC

-114 -

Chapter 8 = FILES

Presumably you are using a version of the interpreter that has
disk files capability. |If not, what follows is not likely to
be very interesting reading.

My assunption is, if you do not have a di sk-based nmachi ne, you
are probably not interested in reading anything in this book.
The ol d cassette-based machines nust all be in the silicon
graveyards by now, and it is hard to believe that anyone makes
much use of the cassette-only node of operation of the newer
machi nes that have the "cassette portion" of the interpreter
burned-in, in ROM

When is the last tine any progranmer had to use MOTOR? It is
still in the language. W used to use it to start the capstan
not or running, preparatory to processing data on nagnetic tape.
Per haps we should be grateful that REWND and the old "punched
paper tape" commands finally passed on, to the big bit bucket
in the sky. (MOTOR is foreign to QuickBASIC. It is still in
GW BASI C, probably because it was burned into the nenory of so
many ROV just a few years ago.)

On the other hand, sone old tiners are sorely mssed. Once
upon a tine, in the early days of disks, we could OPEN a drive
as a device and access disk sectors on a relative basis. Wich
made it pretty easy to wite tools to fix disks that had becone
corrupted. And to be able to control what got witten where,
and nore inportantly, when, exactly, data was actually output
to the disk

Hold on. This chapter is not a trip down nenory |ane. A few

nostal gic remarks are useful, however, to set the tone for what
follows. File processing in BASICis tied to both, its history
of evolution, and to anachronisns that defy any sense of |ogic.

One purpose of this chapter is to | ower the bridge between DOS
and BASIC. The | anguage nanuals read as if what can be done,
and what is done, is unique to BASIC. Because nost |/ O done by
BASI C are via requests to DOS services, programrers nust know

t horoughly, DOS data file concepts: No matter what | anguage
they are programm ng in.

Wiere files are, and when records are actually witten in those
files is managed by DOS. What is in files is up to you. Sone

The Blue Book About GW-BASIC and QuickBASIC -115-

BASI C commands do fool with the data streamyou read or send to
afile; it is not necessary to use those commands at all. In
fact, in DOS, nothing in any file identifies themspecifically
as belonging to BASIC or any other |anguage. (There is no way
to look inside a file and know, absolutely, howit canme to be.)

A second purpose of this chapter is to describe how, in BASIC
to store, retrieve, and update data in disk files. Howto do
it quickly, and safely. Here the discussion is about genera
concepts. Canned codi ng techni ques for inplenenting some of

t hese ideas can be found in Chapter 13.

The | anguage manual is organi zed as two books in one. One is
called the "User's @uide", the other is the "User's Reference".
O these two, the "guide" is, undoubtedly, the nobst m sl eading
piece of literature in the field of progranm ng. Especially
so, when it cones to doing data file processing.

For exanple: "Sequential files are easier to create than...."
And, "... series of ASCII characters.” Further: "Creating and
accessi ng random access files requires nore program steps...
requires less room..stores themin a conpressed format in the
formof a string."

Here is nmy alternative introduction on the sanme subject: If

you want to use variants of INPUT and PRINT to do file I/Q OPEN
the file in INPUT or OQUTPUT node. |[|f you want to GET and PUT
OPEN the file in RANDOM node. Conversely, if you want to nove
around in a file, you nmust use GET and PUT. [If you only need to
process records serially, fromthe beginning of a file to its
end, you may be able to read it with some formof INPUT, or wite
records wwth PRINT or WRITE. Maybe.

Whet her one is easier than the other can be argued, but to no
purpose. Wiich nethod to use depends on what it is you want to
acconplish; to do a good job in either case is not especially
easy. In fact, BASIC sonetinmes nmakes it nore of a chore to do
either, than it is in sonme other |anguages.

Whet her the data in a file is "ASCI|I characters”, or fields
have "conpressed strings" is up to you. And it certainly has
nothing to do with BASIC. Al bytes in all files are sinply
bytes. Whether they should be interpreted in groups (fields)
as accounting figures, as text, or as "binary" (words) as in a
COM or EXE file depends on the frane of mnd of two people: He
that created the a, and he that w shes to make use of it.

The Blue Book About GW-BASIC and QuickBASIC - 116 -

It is certainly possible, and practical, to OPEN any file on
a disk in either node. O ten, both nodes can be used on the
same file at different points in time. Qccasionally, even,
bot h nodes can be used to an advantage, on a single file at
the same tine.

Yes, using two different nodes of OPEN on a given file is a
little odd. Perhaps. It is also odd, what we have to do to
get a machine to do what we want it to sonetines. Wich is the
root of ny earlier remark that BASIC (and DOS) sonetines nakes
it areal chore to do data file processing.

O these two, DOS is the nutcracker, nore so than BASIC. Wth
the exception of indexed-files -- which BASIC gives no hel p on
-- nost of what follows is true, no nmatter what progranmm ng

| anguage we use. (At the conceptual |evel at |east--comuands
are spelled different in other |anguages, and they each have
their own vagaries, but the fundanental problens are the sane.)

From here on ny presentation is organi zed al ong the sane |ines
as data files are typically processed. In three different ways.

Sequential files: A fileis read (or witten) from begi nning
to end without "wandering around" or |eaving any gaps.

Rel ative files: Data in a file are accessed anywhere within
the file by use of a record pointer. |In concept, this is no
di fferent than using a subscript to access elenents in an
array.

Indexed files: Access to data in a file is exactly the sane

as for relative files, but rather than having to use a nunber
to find a record, an "index key" can be used. Thus, see that
an indexed file is a relative file whose records can be found
by referring first to an index, to get the relative position

nunber of a record (stored with the key), then by using that

poi nter to access the desired record.

Notice that these three ternms (comonly used by software types
on the big machines) apply to how data in a file is accessed,
not about what is in the bytes. There is also, usually, an
inmplicit nmeaning associated with each of these terns about how
data is organized in files: About the grouping of bytes into
records and fields.

The Blue Book About GW-BASIC and QuickBASIC -117 -

Notice also that the accepted neani ng of these terns pre-dates
DCS and BASIC. Wiy they insist on warping the English | anguage
is beyond nme. Wiat they call "randomfiles" should be referred
to as relative files. Little |ogical use can be made of data
accessed on a haphazard basis (see Wbster re: random. For a
really good description of these three file concepts, read any
COBCL manual .

Nei t her DOS nor BASIC has any way of knowing what is in a file.
Afile is sinply a bunch of bytes. The terns used here are
conveni ent for human di al ogue; they infer how data is arranged
in files, by a programmer.

Now is the tine for all good coders to review which of these is
correct for a BASIC program To do so, we nust know what BASIC
does. Specifically. W begin with a | ook at sequential files.
They are the sinplest in concept, but nost peculiar insofar as
how BASIC treats them Relative files are next; nearly all data
processing in BASIC nust be done with relative files. This is
al so fundanental to indexed files. Because BASI C does not have
i ndexed file capabilities, per se, if we want to access records
on the basis of keys, we have to generate and nmi ntain our own
"key index".

PS: Even in | anguages that do support indexed files, it is not
uncommon for a programmer to do his own thing, to overcone rea
or perceived inefficiencies inherent to that |anguage. This is
probably nore often done in the world of DOS than with other
operating systens, regardl ess of the |anguage used.

Sequential files contain ASCIlI character strings. So the books
say. They are wong. ASCI|I defines a range of codes fromO
through 127 (decinmal). The other 128 nunbers (128-255) that an
8-bit byte can represent are not defined by that standard, and
are therefore, not properly called ASCI|I characters. These are
codes for fancy characters that can be displayed on a nonitor,
and, printed by sone printers. Bytes in the 128-255 range can
al so be read or witten by BASIC progranms to data files that
are opened for I NPUT or OQUTPUT. Wether they should be seen as
characters, or synbols, or whatever, depends on the eyes of the
behol der and the | egerdenain of the magician that stored themin
afileinthe first place.

The | ow order ASCI| codes, fromO through 31, are designated as
control codes, rather than as representi ng human-readabl e text

The Blue Book About GW-BASIC and QuickBASIC -118 -

characters. In a narrow context, BASIC treats three of these
as the standard i ntended, when reading or witing data in files
opened in sequential processing node. The specific codes that
BASI C sonewhat conforns to the standard on, are:

deci mal ASClI | neani ng BASI C behavi or
10 LF - line feed end of field (weird)
13 CR - carriage return end of field & record
26 SS - start special sequence end of file sentine

The ot her code possibilities in the 8-bit, 0-255 range are
processed by BASIC no different than is the letter A (65),
save for a comma (44), and a quotation mark (34), as we w ||
soon see. M remark above that code 10 is weird i s because

PRI NT #1, CHR$(10); "hel | 0"; CHR$(10)
wi |l output what we say, but if that data streamis read by
LI NE | NPUT #1, X$

then X$ will contain nine bytes. The values of those bytes in
deci mal are: 10, 104, 101, 108, 108, 111, 10, 13, and 10. What
Is peculiar is that code 10 is treated |like any character, but
it al so causes the 13/10 pair at the end to be read into X$, as
if they too were regul ar characters.

Normal |y, a 13/10 pair (OD/OA for those that |ike hexadeci mal)
work as an end-of-input-into-a-variable, and those codes never
normal |y get passed up to a BASI C program usi ng OPEN for | NPUT.
Which is also true of code-13, by itself, by the way, whether
it is followed by a code-10, or not.

As a last act, PRINT to a file is always followed by the 13/10
pair. BASIC does this for you, whether you like it or not.
Just |ike when printing, sem colons and commas between fiel ds
in a PRINT statenent cause continuous strings of output; the
sem col on and comma are nerely syntax characters, they are

not output to the file. (Unlike the sem colon, which does
not hi ng, the comm causes extra spaces to be generated in the
out put stream)

The WRI TE conmand was invented a few years ago to sinplify the
probl em of generating field separators in output streams. They
are needed to be able to read sequential file data with | NPUT

The Blue Book About GW-BASIC and QuickBASIC -119 -

or LINE INPUT (with the file-nunber syntax) into separate
vari ables used in a single statenent. Like in:

LI NE | NPUT #1, X$, Y$, Z$

the incom ng data stream nust have commas i nbedded in the data
so that the data can be aligned with the separate nanes of your
vari ables (fields).

WRI TE wi || generate those conmas on the sanme basis as they
were used. LiKke:

WRI TE #1, X$, Y8, Z$

will cause a comma to be inserted in the output file between
each of the fields represented by X$, Y$, and Z$. Wow.

WRI TE al so puts free quotation marks before and after data
output fromstring variables for us, so that on | NPUT soneday,
the interpreter will not get confused by conmas and quotati on
marks that are really text, i.e., that are not control codes
that BASI C depends upon to align data bytes with vari abl es.

Ww, again. (It is hard to believe that anyone ever uses WRI TE;
none of my progranms ever have.)

I NPUT$ i s another odd BASI C command, only sonetinmes handy for
processi ng sequential file data. Like: X$ = INPUT$(1,1) which
will read one byte--the next one in sequence since the | ast
"read"--and assign that byte to X$, no matter what that byte
contains. |INPUT$ can be used to read varyi ng nunbers of bytes,
in groups. It is necessary for the using statenent to know
how many to ask for, lest it ask for nore than can be had.

The reference nanual inplies that INPUT$ is for comruni cations
processing. Beats me why. A file is a file, and bytes are
bytes, no matter whether they travel courtesy of the tel ephone
conmpany, or are nerely dizzy fromriding around on a spinning
di sk.

In practice, OPEN for INPUT is nearly useless, no matter why
you might be inclined to do it. No matter what is in a file,
witten by a BASIC program or anyone el se, com ng from di sk,
down a wire, or right out of the ether.

The practicality of using OPEN for INPUT is severely Iimted by

The Blue Book About GW-BASIC and QuickBASIC - 120 -

what happens when we do I NPUT or LINE INPUT or INPUT$ into a
string variable. The cruncher is, any formof |INPUT works |ike
LET, which burns up string-space |ike we owned stock in the

conmpani es that make nmenory chips. (See Chapter 4. It is this
little "gotcha" that, perhaps, notivated the observation that
sequential files are slower than....)

Qut goi ng data can be shipped, after doing an OPEN for QOUTPUT,
with no hidden performance inpacts. PRINT to a file is an easy
nmet hod for generating variable |length strings of bytes that are
termnated by a 13/10 pair of bytes. |If that is desirable.

That ot her byte generated by BASIC, whether we like it or not,
is a code-26 (&H1A) when a CLOSE is done. It is the |ast byte
witten onto the tail end of a file that was opened for OUTPUT.
It is what is called in the DOS manuals, a "Control-Z code". (It
i s amusing, but offensive, to see DOS manuals turn caret into

a verb, as in: " a careted character.")

This perquisite is an inheritance. 1In the early days of CP/IM
whi ch was the father that spawned DOS and its internediates, a
code- 26 was needed as a sentinel to nark the end of a sequentia
i nput stream The file directory mechanics in CP/M coul d not
afford the space needed to know how long a file was, in terns of
t he nunber of bytes it had init.

CP/ M knew file lengths in terns of sector-bunches. (Wich,
incidentally, is the root cause of why the default record size
in BASIC is also 128. Wich was, also, the size of a sector in
the earliest days of flexible disk technology.) DOS knows how
many bytes a file has in it, no matter who wote the file, in
what ever | anguage was in use, at the tinme the file was | ast
witten-to (and successfully cl osed by) DCS.

Because DOS knows exactly how many bytes are in a file, the old
code-26 is no | onger a demand of DOS, and therefore, it is no

| onger needed by BASIC, either. An end-of-file will be flagged
when readi ng sequential files, by any programrunning around in
t he wonderful world of DOS, whether the file has a code-26 tied
toits tail, or not. By definition, then, that archaic guard

byte that BASIC still tacks onto sequential files when CLOSE is
done is not needed, even by BASIC, when it reads its own files.

On the other hand, you get ejected fromthe DOS carrousel when
a code-26 is spotted hal fway around, or anywhere else, be it
the end of a file or not, if you are reading serially froma

The Blue Book About GW-BASIC and QuickBASIC -121 -

file that was opened in "ASCI| node" (DOS nmeaning).

Now, reread the DOS definition of its COPY conmand, and gl ean
what the slash-A and slash-B options really nean. And, from
whence their need has been perceived. Their use of the terns
ASCI | and binary are as anbi guous as they are in BASI C books.
O course, we need no rem nder that DOS and GW BASI C nanual s

were witten with pens dipped in the sane ink well.

Save for the BASIC-only peculiar fondling of commas and quotes,
we can summari ze nearly the whole subject of sequential files
as being akin to what DOS calls ASCII files. Although they
take liberal tradecraft |icense with our native | anguage, the
BASI C manual could sinply say that if you understand the argot
of DOS, OPEN for INPUT and for OUTPUT works just |ike DOS says,
when it tal ks about using DOS commands such as COPY, and SORT,
and EDLI N.

To me, with ny penchant for the sinple, nothing could be nore
straightforward than relative files. W can GET any byte we
want to, and PUT one wherever we want, whenever the nood cones
upon us, W thout worrying about which codes are likely to upset
the apple cart.

Some would seemto revel in the sublime. Internally, BASIC has
its own schenme for storing nuneric values. (Chapter 5 pounds
that pretty hard.) Because the technique that is used is very
efficient for storing great big nunbers in a m ni num nunber of
bytes, it is easy to understand why the manual brags that BASIC
stores data in relative files "...in a conpressed format."

Bragging is one thing, but they carry on with obfuscation about
using MKD$, CVD, and their kin. Wich need not have been said
at all. Wether you opt to use those functions in conjunction
with processing data stored in disk files is totally dependent
upon what you perceive you ought to do. Wich, in any event,
has nothing to do with the fundanmental concept of storing data
in files that are to be processed on a relative basis. It is
even possible, and practical, and a pretty good trick once in
while, to PRINT #1, MKD$(A), for exanple. The choice, in any
event, is yours; do not be m sguided by a scribe that makes a
living witing manual s, rather than by witing prograns.

The qui ntessential aspect of relative files in BASIC is FIELD
When a CGET is done, a string of bytes is copied froma DOS I/0O

The Blue Book About GW-BASIC and QuickBASIC -122 -

buffer into a BASIC buffer. The "standard way" to gain access
to those bytes is via string variables that have been decl ared
to be for that purpose. They are declared in FlIELD statenents.

The nami ng of variables in FIELD statenents does five things:

1. The name-pointer is now aimed up into a file I/O buffer
(String variables normally point to literals in the body
of your program or, down into so called string-space;
g.v. Chapter 4.)

2. The structure of what is expected to be in records, in
this file, is described (to yourself) by the order in
whi ch variabl es are naned, and the field size stated
wi th each nane.

3. Each nanmed string variable is explicitly defined as a
fixed-length string of bytes. They enjoy a substring
posture (of the total string that represents a record),
relative to the order in which they are stated in FlIELD

4. In concept, GET is |like using LET several tines: Each
vari able naned in a FIELD statenment will contain an image
of what was read froma disk, as a substring of that
contiguous string of bytes then in the file 1/0O buffer.

5. Wien a PUT is done, the entire buffer is passed back to
DOS, so that it can overwite the area of the disk from
whence this "record string” cane from \While data is in
your buffer, whichever fields (variables naned in Fl ELD)
you opt to fool with, will be "updated” on the disk. See
that the content of variables that you do not change go
back to the disk, just as they were.

My attenpt to describe what you probably already know is not
as succinct as could be done by a pro author, but it is nuch
nore correct than the opening verses about files in the BASIC
hymmal called the "User's Guide".

Whet her you prefer the argot of the manuals or nmy awkward stab
at using conventional English is uninportant. Conmunication
is, however. There are a nunber of things that are not said
at all in the manuals. The whole truth needs to be known if
they actually expect us to make intelligent use of what is,
actual ly, a powerful |anguage product.

The Blue Book About GW-BASIC and QuickBASIC -123 -

It is unlikely that a gun nanufacturer would be guilty of not

descri bing safety features of his product. M suse of BASIC is
not likely to cause you to accidentally shoot anybody. There

is areal risk, however, that a badly witten file processing

program coul d cause an operator to want to strangle you.

In the interest of filling in the voids, here are sone nore
notes conpiled fromthe scratches penned in the margins of the
pages i n ny manual s.

OPEN: Do not use the archaic formof syntax, the one where
you use letters like "I" and "O'" and "A" to declare a file
access node. It does not behave exactly as does the nodern
formof syntax, despite the nanual's promise. Re: You can
OPEN and CLOSE a file (nunber) as nmany tinmes as you want to.
No you cannot. |If the old fashioned formof OPEN is used, an
error may be provoked on the 16th attenpt to execute OPEN
This bug is wobbly, and crops up only at certain tines, but
it does not really matter when. There is no good reason to
dredge up dyi ng bugs.

LEN: State it explicitly, even if 128 is the desired nunber.
An error trap will occur if this nunber is larger than that
specified with a slash-S when GWBASIC is | oaded. |f not
stated, an error is not flagged until a FIELD statenent is
encountered that attenpts to exceed 128, or, the global size
maxi mum speci fied when BASIC is junp started. It is better
to have an OPEN fail, than to crash later, |eaving possibly,
a fractured FAT on your favorite disk. (PS: QuickBASIC has
no counterpart to the slash-S option.)

LEN: The scribe that said you could specify 1-32767 never
tried it. |If you try to start GMBASIC with /S:32767 it wll

not work. Even if you also specify /F: 1, you will still get
a DOS nessage: "CQut of nmenory". Even if you have a couple
of mllion bytes of RAMsitting enpty. The practical limt
for LEN is about 8kb, which will |eave you enough roomin
BASI C s 64kb program bucket to run a few |lines of code. Bear
in mnd well, whatever slash-S option is specified, it wll

apply to all files once the interpreter is |oaded.

FIELD: A vari abl e-name nay be used nore than once in the
same statenent. Exanple: FIELD 1,3 AS X$,4 AS W5, 2 AS X$.
In this case, X$ is 2 bytes, beginning at position eight,
counting fromthe left. The first X$ is simlar to FILLER in
COBCOL. The reason for doing this in BASICis to obtain the

The Blue Book About GW-BASIC and QuickBASIC -124 -

desired alignment of nane-pointers into a buffer, wthout
concocting artificial names that are not going to be used.
(Chapter 3 explains why we should coin no nore variabl es than
are actually needed.)

FIELD: String-array elenments can be naned just |ike discrete
variables. In fact, this is great for updating records with
FOR/ NEXT | oops. There are a few pesky points to ponder,
however, when opting to go this route:

+ If an array subscript named in FIELD is |l arger than 10,
a DI M nust be done before this statenent is attenpted.

+ It is the individual elenments of an array that are naned
in a FIELD statenent that are associated with a file
buffer, not the entire array. Looping |ogic that whacks
string arrays nust take care to not abuse subscri pt
positions sacred to a file. (It is not altogether a bad
techni que to have one array do doubl e duty, where, sone
spots are "normal" strings, and sone equate to fields in
data records.)

+ In the magi ¢ ki ngdom of the conpiler, all fielded nanes,
and the data they point to, are abandoned on CLOSE. This
has a side affect, in the case of string arrays, of being
simlar to an ERASE, but of only those array positions
specifically named in a FIELD statenent.

+ ERASE and DIM work as woul d be expected. |f FIELD uses
array nanmes and di screte variables, also, the pointers
into the buffer for the sinple variables maintain their
relative position; the substrings previously pointed to
by array declarations are "logical gaps". ERASE does not
"erase" the data contained in the I/O buffer. Naturally,
DI M done again for the same array means that all of its
subscripts now point into string-space, notw thstandi ng
whet her sone may have previously been ainmed into a file
buf fer.

LOC. If you GET 1,5 (or PUT 1,5) then LOC(1) will report 5
as the current record pointer. Just like the books say. |If
you GET 1, 32767 the LOC(1l) report is correct, but GET 1, 32768
will cause LOC(1l) to report -32768; and you cannot PUT to a
negati ve record position. |If you CGET 1,65536 then LOC(1)
conmes up zero, and you cannot PUT to zero, either. Wrse
still, GET 1,65537 followed by PUT 1,L0C(1) will overwite
record nunber 1, not record nunber 65537. Annotate your

The Blue Book About GW-BASIC and QuickBASIC -125 -

manual in red: LOCis an integer inside the interpreter. It
is automatically reset to O each tine you pass 65536, and,
reports negative conplenents of 65536 for records in the
range 32768 through 65535. Meaning: LOC is pragmatically
usel ess (dangerous) for a lot of files.

LOC. In QuickBASIC the above paragraph does not apply. |If
you go to the extrenmes necessary to solve the LOC problemfor
an interpreted program all that work is for naught if you

| ater use the conpiler. The sinplest solution is to adopt a
habi t of maintai ning your own GET/PUT counter; use either a
singl e or double precision variable, depending on the growth
anticipated for a given file, and not worry about LOC limts.

LOF: The length of a file is always reported as the nunber
of bytes in that file. To equate this to how many records
are in a file, divide LOF by the LEN argunent used in OPEN
That advice in the manuals is valid and accurate. Make it

a habit to use the forward-slash in the division expression.
The back-slash is used in BASIC for integer division; the
conpiler will not tolerate this for an expression invol ving
LOF. (The conpiler thinks it is smarter than you. You know
the answer is going to be small enough to fit into an integer
vari abl e, but the conpiler designers assune that mere peons
cannot possi bly know sonething that they do not know.)

GET: Works just as expected, just as advertised. It is not
intuitively obvious what happens when you GET farther than
you have ever PUT, however. 1In a newfile for exanple, if

the first PUT is to record nunber 10, what is in records 1
t hrough 9 may be anything; even, |eftovers fromyesterday's
l unch. Logically, records that you have not explicitly PUT
wi th known val ues have to be treated as if they contain

gar bage.

PUT: See CGET, above, then renenber that PUT nerely sends a
record to DOS; it DOES NOT nean that it will go to disk, now,
eventually, or ever. (If you OPEN a file by two different
nunbers concurrently, do not assune that GET on one will | ook
i ke what was PUT to the sane file known by a different file
nunber. Caveat, Jose.)

CLCSE: Believe it or not, you can CLCSE files that have never
been opened. Funnier still, you can CLOSE file nunbers that
can never be opened. (CLOSE is tolerated with any val ue of
fromO to 255. Anytine.) The manual says that CLOSE al so
wites the final buffer of output for sequential files. What

The Blue Book About GW-BASIC and QuickBASIC - 126 -

it does not say is that there is no way of know ng how nany
relative file records have not yet been witten to disk. You
may have | ogically updated dozens of records. The fact that
you closed a file means nothing. Updated records nay stil

be floating around in DOS buffers; DOS sends themto disk
whenever it takes a notion unless it is told to do it right
now. And the only way to get BASIC to tell DOS to unload its
cargo immedi ately is to issue a RESET conmand. Unfortunately,
you cannot RESET files by nunber. Which neans you may have to
do another OPEN, even for read-only files that have not been
changed.

RESET: The reference manual says to always do this before
renoving a diskette: "Qtherwi se when the diskette is used
again it will not have the current directory informtion
witten on the directory track.”" Small advice from snal

m nds, for small disks. In the event of a power failure,

for exanple, even if your program had al ready done a CLOSE on
all files, the FAT on a hard disk (which you cannot renove)
is apt to have been clobbered. (The File Allocation Table is
what CHKDSK | ooks at. Wen it reports broken chains, it is
not unusual to find that a BASIC program broke them)

RESET: |Issue CLOSE, then RESET. As a habit. This will save
you a lot of grief, on those days you opt provide an operator
the option of sending data to a printer or a disk (by the

si nmpl e expedient of using "LPT1:", or a file nanme, in an OPEN
statenent).

My notes above stemfromthings found out the hard way. This
list should be longer. It is very tinme consum ng, and not very
productive, to have to reconfirmor refute this know edge by
trial and error, every time we are forced to upgrade to a new
rel ease of software.

It is also possible that you know of nmany things that coul d
have been illum nated here. MW know edge is derived fromthe
way ny prograns work, and fromthe experience gai ned when sone
did not work as anticipated. And that experience makes nme gun
shy. A nunber of things have been added to BASIC in recent
years that | make no use of and therefore do not know, or care,
how accurately they are descri bed.

Qui ckBASI C changes are so anachronistic no nere prophet can
anticipate what it is apt to do next. Once you have nastered
nost of its nuances, stay with that rel ease as | ong as you can.

The Blue Book About GW-BASIC and QuickBASIC -127 -

Unli ke GWBASIC, you have to keep "ol d" conpilers around the
house forever, to be able to reconpile old prograns. Either
that, or suffer the burden of having to make a | ot of otherw se
unnecessary changes, just because of sonme whi nsi cal change the
conpiler witers thought was a good i dea.

Al t hough changes to GNMBASI C are sonewhat infrequent, because
it, and QuickBASIC, are so closely tied to DOS, it is DOS we
have to try to keep up with. And it changes rather frequently.
When they added path commands to BASIC, like CHDIR, it was not
intuitively obvious that the potential advantages for using it
woul d of f set mai nt enance headaches if sonme future change in DOS
i nval i dated an application progranis internal | ogic.

Not e: The upgrade force-factor cannot be avoi ded alt oget her.
Cients buying new conputers cannot buy outdated rel eases of
operating software, even when ol der versions would be fully
adequate to their needs. W cannot sinply give thema copy
of our old versions wi thout violating copyright restrictions.
Cat ch-t wo-t wo.

It is the sumof hard-won | essons | earned that causes ne to
suggest the following "attitude" to adopt about doing file
processing in BASIC. Do what needs to be done with the content
of files, inside your program Do di sk nai ntenance, genera
file mappi ng, and systens configuration tasks externally, wth
DCS batch files, or whatever. And refuse to have anything to

do with "networking", in any |anguage, unless you have a key
to Fort Knox, or have a client that does. File sharing ideas
help sell iron; it is a lousy concept for responsible systens

anal ysts to echo. Especially on DOS-based machi nes.

Even if you buy this advice at face value, you can still get
badly burned. Here is a very recent history |esson that shows
why it is better to be conservative, rather than risque.

VDI SK (alias RAVMDRIVE): The initial state of all records in
files on a synbolic disk (in nmenory) is all zero-bytes. How
| ong we can count on that, is unknown. It mght be best to
not have blind faith. Right out of the clear blue, DOS 3.3
changed the nane of VDI SK to RAMDRIVE. W have not fully
recovered fromthat nasty trick, yet.

There is no way of knowi ng for sure how many CONFI G SYS files
are going to flip-out when an unsuspecting user decides to

The Blue Book About GW-BASIC and QuickBASIC -128 -

"update" his DOS. A programyou wote may run for hours
bef ore you have need to hit the soft disk. Then you crash.
It never even crossed your mnd that DOS woul d take away
sonet hing that has been there for a nunber of years.

Hnt: Now nmy CONFIG SYS files attenpt to | oad both VDI SK and
RAMDRI VE, betting that one or the other will be there, and,
betting that DOS will continue to nerely display an error
nmessage and proceed blithely on, fast enough, that nobody wl |
notice the file-not-found nmessage during boot-up. (O that
one of themw |l flash an "Incorrect version" nmessage because
the user sinply file-copied new DOS files over the top of the
ol d ones, causing both to now be resident because their nanes
are different.)

Enough of the grit, gripes, gloom and doom It is tine for
some real fun: Indexed files. This is where your creative
instincts can really cone to the fore. Especially if you want
to obtain maxi mum performance with the |east effort and risk

The first requirenent to ponder is whether an indexed file ever
needs to be processed sequentially, in sorted order, based on
their keys. Mst do, sooner or |ater.

| SAM - | ndexed Sequential Access Method--is a concept as old as
conmputers. This acronym has been in nmy vocabulary so |long |
cannot renenber from whence it originated, but the neaning has
al ways been essentially thus:

1. Keys are maintained in an ordered sequence. Oten, for
exanpl e, in ascendi ng al phabetical order.

2. A find-attenpt--such as when an operator enters a custoner
account - code--hands up that target record if an exact match
is found for the requested key.

3. If arequested key is not found, the record for the next
hi gher key in sequence, is targeted. (Whether or not it
shoul d be shown to an operator depends on why they are
wandering around in a file in the first place.)

4. Sequential reading of a file is possible (fromany point
in an index) by sinply stepping forward through the index.
Thus: Custoner lists can be output in sorted order, for
exanple, with no need to do a preparatory sort job.

The Blue Book About GW-BASIC and QuickBASIC -129 -

A byproduct benefit of |ISAM can be that it nakes it easy, and
qui ck, to preclude duplicate keys. GCccasionally an application's
needs dictates that duplicate keys nust be allowed. That can be,

of course, but it is a real bear to programfor. |In the absence
of specific demands to the contrary, everybody w Il be happier
if you design so as to prohibit duplicates, i.e., all records

have a uni que key in the index.

To this point, ISAMis a classical schene, in any |anguage, on
any conputer. In fact, add-on packages can be purchased that
can be "called" fromBASIC, to do all of this, and nore, and
they do all of the housekeepi ng necessary to nmmintain even
mul ti pl e i ndexes, and alternate-key accessi ng nechani sns.

In many cases such add-ons (purchased or honmenade) are as
inefficient as those that are built-in in other |anguages or
operating systems. Because of "paraneterability”. They spend
a lot of execution tinme doing the equivalent of IF. And they
spend a lot of tinme running around the disk | ooking for your
records.

By reducing an application's requirenments to specific needs,

and by coding explicitly to that end, even interpreted BASIC
progranms can performnore efficiently than sonme "generalized"
software, no matter what |anguage it is witten in.

Thi s does not nean we have to reinvent the wheel every tine
we wite a new program By having a |ibrary of subroutines
for different "functions" associated with file I/O they can
easily be nerged into new prograns on an as-needed basis, and
qui ckly paraneterized, specifically, in-line, in the code
itself.

Here is a list of functions needed to manage i ndexed files by
nmy definition.

Find: This subroutine searches the keys-index for a file.
On return, it points to an exactly matchi ng key-entry, or,
to the next one down, in sequence. |If the requested key is
“larger" than the last one in the index, the pointer is set
to the end of the index, plus one.

Add: This subroutine inserts a new key into an index, at its
proper position, according to the logic that governs how keys
are supposed to be ordered. And it shifts all of the keys
that follow this one, down by one position.

The Blue Book About GW-BASIC and QuickBASIC -130 -

Del ete: This subroutine deletes a key froman index, and

noves all of those that followit, up by one position. It
may al so nove the one deleted to the bottom of the index and
mark it "deleted". The pointer tied to this key can be an

easy way to be able to reuse obsolete records, to curtai
unnecessary growh of highly volatile files.

Move: This subroutine calls Delete, then Add. This is done
to resequence keys that are being changed, i.e., the record
IS being kept on file, but the spelling of its key is being
changed.

The key to managi ng keys with this functional approach is the
Find subroutine. It can be called to nerely |locate a record,
and it can be called by Add, Delete, and Move, as needed, to

find relative positions in the index itself, for doing index

mai nt enance.

Typically, Find uses sone variation of a binary-search. The
exact technique to use has to be based on how keys are ordered
in an index, of course. Many excellent books can be found that
descri be various searching and data ordering schenes. Few can
be found that address problens specific to doing tasks Iike

this in interpreted BASIC, in DOS, however. Chapter 13 contains
some specific solutions for this.

Two things that deserve special attention in our world is the
over head burden suffered by BASIC prograns on each reference to
a variable, and, the doubl e-buffering of records in nenory that
is done by GWBASIC runni ng under DOS. Chapter 3 describes the
vari abl es-search problem The other major concern, about how
records are held in nenory, once they have been read from di sk,
is appropriate to this chapter. It is apropos to all relative
file processing, but enphatically so, when designing routines
for managi ng i ndexed fil es.

Working fromthe bottomup, so to speak, DOS di sk mappi ng and
record buffering, then how records are buffered by BASIC, then
how the interpreter works internally, then an application's
requi renents have to be wei ghed, before a nethod can be chosen
to get the job done efficiently.

On a GET, a lot of bytes get noved fromone | ocation in nenory
to another, even if an OPEN specified LEN = 1. Like this:

The Blue Book About GW-BASIC and QuickBASIC -131-

1. Application programtells BASIC to GET one record.
2. BASICtells DOS to GET one sector.

3. DOS tells the adapter which sector to read, and where in
menory to put a copy of that sector

4. DOS tells BASIC where in nmenory that sector's inmage is.

5. BASIC copies that portion of the sector that represents
your record into its file buffer.

6. Your fielded variables now point to fields within your
record, in the interpreter's file buffer.

On a PUT, all of this is reversed. The interpreter copies your
record back into its corresponding position in the DOS buffer,
and tells DOS to send that sector back to disk. (DOS does it
when it takes a notion, renenber, which may only occasionally
coincide with when you said PUT.)

My newest DOS manual says: "Feel free to experinent with

di fferent buffer settings...." This innocuous quotation is a
NOTE on the page descri bi ng BUFFERS, follow ng another that says,
a nunmber between 10 and 20 provides the best perfornance for word
processors.

Certainly we can feel free to experinent. W own the nmachi ne,
and we paid for DOS. Rem nding us of our consuner's rights
provides little help. Telling us to experinment is ridiculous,
al so. Wat we need to know is how DOS nakes use of all of

t hose 512-byte buffers, whatever nunber we opt to try. (CQur
menory cost is 528 bytes, per buffer, notw thstandi ng the 512
stated in the books; 512 is for the data, and 16 nore bytes are
used, per buffer, for keeping track of which file each buffer
bel ongs to, and its usage indicators.)

The underlying queuing theory of DOS record buffering seens to
be FIFO First In, First Qut. None of ny manual s ever describe
any of this, however. Probably because it is not apt to be the
same for any two versions of the software. (Viz, the onerous
trick they pulled in Rel ease 3.3 when they changed the nunber

of default BUFFERS. Prograns that used to work may no | onger,
because all of a sudden you are out of nenory; at |east until
you recode CONFI G SYS to specify the "ol d* BUFFER default.)

The Blue Book About GW-BASIC and QuickBASIC -132 -

Here is my perception of how FIFO buffering works in DGOS, on
this Friday afternoon, anyway.

+ On any program s request to READ, an inage of the sector to
be read wll be placed in the next available buffer that is
thus far unused.

+ After all buffers have been filled, fromthen on the "next"
buffer to be used is the one with the "ol dest" contents.

+ In the event sonething has been changed in an "ol d" buffer,
it will be witten back to disk, fromwhence it canme, just
before that space is overwitten by the | atest request to
fetch a different sector

+ In the event a READ request is for a sector that is already
in a buffer, no disk 1/Ois perforned, but this request is
treated as the "nost recent” by the little gremin that is
keeping track of which is the "oldest"” inactive buffer.

Add to this jungle savvy: DOS uses these buffers too. Like for
readi ng disk directory informati on and FAT fiddling. And where
some wag came up with the idea that word processors run better
with lots of buffers is inexplicable. (O ny three WP prograns,
none seemto work better with two buffers, fifty, or any of the
nunbers in between.) M older DOS nanual s are even nore obtuse.
They predict "data base" applications work better with |lots of
buffers. (I hope that witer get "lots of" pay.)

What all of this really boils down to is, sequential reading or
witing of |arge chunks of disk data benefits not a whit from
mul titudes of buffers. Nor does GET and PUT activity involving
but a single file. Nor does GET and PUT for many of the files
that may be open concurrently, if one is constantly hogging the
show by bei ng hyperactive. Wich is a typical characteristic
of those known as indexed files.

Now we are ready for another unadvertised piece of lore for the
fol ks using BASIC. Double buffering. This has been alluded to
al ready, but see it now for its performance inplications. Wth
pi eces of disk-data sitting in DOS buffers, and chunks of that
sitting in your GMBASIC programis own buffer, and nmaybe sone
of that parceled out to different variables for interimuses,

it is going to take sone tinme, sometines, to put it all back
where it belongs. Wich brings us to the point of thinking
about the programwe are about to wite.

The Blue Book About GW-BASIC and QuickBASIC -133-

The first thing to deci de upon when anal yzi ng an application's
technical requirenents is: Record sizes. The very worst thing
we can do is pick an odd number (other than one, maybe).

Consider the inplications of a record size of 513 bytes. The
odd byte, the one after 512, neans that for every GET, two
sectors will have to be read fromdisk, which will use two DOS
buffers. And every PUT wll have to unload two buffers, if the
field you "updated" crossed the nagic divide. And see that 255
is just as bad as 513. O maybe worse. Yet, in GMBASIC, the
maxi mum | ength permitted for a string variable is 255. (This
restriction applies equally to variables named with FIELD. The
sum of the sizes of the several fields described with a single
FI ELD can be greater than 255, of course--up to the total
specified with LEN, on OPEN.)

So, design rule nunber one has to be: Record sizes should be
a nunber evenly divisible into 512. Preferably, no record
shoul d be | arger than 512, either, if that file is going to
be open continuously, and experience GET and PUT activity on
a sporadi c basis.

Not all record-size requirenments are easily forced to conform
to this advice. So, round upward to the next higher increnent
that will adhere to this rule. Even, if you wind up with a few
byt es tagged as "reserved", just like the big boys do. They
may cone in handy, anyway, when your client suddenly renenbers
somet hing he forgot to tell you about his needs, originally.

The ot her choice for forcing record |l engths that wll be sone
figure that will preclude spanning across sector boundaries is
to opt for "conpacting" one or nore data fields. Here, the
trade-of f has to consider the processing tinme required for
packi ng and unpacki ng such data, and the frequency w th which
It must be done.

The next decision to be made, for indexed files, is the one
likely to have the greatest inpact of all: Were to keep the
index itself. One of the obvious possibilities, of course, is
inside the related data file. At the top, or at the bottom or
as "pages" interspersed anong bl ocks of real records.

Many indexed file schenes, in a |lot of systens and | anguages,
keep the index for a file at the front of that sanme file. It
I's obvious, also, why nost such schenes dictate uniform key

The Blue Book About GW-BASIC and QuickBASIC -134 -

| engt hs, and why, the nmaximumlength of a file (plus its index)
nmust be specified at the tine a file is first created.

An alternative that easily pernmits variable |ength keys, and
unlimted file growth is to keep the index in one file, and the
data records in another.

Any schene other than one that prewites an arbitrary bl ock of
sectors at file-creation tine has to anticipate performance
degradation will be experienced sooner or |ater, because of
that old DOS Nenesis known as fragnentation

One of the best nethods that can be used to achi eve superior

performance for indexed files is MRI: Menory Resident |ndex.
This is another old-timer's term dating fromso far back its
origin escapes ne. It was good techni que back when, and it
still is today.

On start-up, load a file's index into nmenory, then close that
file and open the real data file. At the end of a run, if the
i ndex has been changed, dunp the updated i ndex back to the

di sk.

A chi ef advantage to this schene is that no disk thrashing wl|
occur while you are wandering around in the index; all 1/0O done
during a live performance is done for the benefit of paying
patrons. A disadvantage to this is, the auditoriumnust be |arge
enough to hold the entire i ndex, backstage. Still, this trick
shoul d not be discarded too quickly. See this:

DEFDBL A: DEFI NT | "define data types

DI M A(2000), I (2000) "A = keys; | = pointers
BLOAD "keys. ndx", VARPTR(A(0)) 'l oad the keys

BLOAD "ptrs. ndx", VARPTR(I (0)) "l oad their record pointers

Total nenory needed for a 2000-record data file is just a tad
over 20,000 bytes; 2000 times 8-bytes for the keys, and, 2000
times 2-bytes for the LOC-pointers into the real file. Yes,
this works for "al pha keys", also, of up to 8-bytes each, by
usi ng MKD$ and CVD on each of the slots in the doubl e-precision
A-array.

Using BLOAD to grab the index, and BSAVE to unload it is very
fast. Even an inpatient operator will not know when you did
it, especially if it is being kept on a hard di sk.

The Blue Book About GW-BASIC and QuickBASIC -135-

Anot her crafty alternative is to COPY a file's index from di sk,
to VDI SK, before a run begins, and to COPY it back to disk at
the end of the run, if the index has been nodified. Wichis
one nore argunent in favor of keeping a file's index in a file
separate fromthe one that has the real records init.

Last, but not |east, do not discount too quickly the easiest
schene of all: A no-index, indexed file. It is so sinple to
do, it needs no acronym by which to renenber it as a concept.

Sinply maintain the records in a file in sorted-order, and use
a binary search, or whatever, to find a desired record. M
previously described functional approach is valid here, too,
but see that only the one, real data file is invol ved.

In the final analysis, files with upwards of two or three

t housand records can be "sorted" fast enough today, to not
irritate the operator in a lot of applications. Especially at
the speeds we are enjoying now, on "nodern mcros". Limts

i ke 3000, for files that experience infrequent additions and
del etions, are forever being extended by faster clock tines,

i ncreased dat a- bus bandwi dt hs, and speedi er di sk drives.

In fact, it is past tine for DOS to consider dispensing with

t he whol e crazy business of BUFFERS. Once upon atine it was a
software bridge for overcom ng sl ow nechani cal devices. Just
as "virtual nenory" was once a clever, but highly conplicated
substitute for high-priced core nenory.

How sweet it will be, when the disk finally spins full circle,
and PUT will do what it did on the first generation of mcros:
Updat e our disk data, right now, at our conmand.

Meanwhi | e, we have to continue to worry about what happens if

a failure occurs. |If we update an index first, and a failure
occurs before DOS gets around to updating the real record, the
| ogi cal consequence is crap-O I|If we update the real data file
bef ore we update the index, the result may still be a big ness.
Wrse still, if we succeed in doing both, but a failure occurs
before DOS fiddles its FAT, everything on the disk nmay be one
bi g- a- bunch-a-crap-ola. (Again, Chapter 13 gives several CYA
solutions for this problem)

My wonderful wife of thirty years, our five grown-up offspring,

The Blue Book About GW-BASIC and QuickBASIC -136 -

three | ovely daughters-in-law, and three precious granddaughters
all have faith that this old nman has figured all of this out
correctly. Wen they close ny file, hopefully my sins will be
remar ked as havi ng been no worse than, an irreverent view of the
software that fed a lot of us, a lot of years. M legacy to ny
peers is in these pages. My you avoid sone of the pratfalls I
have taken, processing data files on DOS disks, in BASIC

The Blue Book About GW-BASIC and QuickBASIC - 137 -

Chapter 9 = STRANGE

It is a fact that, if that is what the conputer says, it nust
be so. Ask anybody. Everybody knows how accurate conputers
are. Simlarly, if the manual says, if you do such-and-such,
the machine will do so-and-so.

Bot h of us know better. CQur ability to wite prograns (in any
| anguage) depends on our understandi ng of what the nanual s say,
and, the extent to which our experience says those books are
right, alnost right, anbiguous, or in fact, wong.

Both of us know there are bugs. In the software we wite, and
in the software we buy. And in docunentation, theirs and ours.
Known bugs we can all learn to live with. Unknown grenlins,

however -- in docunentation or software -- can cause nore head

scratching than a colony of fleas on a nutt. And nake us just
as sore. And cost us tinme and noney.

My outline for this book presuned that various "facts" could be
presented at appropriate points in each of the chapters dealing
with specific subject areas. As the neat hit the grinder it
soon became obvious that not all that has been | earned could be
di shed out that way. Sonme phenonena defy all attenpts to offer
a structured presentation. This catchall chapter was squeezed
in, to cover the gaps.

El sewhere ny remarks reflect ny cynicismabout a m snomer or

I nadequacy in the manuals. Here, the truth (as | perceive it,
as a research staff of one) is nmeant to be hel pful when you too
experi ence strange encounters: \en, what you see is not what
IS supposed to be.

In sone cases the nystery is because of a bug. Perhaps. Many
tinmes it is sinply because that is the way it works. Wether
that is the way it was supposed to work, or not, is not really
important. \What we need is to be able to solve such nysteries
only to the extent that we can continue to programw th a sense
of confidence in ourselves: That we know what we are doing
and, what our programw |l do in the event of.... The notes
that follow list sone strange encounters in ny time on this

pl anet .

I n any programm ng | anguage, we woul d expect that novenent of

The Blue Book About GW-BASIC and QuickBASIC -138 -

data from one variable to another woul d produce an exact copy
in the target of what was in the source. By inference then,
when the target and the source are one and the sanme, what we
woul d expect is, effectively, no change. Thus A = B causes A
to have the sanme content as B. And, A = A should cause Ato
not be changed, at all. BASICis consistent with this age-old
princi ple of | anguages, with one renarkabl e exception:

1000 DEFSTR M Z

1010 X="0123456789"

1020 Y="0123456789"

1030 M D$(X, 3) =X "repeats 1st 3 char for LEN(string)
1040 PRINT X

1050 M D$(X, 3) =Y "overlay 1st 3 char of another string
1060 PRINT X

RUN

0101010101

0101234567

Notice that |ine 1030 above nanmes X as both the target and the
source. In line 1050 Xis the target, Y is the source. For a
gi ven expression, we would expect consistent results, no matter
what vari abl es are naned.

Now we can illum nate our manual with this peculiar trait of

M D$ and keep on trucking, with one of two attitudes: Be alert
whi | e debuggi ng; what we thought would work may not. It is

al so possible that this "undocunented feature" can be used now
and then to our advantage. |If, for exanple, a string is needed
that contains a repeated sequence of characters, we can use a
trick nodeled after Iine 1030 above to generate a | onger one
automatically, using nerely the few characters we want to have
replicated.

Speaki ng of attitudes: There is an attitude reflected in nost
software manual s that says, effectively, if you opt to take
advant age of any "undocunented feature", you do so at your own
risk. What they nmean is: Bugs exist in the software and the
manual s. Sonmeday we may fix them

This particular bug (my definition) is an omssion in the BASIC
manual s. The software has worked this way since the "upgrade”
fromMBASIC to GWBASIC. It is also the way Qui ckBASI C works.
It is unlikely they woul d change the way the | anguage itself

wor ks now because it has been this way for so many years. It
woul d be nice if they would at | east update the nmanuals to tel

The Blue Book About GW-BASIC and QuickBASIC -139 -

it like it is, however, and docunent this undocunented feature.

Here is another anomaly. It ought to be fixed. It is conmon

to both GM#BASI C and Qui ckBASIC. No good use can be made of this
bug, but, it can cause sone strange encounters if you are not
aware that it exists.

SOUND 0 '"is supposed to be illegal, but is ignored
SOUND . 49, 99 "is supposed to be illegal, but clicks
SOUND . 5, 99 "is equally illegal: it will cause an ERR = 5

By definition, the first argunent used with SOUND can range
from 37 through 32767. So the manual says. M reading of that
says, anything less than 37 should cause an "Illegal function”
error.

If ny understanding of lawis simlar to Perry Mason's, it can
be argued that nowhere was it prom sed that if we do sonething
illegal, we wll get caught by an error trap. Having read the
manual s fromfront to back many tinmes over the years, however,
my inference is: W are supposed to be able to depend on the
| anguage processor to trap any errors we nmake that violate the
rules of the language. Included in this assunption are things
like getting an ERR = 5 if we use any argunent anywhere that
is not within the range permtted for a given function or
statenment. Ch well.

Phi | osophically, an interpreter or a conpiler should be adept
at catching syntax errors. |In BASIC they both do, although
they are not equally consistent in determ ning what constitutes
errors in spelling or granmmar. This is not hard to live wth.
Sooner or later, presumably, we can find all of our errors of
that type, with or without their help.

We shoul d code in such a way as to preclude trying to nake use
of "data" that exceeds the ranges permtted for various types
of expressions. No argument. W are encouraged to depend on
the | anguage processor to "trap" our run-time errors, however.
Nuner ous exanples are given in the nmanuals that do this. It is
their "recomended way" to detect when we have reached the end
of a file, for exanple.

And that is bad advice. M advice is to do everything that you

The Blue Book About GW-BASIC and QuickBASIC - 140 -

can to avoid being caught in an error trap for any reason. To
ignore this advice is bound to bring on sone strange encounters
sooner or later, if you want to do a RESUVE NEXT. It is an
"undocunented feature" of GMBASIC that, it is hard to predict
just where NEXT is.

The manual says RESUME NEXT neans the programwill continue at
the first statenent follow ng the one that caused a branch to
your ON ERROR GOTO address. That prediction is wong, as shown
in the foll ow ng exanpl es.

3030 ON ERROR GOTO 3040 : GOTO 3050
3040 C = E: E = ERR : RESUME NEXT

3050 I'F 1=1 THEN ERROR 101: PRINT 1
3060 I'F 1>1 THEN PRI NT 2 ELSE ERRCR 103: PRI NT 3
3070 PRINT E ‘output =1 103

Here, ERROR 101 in |line 3050 did resune at the next statenent
after the error, as would be expected. |f RESUVE NEXT wor ked
as the manual says, however, we should also see a 3 because of
the PRINT following the ERROR 103 in line 3060. |In this case,
RESUVE NEXT after an error followi ng an ELSE nmeans go to the
next line, not the next statenent.

This one is even harder to fathom

3100 I'F 1>1 THEN PRINT 4: PRINT 2 ELSE ERROR 103: PRI NT 3
3110 PRINT E

Qutput: 2 103. In this case NEXT went to the |ast statenent
to the left of the ELSE in line 3100, although the error itself
was the first statenent to the right of ELSE. There is only a
smal | difference between Iines 3100 and 3060. One has but one
stat ement preceding THEN, the other has two.

Now t he plot thickens. Using the same error handl er above:
IF 1>1 THEN PRI NT 4: ERROR 102: PRINT 5 ELSE ERROR 103: PRI NT 3

followed by PRINT CGE will print 5 103 102, indicating that the
ERROR 103 caused RESUME NEXT to hit PRINT 5, by backing up one
statenment to the left of ELSE. Because there was also a static
error inside the THEN-cl ause NEXT effectively backed up one nore
statenment and trapped that error. NEXT after that one canme back
to the next line (otherwise a second 5 would have printed because
that is what is next, follow ng the nost recent error).

The Blue Book About GW-BASIC and QuickBASIC -141 -

Even Dane Christie's Hercule Poirot would have trouble with
that little nmystery. And this next one, as well:

I F 1>1 THEN PRINT O: X: PRINT 4: PRINT 5 ELSE ERROR 103: PRI NT 3

The "X' after PRINT O is an obvious syntax error. This |ine
will cause 4 and 5 to print, notwthstanding that the truth of
the I F expression should skip everything after THEN, and run
straight into the error that comes after ELSE. But it never
gets that far in this case.

The next two exanpl es are enough to nake the point: Conpound
and conpl ex conditional expressions nerely serve to conpound
the nystery of just where NEXT is, when errors are inbedded in
lines such as these. For the sake of easier eyeball tracking,
these two Iines are stacked as they m ght be in QuickBASI C

3190 IF 1>1 THEN PRI NT 2
ELSE | F 1>1 THEN PRI NT 2
ELSE ERROR 103: PRI NT 3

3200 I'F 1>1 THEN ERROR 7
ELSE | F 1=1 THEN ERROR 103: STCP
ELSE ERROR 8: PRI NT 3

Both of these lines end up printing 103 when we say PRI NT E
That code was saved in E by the E = ERR in the error handler.
RESUVE NEXT goes to the next line, not the NEXT statenent. The
STOP in line 3200 is never even seen, although the error does

i mredi ately precede an enphatic command to go no farther.

Here is nmy attenpt to condense the above enpirical exanples
into a neaningful definition of RESUVE NEXT:

For any error in a sinple |ine, NEXT does nean the next thing
following that error. Errors in lines that have conditiona
expressions disrupts the interpreter's |exical parsing of THEN
and ELSE clauses. Errors after an ELSE will RESUME NEXT to the
next line (not the next statenent), unless there are nultiple
statenments between THEN and ELSE. |If so, RESUVME NEXT is to the
first statenent preceding ELSE. Al of which presunes there
are no "static" errors preceding THEN or ELSE.

The distinction about static errors is inmportant. Because the
interpreter scans left-to-right, on a given line, an error may

The Blue Book About GW-BASIC and QuickBASIC -142 -

or may not be seen following an IF. |If the truth of an IF

i ndi cates everything after THEN shoul d be bypassed, it will be
skipped if the interpreter's byte-pointer does not run afoul of
what is logically expected followng a given token. (Chapter 2
descri bes the nmechanics of parsing a programline in nenory.)

On the other hand, "Illegal function" or other types of dynamc
errors that could be provoked inside a THEN-cl ause that is not
bei ng executed will remain unnoticed. The upshot of all of this
i's, NEXT, for RESUVE NEXT followi ng errors that occur in |lines
that contain THEN and ELSE is sensitive to the type of error

i nvol ved, the construction of conditional clauses, and whether
nore than one error is present, or potential, on that sanme |ine.

Aliteral translation of this evidence could be: Do not use

| F--THEN-ELSE. O, if you do, nake no mistakes. In real life,
the pragmatic rule should be: Code no I/O statenents after an
ELSE. |f done after THEN, do no ELSE, or another |F-THEN on

t hat same |ine.

This pragmatic phil osophy is based on the fact that we have to
depend on an error handler to trap I/O errors. There is no way
to find out if an OPEN, GET, or PUT or simlar things are
successful until they are attenpted. |If after the fact, one of
t hese does indeed fail, we nmust react accordingly.

The | ogical choice in nost cases is to pass an I/ O error-code
back to the routine in charge via a RESUVME NEXT. Doing so, it
is inmperative that the IF that tests for a failure has a chance
to respond. By always coding it on the line that follows an I/0O
attenpt, and by keeping the I1/0O command-line itself as sinple as
possible, we will have a pretty good idea of just where NEXT is,
on a RESUME NEXT.

Not bei ng aware of how RESUME NEXT does in fact work, you are
in fact likely to experience sone strange, strange encounters.

Now none of this confusion exists in QuickBASIC. It does as

t he book says: RESUVE NEXT is always to the next statenent
following an error-trigger, no matter where it is encountered.
But their skirts are nuddy in another way: Not everything that
can be error-trapped in GMBASIC is possible in QuickBASIC. At
the sane tine, ON ERROR in that |anguage will trap sone that
GW BASI C chooses to ignore.

There are two reasons for this, but none of the BASIC nmanual s

The Blue Book About GW-BASIC and QuickBASIC - 143 -

openly admt it. The two |anguages are not identical in terns
of the semantics of the | anguage. The permtted range of the
argunments that can be used for many things are different; that
can be seen, true enough. Although it is not conspicuous, we
can deduce how this can affect logically coping wwth ERR = 5
errors. The other reason for sone differences is that calls
to DOS are not handled in exactly the same way in all cases.

A sinple exanple of a difference that should produce the sane
results was nmentioned in Chapter 6: WDTH 40 is illegal on any
machi ne with a nonochrone adapter. GAMBASIC will do ON ERROR
and give an ERR = 5. Qi ckBASIC sinply ignores this type of
error, and your program keeps right on humming as if nothing
unt oward had been attenpted.

Even when we are alert to the potential for strange encounters
caused by differences in the way these two | anguage products
interface to the outside world, we nust know nore. The manua
for the conpiler touches lightly on the differences about how
ERL testing works, and how ON ERROR GOTO i s supposed to worKk.

None of the manuals tell us that there are differences in what
will trap, and what will not, however. |In fact, they all say
sinply that ON ERROR GOTO works for any error that can be
detected; never do they give us a |list of what the detectives
actually ook for. Al of which brings to m nd stories about
folks |ike J. Edgar Hoover and the FBI

Strange encounters and unsol ved nysteries are stories of one
kind. This next one is in a class all by itself: Wird. It
will put to rest that nyth about "Seeing is believing...."

1000 PRI NT "hell 0" 'a

1010 PRI NT "and" "tiny
1020 PRI NT "bye" ' program
RUN

hel | o

and

Ok

Before we explore why this tiny exanple did not print "bye",

i mgi ne what it is like to have this happen way down deep in a
real program There you are, testing with gusto, and sonething
i ke this happens. Seemingly, a line just does not execute. It
seens the interpreter sinply "junps over" a line of code, and
conti nues execution with the next |ine down.

The Blue Book About GW-BASIC and QuickBASIC -144 -

Here is the same programagain. |In this case it seens |like the
interpreter has gone crazy.

10 PRI NT "hel |l o" "a

20 PRI NT "and" "tiny

30 PRI NT "bye" " program
RUN

hell o

bye

Syntax error in 0O

K

Undefined line nunber in O

(0 ¢

Bot h of these perplexing puzzles are caused by the sane thing.
After the remark in the second line ('tiny) there is an extra
byte that cannot be seen. It is an FF in hexadeci mal, code-255
in decimal. That is why we cannot always believe what we are
seeing. In the standard PC-character set, code-255 | ooks Iike
a space-character. Wen seen with LIST, it cannot be seen at
all.

To duplicate this aberration, put a remark at the end of any
line, hold down the Alt-key and index 255 on the nuneric key
pad. Wen you let go, that blind byte will be there, believe
nme.

If the next line is nunbered higher than 255, as in the first
exanpl e above (line 1020), that line will be skipped over. In
t he second exanple, with small |ine nunbers, line-30 triggers
that crazy pair of error messages about |ine-0, which does not
even exist. Equally crazy, it says Ck, tw ce.

(ddly enough, it is the not-so-Ok, Ok that may have caused the
problemin the first place. That, or sone of the other stuff
the interpreter dunps on us fromtine to tine.

Most nessages like "Syntax error”, "Ok", and so on, are output
with a trailing, but invisible, 255-byte. Wen we are editing,
there is a risk of picking up that unseen byte inadvertently,
whil e typing over the interpreter's own garbage.

Yes, this happens only on rare occasions: Wen inserting and
del eting characters, and so on, and the line in question just
happens to have a trailing remark, and the length of the Iine
I s about 80-characters, or so, and the next |ine down on the

The Blue Book About GW-BASIC and QuickBASIC - 145 -

screen was output by the interpreter, and.... But, when this
does happen, you will not see it, and when sone crazy things
happen, you will think you are going crazy because what you can
see, you cannot believe. And that is weird.

The noral to the above saga is, at the point in a program where
a strange encounter pops up, look at the preceding line. If it
has a remark, chop it off. And if this solves your unsolved
nystery, get out your Voodoo dolls and pins and concentrate on
that faceless character that litters your screen with invisible
char acters.

To confirmthat crazy 255-byte's existence, SAVE the suspected
program then use DEBUG or sone other tool to ook at the file.
(Chapter 2 describes what is in a tokenized programfile.)

There is anot her kind of strange encounter that can occur that
can really tighten the old rectum Corrupted programfil es.
Most high quality |anguage products provide at |east a nodi cum
safeguard for this one. GWBASIC nakes no attenpt whatsoever
inthis regard. (To be conpletely fair, it has never been
touted as being of particularly high quality, anyway.)

Here is a scenario that can happen. |If you have never yet seen
something simlar, keep bowi ng down to the East, or whatever it
is you do that nmakes you so | ucky.

LOAD "nycrap”. LIST. The first hundred Iines or so are just
what is expected. Al of a sudden, garbage hits the fan, from
right out of nowhere. This little gotcha is the reason CHKDSK
was added to DOS a few years ago. Hopefully you have a recent
back-up copy of your favorite program The alternative to a

rewite can sonetines nean nearly as many hours will have to be
spent trying to determ ne which disk sectors are interspersed
with your programfiles. If you are really lucky, the clusters

that contain the rest of your program have not al ready been
overwitten by some interim process.

Far, far worse than this instance is one where you RUN or CHAIN
i n an ongoi ng production environment, where the consequence of
an unnoticed garbled program just happens to have a few bytes
that resenble the BASIC token for sonmething like KILL, or POKE
or PUT, or SHELL, or whatever. An autopsy is hard to do w thout
a cadaver. It is equally hard to do on a disk that has a badly
mangl ed FAT.

The Blue Book About GW-BASIC and QuickBASIC - 146 -

A traditional software engineering technique that is often used
to give at | east sone assurance that the sanctity of a file has
not been violated is based on a hash-total schene: Merely a

| ongi tudi nal summ ng of the values of the bytes in a file, from
one end to the other. By storing this total inside the file
itself, it can be conpared with another count, done each tine
that file is |oaded. Any difference found can be used to warn
sonebody that sonmething may be very wong. Chapter 13 shows
sonme specific tricks that can be used to guard agai nst these
strange encounters of the worst kind when witing in BASIC

One nore strange encounter needs to be docunented. It portends
no systemsafety risks. For those unaware, however, there is a
risk that faulty observations can be made. And that can lead to
maki ng i ncorrect design decisions. None of the manuals in ny
library nmention that TIMER only occasionally produces duplicate
answers. \Wien probe coding to determ ne which techniques are
the fastest, be very cognizant that TIMERis a little strange.
See this:

1000 FOR J=1 TO 50
1010 B=TI MER
1020 FOR I =1 TO 4000

1030 NEXT

1040 PRI NT TI MER-B

1050 NEXT

2.023438 1. 976563 2.03125 1. 984375 1. 984375
2.03125 2. 039063 2.03125 1. 984375 2.03125
2.03125 1. 96875 1. 976563 2. 023438 2.03125
2. 039063 2.023438 2.046875 1. 984375 1. 976563
2.03125 2.03125 2.023438 2.03125 2.03125
2.03125 1. 984375 1. 984375 2. 039063 2.03125
1. 984375 2. 039063 2.03125 1. 976563 1.96875
1. 976563 2.03125 1. 976563 2.03125 2. 039063
2.03125 1. 976563 1. 976563 2. 03125 1. 984375
2.03125 2.03125 2.03125 1. 984375 1. 984375

The out put shown here was produced by this little program when
it was run with GABASI C. EXE 3.2, DOS 3.3, on an 8088 rated at

8 Miz. Cbviously, different machi nes and different rel eases of
software will produce different results. The TIMER s answers
thensel ves, that is. Even the proportional differences can
vary with different hardware. The point to be noted is, a
variety of answers will always be produced by TI MER

The Blue Book About GW-BASIC and QuickBASIC - 147 -

To use TIMER as a tool for doing performance studies, tests
shoul d be repeated at least fifty tinmes, or so. An average of
those results will be reasonably useful, although, still not
preci se.

For those that are curious, here is another output listing from
this same program run on the sanme machi ne, under DOS 3.3 but,
as an in-menory conpil ed program generated by the Qui ckBASIC 2.2
conpiler with the DEBUG switch on, and with all event trapping
swi tches of f.

2. 914063 2.90625 2. 914063 2. 914063 2. 914063
2. 851563 2. 851563 2. 914063 2. 859375 2. 859375
2.90625 2. 914063 2.90625 2. 914063 2.90625
2. 859375 2. 859375 2.921875 2. 851563 2.84375
2. 914063 2.90625 2.921875 2.867188 2.90625
2.90625 2. 851563 2.90625 2. 914063 2. 859375
2. 859375 2.90625 2. 859375 2. 851563 2.84375
2. 914063 2.921875 2.90625 2. 914063 2.90625
2. 851563 2.90625 2. 914063 2. 859375 2. 859375
2. 914063 2.90625 2. 851563 2.90625 2.90625

One slight change was nade to the program before it was run for
this listing. Line 1020 used a limt of 4000 for the | oop that
does nothing when it ran with GMBASIC. For the Qui ckBASIC run
that limt was set to 8000.

It is interesting to note also, to do nothing twce as many tines
took longer with the conpiled programvs. the interpreted one.
One is tenpted to think fromthis test that conpiled prograns run
nearly twce as fast as interpreted ones. Al nost. Maybe.
Sonet i nes.

More than once a strange encounter has been experienced because
it was assuned that a conpiled programwould run faster than an
interpreted one. Usually they do, that is true, but not always
very much faster. Chapter 11 suggests several considerations
needed when desi gning progranms in BASIC, including sone factors
that need to be considered when choosi ng between GMBASI C and
Qui ckBASI C

Those in the know are al ways skeptical of mamgazine ads. It is
strange that anyone can believe sone clains. Yet, even with
what we know, we can still have some strange experiences. It

woul d not happen as often, perhaps, if our systens manual s were
nore informative than they are.

The Blue Book About GW-BASIC and QuickBASIC - 148 -

The m cro boom was responsi ble for many cultural changes. One
that is never alluded to by industry scribes is typified by
that very reluctance: The shifting of that fine line that
demar cat es honesty.

Al'l software has bugs. Professionals on the big nmachi nes have
al ways known that. Wen soneone pays a mllion or two for a
conmput er, they expect, and get, truthful systens docunentation.

For decades all new software rel eases were delivered with a
list of "restrictions"”, up front. An honest adm ssion that not
everyt hing worked as intended, and explicit advice to not use
this or that feature.

Such adm ssions did not hinder the growh of that industry. In
fact, it was essential to nere survival. Large data processing
operations that cost thousands of dollars a day to run could
i1l afford to find out what worked and what did not by tria

and error.

In that world, decisions about which vendor's products to buy
depended on those with technical acunen. Experts confronted
experts across the table when the buyers and the sellers sat
down to wheel and deal. Hogwash and technical inconpetence
were neither one tolerated--any of either could kill a deal.

The PC industry is a different world in a |lot of ways. Most
purchases are made by end-use consuners that have virtually no
techni cal expertise. M loathing of general allegations |ike
this does not dissuade nme in this case. It is inexplicable to
nme how sone of what we have to put up with manages to flourish
in the market place, year after year, save to presune that the
buyi ng public is gullible.

Unl ess Nader's Raiders or the fol ks that chanpion causes |ike
truth in lending laws cone to the fore, it appears that we wll
have to contend with what we have: The conpanies with the nost
bucks behind them set the stage on which we have to act.

Hopefully my little show here will enhance your productions. It
is certainly possible that | may be found guilty of an error in
commi ssi on, but recognize ny honest attenpt to not be accused

of di shonesty by reason of om ssion.

May sone of your strange encounters in the future seem not so
strange after all, after seeing what | found to be strange, at

The Blue Book About GW-BASIC and QuickBASIC - 149 -

one tine or another.

The Blue Book About GW-BASIC and QuickBASIC - 150 -

Chapter 10 = STYLE
"Progranm ng i nvolves both art and science.”

That observation does have a nice phil osophical ring to it, and
that may be one of the reasons we hear it echoed fromtine to
time. Admttedly, it falls softly on the ears of ny ego, too.

There i s anot her observation about programm ng that ought to be
made, but it is seldomseen in print; it has a crap-cutter edge
to it, useful for soul searching, but it scratches eyes, ears,
and egos.

"Progranm ng i nvolves both intuition and |uck."

A snooth utterance in ny favorite Webster's defines intuition
as: "The power of know ng, or the know edge obtai ned, w thout
recourse to inference or reasoning...." Fifty sone-odd pages

| ater, the definition of |luck begins with: "That which happens
to one seenm ngly by chance...."

El oquent word working can sonetimes make intuition pal atable.
Luck is a tougher pill to peddle to progranmrers that enbrace
"l ogical reasoning ability" as a personal virtue.

A respected teacher once hel ped ne grasp how intuition inpacts
what we do: "Experience causes us to nentally tag that which
works well, and to | og that which does not with a different
type of tag. The nonotony of the nmundane in our daily |abors
soon causes these nenories to formnental habit patterns by
which we intuit howto do simlar things, with no strain on
the brain."

Hopeful ly, the good and the bad were tagged correctly when
first filed in our nenory banks. This thought is mne, on
reflection, and is one of the reasons for ny contention that
luck is a factor in the overall definition of what nakes all
programers tick

Renmenbering further remarks of ny esteened teacher, she al so
told nme that what she could not teach was experience. The best

she could do was to try to instill good habits early on. Her
definition of good, was, "... a distillation of experience of
those who already had it". Once nore ny thoughts conjure up
an el ement of luck. Hopefully the one distilling the brew uses

the right recipe, and the ingredients that are used have cone

The Blue Book About GW-BASIC and QuickBASIC - 151 -

froma preferred source.

Presumably you have been programm ng | ong enough that your own
habits have al ready devel oped strong roots. This chapter is
not meant to be presunptuous; in no way do | presunme ny habits
are the best, nor even, any better than sonmeone else's. By

di ssecting nmy habits of style on paper, however, along with an
honest attenpt to recollect their roots, perhaps sone will be
useful seasoning to add to your own brew.

A popul ar thene of the seventies was "structured programmng".
Many books can be found on that subject, with many definitions
of what it is, and howto do it. None attenpt to use BASIC to
illustrate their concepts. Probably because of GOTO

One ni cknanme for structured programmng is GOTO | ess codi ng.
That is awkward to do in BASIC. In fact, it is a bad idea in
many cases, Iif we want to run in the fast | ane.

Fanatics fromthe structured progranm ng schools have caused a

| ot of inbreeding anong programm ng | anguages. The concept of

"bl ock structures" was grafted onto BASIC, even, back about the
time Pascal was all the rage on the West Coast. Knowing a tad

of that history hel ps us see why we have, what we have.

Pascal was invented by N. Wrth, in Germany; it showed up first
inthe US at UCSD in California. Professor Wrth gave us

what he thought would be a better "teaching | anguage". Wen
Pascal hit the mcros, it was initially an interpreted | anguage,
simlar to how BASIC worked in those machines. But Pascal did
have "Dbl ocki ng statenents”, and that was popular, fromcoast to
coast. So much so that those whose first | anguage of |ove was
Pascal had very little enpathy for old-tinmers that had courted
many | anguages in our youth. None could understand how anybody
coul d ever have dated a dog |ike BASIC

The idea of "block structures" as an inherent feature of a

| anguage cane from ALGOL, originally. It was supposed to be
an international progranmm ng | anguage, equally suitable for
docunent ati on purposes. It has a strong flavor of FORTRAN

about it. So does PL/1, which has about everything, including
an adm xture of FORTRAN and COBOL. ALGOL and PL/1 both cane
out of IBMIlabs. IBMwas (and still is) a big nane on coll ege
canmpuses. General Electric was too, although GE conputers were
never manufactured in as many nunbers.

The Blue Book About GW-BASIC and QuickBASIC - 152 -

BASI C began life on a GE conputer at Dartnouth College; it was
intended to be useful as a poor man's version of FORTRAN. It

ran on only very big systens that offered tine-sharing via

t el ephone hook-ups. A user did not have to own a conputer; he
nmerely needed a cheap term nal and pay charges for system use

only while on-line. And pay the phone bill, of course.

A primary contention of the inventors of BASIC--Professors
Keneny and Kurtz--was that, it could easily be |earned by

non- conput er-ori ented mat hemati ci ans and engi neers. "Begi nners
Al gebraic Synbol Interpreter Conpiler” was a contrived phrase,
probably, to justify an acronymthat resenbled an English word.
That not-so-subtl e double entendre caused BASIC to grow up with
an inferiority conplex. Beginners, in the beginning, however,
were nostly well -educated col | ege graduates.

The m cro boom noved BASIC | ower on the social scale. By the
time the word begi nners included grade school students, it was
consi dered as deneani ng by upper class folks. Many newhire
programers consi dered BASI C unbeconm ng to their sense of

prof essional dignity. They sinply ignored the fact that, many
of us had already earned substantial salaries witing |arge
scal e business applications in BASIC, often requiring |evels
of expertise sonme of those neophytes would never attain in

any | anguage.

Meanwhi | e, visionaries at the hel mof the conpanies that nade
our machinery ignored canpus |ove affairs between students and
progranmm ng | anguages. It seened to them if BASIC could have
a common definition to all, they could all sell a lot of cheap
iron. A mllion of anything at a dollar was al nost as good as
a single, any one thing that cost a mllion per copy.

Custoners that could afford to spend mllions were expensive to
court. To sell to those who could afford only small capital
outl ays, they needed a sinple |anguage. BASIC was touted for a
nunber of years as being good for first-tinme users--it was

invented for beginners, after all. Far nore inportantly, it
could be built into machines with small nenories. Initially,
anyway.

The hal f-hearted attenpt by ANSI to standardi ze BASI C probably
hurt us nore than it hel ped. The heavy-wei ght vendors I|ike
IBM NCR, and DEC insisted that the ultimte |anguage shoul d

The Blue Book About GW-BASIC and QuickBASIC - 153 -

i nclude features peculiar to their own dialects. M input to
the X3J standards commttee (as an NCR contributor) argued
vehenent|ly agai nst things |ike OPTION BASE and RANDOM ZE. As
feared, those that |ater bragged they fully conforned to the
standard al so gave us bigger, nore cunbersone, and sl ower
running i nterpreters.

Now we have BEEP and SOUND. An obvi ous redundancy. Things
i ke SOUND, PLAY, and DRAW had not even been invented when the
standard was witten. GET and PUT were infants. Fortunately,
ANSI shied away fromtrying to standardi ze any I/ O comuands
beyond the sinpler ones |ike I NPUT and PRI NT.

Havi ng watched it happen, it is no nystery to ne why nost of
what is in "standard BASIC' are the things we use the |east.
That which rigidly conforns to the standard is al so that which
is nost often inefficient, slow, and many tines, pragmatically
usel ess. That ol d saw about a canel being a horse put together
by a conmttee is typified by BASIC as we see it today. Dummy
argunents needed in functions like POS(1) truly are dunb.

It is odd that a | anguage which was originally conpiler based,
and t hought by many as dunb, wound up as the staff of life in
interpreted form burned into the nmenory of what so many peopl e
think the word conputer itself neans.

BASIC inparted intelligence to machines that had an 1 Q of zero.
PCs still resenble termnals, and are often used as such, but
nost are powerful enough today that they can be programed in
virtual ly any | anguage, with conpile speeds approachi ng, and
soneti nmes surpassing, that of their granddaddi es.

Al t hough BASIC was originally a perverse dialect of FORTRAN
its early conpilers were actually heavier than those for its
big brother. Because BASIC had a line-at-a-tine orientation,
it was easily adapted into mcros with small nenories using a
software interpreter that "transl ated" what a program was
supposed to do, as it ran. Now the wheel has gone nearly ful
circle.

BASI C has evolved to the point that it |ooks nore like its
cousins, than like its grandfather. Even to the point that,

i ne nunbers are no | onger needed when using conpilers |ike
Qui ckBASI C. Branching can now be done to "line nanmes", which
are managed by the conpiler in the same fashion as is done for
vari abl e nanes. (The original idea of "paragraph nanes" is a

The Blue Book About GW-BASIC and QuickBASIC - 154 -

hal | mar k of |anguages |ike COBOL. GOTO, to a |line-nane, goes
all the way back to stone-age assenbl er | anguages that roaned
the earth about the mddle of this century.)

This constant mi gration of structural concepts anong | anguages
has caused a | ot of side affects, not all of which are truly
beneficial: Especially for some things, |ike WH LE and VEND,
whi ch experienced ram fications simlar to FOR and NEXT, in
interpreted | anguages |ike GMBASIC. (FOR and NEXT suffered
first fromthe ANSI inpact. Having paid that price, it was
relatively easy to inject WH LE and VEND, in an attenpt to
rejuvenate enthusiasmfor BASIC. At one tinme, sone feared it
was in jeopardy of being supplanted by Pascal.)

Today, nearly all |anguages have a WH LE and WEND count er part.
Most al so have sone formor other of CASE-statenents. GWBASIC
does not have CASE yet (thankfully), but its Qui ckBASIC sibling
does. None of these additions were really needed in any BASIC
especially not in interpreted BASIC. Wat follows are a few of
ny opi nions on how nmuch we should allow "structured progranmm ng
concepts” to influence our style of coding in this | anguage.

VWH LE and VEEND are useful, and efficient, if used in a very
limted fashion. Rule nunber one: Keep them close together.
On the sane line, preferably, as in this exanple.

I =0 : VWH LE I<1000: I =I+1: VEND

When the interpreter bunps into WHILE, it inmediately takes a
trip, looking for VEND. Then it sets up stack-pointers to
keep track of where the block begins, and ends, and the "if"
needed to termnate the loop. Then it begins doi ng whatever
it is supposed to do inside the loop, if the inplicit-if has
not al ready been satisfied.

This same thing is done today with FOR/ NEXT | oops. This was
not al ways so. Before ANSI got involved, a FOR NEXT | oop woul d
al ways run at |east once in nost dialects of BASIC. A basic
concept of source-code interpreters was to ranble al ong, doing
what ever is encountered next, one step at tine. |In those days,
it did not matter where NEXT was; the interpreter sinply nade a
mental note when it hit FOR presuming that it would eventually
run into NEXT and woul d remenber where it had seen FOR, before.

Today FOR/ NEXT works differently. Because nothing inside the
| oop is done until the bottom of the block has been | ocated, it

The Blue Book About GW-BASIC and QuickBASIC - 155 -

is possible to not do anything, i.e., to ignore everything
inside the loop if the TOIlimt is |less than the FOR starting
argument .

When the interpreter exam nes FOR and realizes that nothing is
to be done, it sinply runs ahead, |ooking for NEXT, then keeps
right on trucking fromthat point on. Wich is why you can
have all kinds of errors inside FOR/ NEXT and WHI LE/ VEND | oops
that go unnoticed by the interpreter; errors that are always
flagged by a conpiler, even if what is inside a | oop may never
get a chance to perform (Chapter 12 suggests how to use the
conpi l er as a programm ng tool, even for prograns that are
going to be used only in interpreted form And vice versa.)

See the difference. A conpiler exam nes everything, in every
line of a program before an "object progrant is produced, i.e.,
the programthat will actually be in nenory at run-tinme. An
interpreter loads all of a "source program into nenory, but it
has no idea what it is going to run into. It sinply takes
things as they cone, one step at a tine. At |east that was an
original concept of a source-code interpreter. Today, the

si de excursions that GMBASIC takes when it hits WH LE, or FOR
are an expensive contrivance that can inpact performance if we
are not mndful of howthe interpreter does it.

Because a conpiler gets a preview of a program and it can
"hard code" where things are, l|like block boundaries, in the
run-time code, it does not matter how big a block is. O how
many there are, or how deeply they are nested.

Rul e nunmber two for interpreted BASIC. No nesting. At |east,
keep it to the absolute m ninum And keep the innernost bl ocks
as short as possible. Renenber, for every iteration of an

outer |oop, the depth of an inside | oop nust be determ ned al
over again. Every tine the interpreter takes that trip, you pay
for its vacation. Al the while it is stunbling al ong, scanning
each line, looking for the end of a block, your mssionis in

l'i mbo.

Anot her reason for using "blocking statenments" conservatively
IS because the interpreter nonentarily forgets what you are
doing while it is off sightseeing. See this, which is a short
| oop coded with one statenent per |ine.

1000 WHILE CVI(QB) = O
1010 M D$(B, 1) = | NKEY$

The Blue Book About GW-BASIC and QuickBASIC - 156 -

1020 WVEND

This is good technique, but, it can also cause sonme funny
experiences. Sonetinmes BREAK will cause an ERR = 8. This
happens if the interrupt is sensed while the interpreter is
fooling around, pretending it is a conpiler, as opposed to
actual ly executing statenents inside the |oop.

Wth an awareness of what goes on inside the interpreter, it
can be seen why GOTO is a preferable alternative to using

VWH LE and VEND. The performance advantage is proportional to
the frequency of use of a specific piece of logic. A "block"
that is executed only once need not be a concern, but, see why

2000 GET 1 : |F LOC(1)<LOF(1) AND R$<>" " THEN 2000

is a better programm ng style when lines like this are buried
deep inside | oops that nust be executed thousands of tinmes. At
a point, when to use which becones an intuitive deci sion.

There are tinmes when we shoul d take our brain off autopil ot
and revert to nmanual reasoning. Wen coding inside a |oop,
that is nested inside a |loop, that is inside another, and so
on, performance considerations may dictate that we ought to
return to old fashioned coding styles. A girdle may inprove
appearance, but it is seldomconfortable.

As an elenment of style, the issue of nam ng FOR-variabl es after
every NEXT can be argued about forever. M habit is still, to
al ways use a generic NEXT, because of the performance issues
enunerated in Chapter 3.

Many will contend that NEXT shoul d al ways renane the control

vari able that was used with its FOR as a visual aid. Perhaps
that is a good i dea when FOR and NEXT are mles apart, and when
consi derabl e nesting has been done. The visual-aid argunent is
weak for ny | oops, where the distance between FOR and NEXT is
kept as short as possible, and very, very little nesting is done.

Once again, coding conventions should be decided upon, on a

gl obal basis. W should not adopt "rules" one at a tine.

Structured programm ng preachers had a | ot of followers that
did not fully understand the religion. Sonme of those souls

The Blue Book About GW-BASIC and QuickBASIC - 157 -

spread the gospel so well, interpreter users can end up with
a heavy cross to bear--a burden that can be lightened if we
heed our instincts and do our own thing, even when it is not
popular with the multitudes.

Not all of the gospel should be ignored, however. Sone of it
is very good advice. One of their favorite tenets is often
called the "single entry, single exit" rule. It is a favorite
of m ne now, adhered to with fervor and zeal. No |onger can we
do things like this:

1000 GOTO 2000

1010 LOCATE 12,1 : PRINT I;J; "a conmonly needed function
1020 NEXT : RETURN "a single, catch-all NEXT
2000 FOR'1 =1 TO 10 "outside I oop

2010 GOsUB 1010

2020 FORJ =1 TO 10 "inside | oop

2030 GOsuUB 1010

2040

It is nice that we are no | onger so nenory-bound that we have
to resort to tricks like that above, just to save a few bytes.
It is not so good that zeal ots have been all owed to pass al ong
a cost factor for what our natural inclinations would Iikely
have been, anyway. All "loop-blocks", in any program of m ne,
have but a single exit.

The end nust follow the begi nning, physically, whether we Iike
it or not. Because the interpreter is trying hard to mmc a
conpiler, it scans in a forward direction only when | ooking

for the bottomof a block. To be able to do it as fast as it
can, it concentrates strictly on finding a VEND or NEXT that it
supposes is further down the page. In its head-long rush it

i gnores everything but what it is looking for, including GOTO
and its kin.

As an adopted discipline, an elenent of ny style goes beyond
what is dictated. Conditional tests nmay be done on any line
within a block of procedural statenments but, if they want out
early, they nust force the "if" that will satisfy a NEXT or
VEND, then branch to that line at the bottom of the bl ock.
Never, ever, GOTO out of the mddle of a FOR/ NEXT or VWH LE/ V\END
structure. As a matter of habit, do it thus:

1000 FOR | = 1 TO LEN(X$) : E = |
1010 IF MD$(XS$,1,1) =" " THEN | = LEN(X$) : GOTO 1090

The Blue Book About GW-BASIC and QuickBASIC - 158 -

1090 NEXT

Anot her of ny natural inclinations has al ways been to arrange
all chunks of a programinto functional blocks: Procedura

tasks are organi zed as function-oriented subroutines. Any

G0SUB that calls a task nmust al ways be ained at the sane, first
line of that block. The last line of all tasks contains nothing
but RETURN, and, it is the only line that is allowed to do a
RETURN. Thus, by ny definition, ny style does resenble
"structured progranm ng", as exhibited in this exanple:

1950 'sort
1960 FOR E = -1 TO O
1970 FOR | = F TO L-1

1980 I F A(1)>A(I+1) THEN SWAP A(1),A(l1+1) : L = |
1990 NEXT

2000 E = L<I

2010 NEXT

2020 RETURN

The "nanme" of a task is a REM (coded with an apostrophe for
aest hetic reasons) that hel ps nme renmenber what that subroutine
is for. That short identifier is the only thing on the first
line of any subroutine; it is the line that any usi nhg GOSUB
nmust be aimed at. The reason the remark-nanme nust be kept
short is because it is dead code, renenber. (As described in
Chapter 2, when the interpreter hits a remark, it has to bunp
al ong, one byte at tine, until it finds the start of the next
l'ine.)

So, single entry, single exit: Subroutines begin on the first
line and end on the |ast. Because the entry point is a no-op
line, and the only way out is the final RETURN, they always
have a | ogical, physical, and visual, block-Ilike appearance.

Because they | ook |ike blocks, they are easily seen as such
when scrolling or strolling through the code. Because each
begins with a short nicknanme, it is easy to renenber which
bl ock is for what.

A physi cal advantage to this schene is that changes can be nade
easier. Sonething that needs to be added up front can be
inserted just after the do-nothing name |ine. Last-act changes
can be added where RETURN was, and a new RETURN can foll ow the
addition. Because all internal early-exits were always ai ned

The Blue Book About GW-BASIC and QuickBASIC - 159 -

at this single exit point, there is no need to go back through
the bl ock to ensure nobody skips task cl ean-up chores.

The | ogi cal advantage to the one-front-one-back-door idea is
i nportant for real blocks--WH LE and VEND, FOR and NEXT--and
for subroutine-blocks. |If always done as a matter of habit,
stack overflow errors shoul d never happen.

Wthout a doubt, the meanest bug you can hatch is the one that
causes an "Qut of nmenory" nmessage (ERR = 7) when it is because
the interpreter's "stack” has been blown. This stinker pops up
nost often because of a bad branch sonmewhere; sonebody escaped
froma block w thout going through the bottom Chapter 12
descri bes sone methods for finding the line that is guilty of
this sin (and how to avoid use of the two nost usel ess words in
BASIC, e.g., TRON and TROFF).

When GOSUB, WHILE, FOR, or any of the trap-triggers |Iike ERROR
are encountered, the interpreter does a PUSH of pointers onto
its stack. RETURN, WEND, NEXT, RESUME, and simlar statements
do POP for a correspondi ng nunber of tines. |f nore pushing

t han poppi ng goes on, at some point the stack will be full and
t he whol e show screeches to a halt. The npbst conprehensive
error handl er cannot cope with this.

Because ON ERROR has to use the stack, if it is full it cannot
remenber where to RESUME to, even if that seens |ike a good
idea. It is probably better to forget the whole thing and just
crash, as gracefully as possible. Any programthat blows the
interpreter's stack is a borderline psychopath in dire need of
di agnosis and treatnment. It should not be allowed to run anok
and cause soneone irreparable harm

Whet her thought of as style, technique, nethod, or whatever,
this seens an opportune point to nention sone closely rel ated
bad habits to avoid. Enphatically, in my school, we never do
a RETURN to-a-Iline-nunber, or a RESUME to-a-Iine-nunber.

It is amazi ng that RETURN- nunber showed up in BASIC in the sane
era that WHI LE and VEND creeped in. One seens to ne, to be a
direct contradiction of the phil osophy of the other. G anted,
it does take a little effort to design for event-trapping |ogic
such that, after the event, the continuity of whatever was
happeni ng previously can continue so as to not circunvent the
single-exit rule for the bottomof the block that was in notion

The Blue Book About GW-BASIC and QuickBASIC - 160 -

when a trap does occur.

There is nothing wong at all, of course, wth doing a GOSUB
fromw thin one block, to another block. This presunes, of
course, a called-block will always end in RETURN, bringing
control back to the block fromwhich the GOSUB was done, which
will allowthat block to exit through its own back door. Doing
a RETURN to a specific |ine nunber is anathema to nme, and, to
al | advocates of structured progranmm ng.

Thi s advice has greater significance for ON ERROR GOTO. To not
RESUME- nunber, we have to RESUME NEXT. There is an old bug in
BASI C that | ooks |ike a centipede because it has so nmany | egs.

It is defined at length in Chapter 9, but a sinple description
is all that is needed here: Just where NEXT is, is not easily
reckoned soneti nes.

Al t hough the manual s say RESUVME NEXT w || cause execution to
continue at the next statenment follow ng the one that triggered
the ON ERROR junp, the interpreter often | oses track of where
it was when an error was encountered in conplex or conpound
condi tional expression (e.g., those using THEN and ELSE)

So, our coding style nust cover for this old bug, just so we

can stay alive in this business. Wich has nothing to do with
hi story, religion, or getting an A in school. Several rules are
necessary for survival; a couple nore are necessary to keep your
bugs frominterbreeding with those buried in the interpreter.

Rule-1 in the book of ON ERROR One error-handler. It too
shoul d be constructed as a "block". Its single-entry point is
defined once, by a single ON ERROR, up front in the program
The bottom of an error handler is a single RESUME NEXT.

If ON ERROR is turned off (with a zero), or reinitialized to
this sanme address, or sone other, no RESUME can be done ot her
than to a specific line. If you RESUVE to a |line you may cause
the interpreter to blowits stack at sone point. Wich wll

i kely cause you to bl ow your stack imedi ately thereafter

As the manual s say, but w thout el aboration, only one ERROR

can be coped with at any given point intime. |If that trap is
taken--which is conceptually Iike a GOSUB--a second error cannot
be tolerated until a RESUVE is done. In software engi neering

parl ance: An error trap (and a subroutine) cannot be recursive.

The Blue Book About GW-BASIC and QuickBASIC - 161 -

A call to one's self is not permtted in BASIC

Rule-2 in this book: Do as little as possible while trapped
inside an error handler, and get out of there as quickly as you
can. Set a flag, or sonething, and RESUME NEXT. Let the guy
who triggered the error take care of the situation. This does
nmean, of course, that procedures el sewhere nmust anticipate that
a return fromthe error handler can conme back waving a fl ag.

Rul e-3 shoul d maybe have been the first rule: Do not do any
/O to nechanical devices while inside an error handler. (MW

i deas about logging errors is covered in Chapter 11 along with
ot her design issues. Here, we are contending with the matter
of how our coding style has to anticipate that errors can occur
anytine.)

The sinpler causes of errors--our coding m stakes--can be found
and elimnated (eventually). Because we cannot have blind

faith in those over which we have little control--1ike DOS, and
even, high priced disk drives--we have to anticipate that they
do nml functi on soneti nes. It is best to not allow them an

opportunity to confuse us with another error while trying to
cope with the one that caused us to be trapped inside an error
handler in the first place.

Once our code is fairly clean--only the naive believe they can
wite bug-free prograns--the nost likely trip to an error trap
will be triggered while doing I/O to nmechanical devices. It can
happen anytinme. So, do not do any input or output after ELSE.
In fact, if it is done after THEN, do not do an ELSE on that
same line. This rule should be followed throughout, in any
programthat has an error handl er that uses RESUME NEXT.

Because the interpreter gets confused about where next is, on
any line that has THEN and ELSE in it, the above rule nust also
prohi bit deliberately provoking errors with ERROR nunmber on

i nes that include THEN and ELSE.

For a nunmber of years ny prograns often used ERROR-code to tel

t he operator about keying m stakes. The error handler had al
the overhead for doing BEEP, LOCATE, PRINT, and the |ike, and,
di spl ayed sel ected nessages froma tank, based on the val ue of
the nunber used with ERROR. (In the strictest sense, output to
the tube is I/O but "Device I/Oerror" and the like were rare
enough that it seened practical to bend the rule about not
doing I/Oin an error handler, for a non-nechanical nonitor.)

The Blue Book About GW-BASIC and QuickBASIC - 162 -

Two things have caused ne to forsake the use of ERROR- nunber
as a cheap substitute for GOSUB. The rigid self-discipline
needed to avoid an unpredictable return from RESUVE NEXT
becanme tiresone. Trying to renmenber where an ERROR woul d cone
back to, in conditional expressions that involved both THEN
and ELSE was harder than the sinpler alternative of assigning
a code to a variable, then doing a GOSUB to a general - purpose
"message subroutine". The idea that nonitor I/O errors were
not likely, is not as valid as it used to be, either.

Qutput to a nonitor, using conventional BASIC commands |ike
PRI NT, invokes BICOS calls. (Chapter 7 dwells on this.) The
continued proliferation of new types of nonitors and adapters
increases the risk that sooner or later one of them or DOS
will change its mnd about the signals it sends back to BASIC
indicating the results of output requests.

Even if we suppose that "Device |I/O" errors are still unlikely
on a nonitor, there is another overall design issue that nust
be considered. Once upon a time, all that a general purpose
nmessage routine had to renenber, and restore, was where the
cursor was before the junp occurred. Today we have to contend
with color, cursor-on or cursor-off, the cursor's size, display
pages, and on and on. Today it is usually sinpler to nove this
overhead to specialized subroutines geared to different screen
nodes. Error nessage output to a nonitor in an error handl er
should be limted to "energencies" as a matter of habit.

Havi ng reasoned why our coding style nust be cognizant of the
risk of errors occurring between THEN and ELSE, the use of IF
itself needs sonme thought when speed is worth worrying about.
IF is about the slowest thing you can do in interpreted BASIC
Al nost any alternative is usually faster

Heedi ng this advice, see also why WH LE shoul d not use nultiple
implicit "ifs". WH LE A>B AND C<D AND E>F i s the equival ent of
doing the same thing with an IF, each tinme WEND i s encount er ed.
Reconsi der this ol d-fashioned alternative:

1000 I F A>B THEN 1040

1010 I F C<D THEN 1040

1020 I F E>F THEN 1040

1030 "exception |logic
1040 ' ot herwi se

The Blue Book About GW-BASIC and QuickBASIC - 163 -

The aut hors of sone textbooks encourage us to stack IF-1ines
like this so that the condition nost likely to occur is tested
first, the next nost likely second, and so on. This author
agrees with the reasonabl eness of that thinking, but offers a
suggestion to consider as superior to that: Do not use IF at
all when there is a practical alternative.

One such alternative is ON GOTO (or ON GOSUB). This has al ways
been to BASIC, conceptually, what CASE is to other |anguages.
Hence ny inference that we should vote against CASE in BASIC

CASE originated in | anguages that had nothing conparable to
ON GOTO. Chances are, if it was added to BASIC, it too would
not be very efficient because of the artificial contrivances
that are patched into the interpreter when it tries to adopt
any type of structure that is foreign to what was, and stil
is fundanentally, a line-at-a-tinme |anguage.

The follow ng exanple is a rewite of the one shown earlier.
This one uses ON GOTO as an alternative to |IF.

1000 ON ABS(A>B AND C<D AND E>F) GOTO 1020
1010 "exception |logic
1020 ' ot herw se

Not only is this shorter, it is a faster alternative when the
various | F-conditions enjoy an approxi mately equal chance of
happening. It is the faster alternative only when no heavy
arithnmetic is needed in the ON expression, however. Contrast
this with the follow ng one that produces different addresses
for each of the conditions being tested:

ON ABS(1*(A>B AND C<D) +2*(A<B AND C>D)) GOTO 2000, 3000
whi ch is equivalent to:

I F A>SB AND C<D THEN 2000
| F A<B AND CD THEN 3000

As with any advice froma book, this has to be eyeballed for
what it is worth in given situations. Before your thoughts
turn argunmentative: Yes, |IF and THEN are easier to read than
ON | a-de-da. MW thoughts about how codi ng style and program
mai nt enance i ssues can be judiciously balanced are offered a
little later. My adnoni shnment here is, adopt nothing out of
context of the whole of this subject to avoid being |abeled

The Blue Book About GW-BASIC and QuickBASIC - 164 -

an extrem st.

A good exanple of extremsmwas APL. It had no IF. (APL cane
out of Harvard about 1962; was all the rage for a while on the
old I BM 360 conputers; it has steadily declined in popularity
since about 1975.) Virtually everything done in APL has to be
acconplished with al gebra-1ike expressions. George Boole and
Bl ai se Pascal would have loved it.

APL was good for machines, but it was hard on programer heads.
In my youth it was fun to develop lines like

((A>B)/' G), ((A=B)/'E'), (A<B)/' L’

sothat G E, or L would print, to show the relationship of A
to B as being Greater, Equal, or Less. And this is a sinple
exanple. Conpare it to this one for evaluating an al gebraic
pol ynom al :

3+(2XY) +(9XY*2) +4xVY*3

Believe ne, if you wote twenty lines in succession like this,
in the norning, and did not notice i mediately that one had a
m stake in it, you could get a bad mgraine trying to find the
error that afternoon. APL was, is, and shall forever be (we
hope) the nost cryptic of all |anguages ever foisted upon us.
Even FORTH was not that obtuse. It too is now a dead | anguage.

Now we cone to the issue of living in glass houses and throw ng
bricks. There is a difference between a | anguage itself being

cryptic, and our personal choice to sonetinmes wite cryptically
in a language that does not insist upon it. See this |ine out

of one of ny own tricks displayed in Chapter 14:

3240 E=E*(VAL(LEFT$(X, 2)) <13) * SGN(VAL(LEFT$(X, 2)))

Unlike in APL, we can decide when to use IF in BASIC. And we
can del i berate about when, or when not to be cryptic. In this
line (3240) a "conditional" expression is used to generate a
"flag" in a numeric variable. Cbviously, seen out of context,
it is not obvious at all what its purpose is. Progranmers that
know BASI C wel|l can easily see what this line will do, but not
why, nor to whom

Occasionally we still see comments in our junk mail that BASIC

The Blue Book About GW-BASIC and QuickBASIC - 165 -

is an English-1ike |anguage. The non-progranmer scribes that
dunp this crap on the public have never tried to "read" one of

ny prograns. In fact, any program in any |anguage that can
do nore than "See Spot run", is inpossible to read one line at
a tine.

Even COBOL, which is extremismin the opposite direction of APL,
is not always as "readable" as its proponents vehenently argue,
in spite of its determination to mmc English. You cannot

read one paragraph of a COBOL program alone, and infer its
reason for being, wthout reading the whol e book.

Argunentative or not, the above paragraphs are offered as the
underlying preanble for nmy attitude that mnmy programm ng style
does produce prograns that can be cost-effectively naintained.
Which is THE i ssue by which to argue using tricky techni ques
for conserving space or increasing performance vs. those that
are (sonewhat) easier to read, for those of us earning our
daily bread as programrers.

Teachers, preachers, authors, text books, and technical tones
have to try to communicate to the masses. Wat a real program
of mne looks like, internally, is privy to a very small group
of people; often as not, only three: M, nyself, and I

The sort routine shown earlier is recoded here, as it would
actual ly appear in one of ny prograns, as a nodel of ny style,
for what | call freeze-dried code.

1950 'sort

1960 FOR E=-1 TOO:FOR I=F TO L-1

1970 IF A(l)>A(1+1) THEN SWAP A(1), A(l +1): L=l
1980 NEXT: E=L<1: NEXT

1990 RETURN

The nane line is short, and, uses lower case letters to nmake it
easier to spot when scanning listings or scrolling on the tube.
Notice there are no other remarks. They are not needed by ne,

or anot her programer wandering around in ny code. That is ny
assunpti on.

Freeze-dried code has no need to be artistic or pretty. It
either works, or it does not. Once debugged, it is highly
unlikely this routine wll ever have to be changed, hence, it
shoul d be coded so as to be as efficient as possible. The nore
conpact it is, the better. Conceptually, freeze-dried code is

The Blue Book About GW-BASIC and QuickBASIC - 166 -

like an "intrinsic function". |In this exanple, if BASIC had a
SORT verb, we would never see these |ines, nor worry about what
they |l ook |ike. Qur own-code substitute should strive to be as
small and as fast as possible. Effectively, GOSUB-number can be
used as a substitute for your own extensions to the basic, BASIC
| anguage.

To mnimze future maintenance efforts, areas in a programthat
are likely to have to be nodified soneday deserve a different
attitude about style: They should be easily found, easy to
read, and illum nated with remarks.

Sone of ny habits nmake it easy to find things, |ike using a
one-word delimter at the top and the bottom of a bl ock. Mbst
of the Iines inside the blocks are long, nultistatenent |ines.
No single line is ever longer than the wdth of the screen,
however. Al line nunbers are always 4-digits. (M programs
al ways begin with [ine 1000 and are increnented by ten from
there on, with no gaps. Sone additional reasons for this are
cited in Chapter 12.)

A picture is worth a thousand words, so goes an old cliche.
The "i mage" of a bl ock can be quickly seen, by reason of ny
habits of style. Once the picture that is wanted is on the
screen, concentration can then focus on a word search.

Notice ny reluctance to use the word nodule. Text books on
structured programm ng | ove that word, but few use a comon
definition of what it nmeans. M definition: Not nore than a

screen full. LIST is tiresone. The cheapest word-processing
prograns can scroll text forwards, and backwards. The editor
in GMBASI C cannot scroll in either direction

Dense code runs faster, and, it enhances productivity. After
the | abor of getting a chunk of logic on the screen, we want to
see all we can. To relate to a part that is not visible, our

m nd has to shift gears to fetch another picture. By then, it
is hard to renmenber how that information corresponds to what we
were | ooking at just nonents ago.

Wth this pair of notives in mnd--optinum performance of man
and machine--a few nore of ny habits need to be |isted.

Restrict all lines to a maximum |l ength of 80: The bl anks

The Blue Book About GW-BASIC and QuickBASIC - 167 -

following Iines that do a wap-around contain little useful
information. Continuity of perception is disrupted at the
poi nt of overflow, and, when scanning down the left margin
| ooki ng for |ine nunbers.

Omnt all "optional"™ syntax: In CLOSE #1, for exanple, the
pound sign is not needed by man or nachi ne.

Condense conditional expressions: |F I1-1 THEN is shorter
and faster than I'F | <>1 THEN

Use DEF-type, and omt variabl e-typi ng appendages: Having
said DEFSTR MZ up front, all of those tiresone dollar signs
can be left off of all string expressions, and save a | ot of
space. And shift-key usage.

Use short variable nanmes: One or two characters is the rule.

Way back when, a variable nanme in BASIC could only have one or
two characters, plus a data-typing appendage. And it was that
way for a |lot of years. At a point, names could be | onger, but
only the first two characters were used to discrininate between
nanes. Today we can have names up to forty characters | ong,
and all of themare used in doing nane conparisons. Big deal

Bef ore they gave us so much, and slowed us all down whether we
liked it or not, we had already learned to live with what we
had. Those nmethods are just as viable today. Conversely, the
advant age to be gained by |onger names is not enough to nake
this old dog | earn new habits. Here are sone of ny old tricks
of the trade, and why change is resisted.

DEFINT G L : DEFSTR MZ : DEFDBL A

This is done once, only, at the beginning of any program It
is extrenmely rare that this allocation of the al phabet ever has
to be different. The unstated B is, by default, for single
precision variables. O all of the expressions in a program
few need to use floating point variables. A and B, followed

by other letters, or nunbers, will provide for up to eighty of
each type. (The full range for either is 164; 82 sinple nanes
and 82 arrays, including the use of the single letter itself,
and allowing for one nane to use a period as a second letter.)

Most of the "conmputing” that is done in all BASIC prograns is

The Blue Book About GW-BASIC and QuickBASIC - 168 -

for the benefit of counting and naki ng deci sions. Mst of that
can be done with integers, and it is definitely faster to do
so. Hence, the use of CL for integer nanes.

Data file processing, especially, uses a lot of strings. The
M Z half of the al phabet is sufficient for that, and all other
string mani pul ati on tasks whether file-related or not.

Once adopted as a habit, a consistent allocation in the use of
t he al phabet nmakes it easy to see and read nanes w t hout any
trailing data-type appendage. It also causes us to devel op
strong preferences for the use of certain nanmes in a simlar
way, for a long tinme, in a |lot of prograns.

A nane beginning with the letter Q for exanple, always has
something to with keyboard activity in ny progranms (e.g., Q
is for Query). Simlarly, ny first choice for a FOR/ NEXT

| oop is always the letter I, stemmng fromthousands of |ines
of code witten in FORTRAN. (In that |anguage data typi ng was
enforced upon us; early FORTRAN conpil ers gave us no choice;
certain letters were pre-designated as being the ones we had
to use to reference certain data types.)

Anot her benefit of short names, used the sane way over a | ong
period of tinme, goes way beyond the obvi ous advantage of our
ability to easily renmenber what they are used for: Wen
nmer gi ng code fromone programinto another, far less work is

i nvol ved than would be the case if all of the nanmes had to be
changed. And, this also reduces the risk of editing m stakes.

Chapter 3 presents argunents about declaring all variable nanes
up front in a program Add to that advice, this is also the

pl ace to nake notes about what variables are used for. Here

Is a short segnent of the front end from such a program

1190 | =0: J=0: K=0: D=0: E=0: F=0: G=0: H=0: A=0: B=0 "l oca
1200 L=CSRLI N: C=PQOS(0) ' gl oba
1210 BM=&HB800 ' BaselMoni t or

1220 CVEO: CQ=0: CP=15 ' Cur shWbn: Cur sQkey: CursPrt

1230 C4=0:1L4=0 "Col4:Lined limts

1240 DQ=0: EQ=0: Gx1: KQ=0 ' DoQ Edit Q Get Q KeyQ

1250 ME=" GenFont 2. EO0" ' MaskEdi t

1260 MH=" GenFont 2. HO1" ' MaskHel p

1270 QL=CHR$(0): @=MI $(0) ' Qlkey: QRkey

Sel f discipline can produce many side benefits fromhabits |ike
these. Wiile coding, if a new nane has to be invented, |ook first

The Blue Book About GW-BASIC and QuickBASIC - 169 -

at the start-up nanes list to preclude accidental conflicts.

By al ways addi ng new nanmes to this |ist before they are pl aced
into use, they wll not be forgotten, neither the names, nor what
they are used for. This schenme also hel ps keep the Iist short.
The possibilities for using some variables at different tines

for different purposes can be nore readily seen in this way.

As a general rule, single character nanmes are always |ocal; two
characters are used for global names. Meaning: After a GOSUB,
do not depend on the contents of single-letter variables. Nanes
with two characters have val ues that are global in nature, either
in the sense of the programoverall, or anong just a few routines,
even. In sone cases, as in the exanple above, C and L are used

t hroughout as gl obal names by this particular program It is
one that uses LOCATE a lot. To keep those lines short, these
two single-letter nanmes were declared global in this program

as an exception to the usual rule about single character nanes
bei ng subject to capricious use inside any subroutine.

One nore habit needs to be nentioned as a natter of style.

My overall attitude about remarks can be seen in many places.

Those shown with variables in the earlier exanple are typical:
Short, terse, and somewhat cryptic. Gven ny habits, however,
and an awareness of what that program does, they are as useful
to me as they would be if they were each a paragraph | ong.

Down in the bowels of a program proper, ny remarks tend to be
scarce. They are usually used for annotating |ogic-flow, as
opposed to expl ai ni ng how sonet hi ng works. Knowi ng BASIC, it
is not too hard to deci pher nmechanics, but it is not so easy
to see why a GOSUB is junping off to sonewhere. The follow ng
one-1line exanple solves this type of problemat a small cost.

3440 I'F | THEN GOSUB 1030: GOSUB 1110 'sort:save

This Iine is froma programthat had a subroutine called "sort"
and anot her called "save". A short REM coded on the tail end
of any line that says GOSUB shoul d duplicate the sane ni cknane
that is at the top of a called subroutine. This habit, adhered
to with Teutonic discipline nakes it easy to "read" a program

Most often when we are | ooking at old code--even that witten
only a few days ago--we are usually trying to track its |ogica
flow. Once debugged, the grit in the mddle of expressions is

i ke sand when what we are really |ooking for are boulders. CQur
bl unders at this point are nore likely to be errors in logic, in

The Blue Book About GW-BASIC and QuickBASIC - 170 -

I i nki ng maj or bl ocks together, rather than picky errors inside
the bl ocks thensel ves. (Chapter 11 provides sone ideas about how
to deci de what bl ocks are needed. Chapter 12 describes in nore
detail how and when to best build, and debug, the pieces of a
program)

This chapter should not be read as an attenpt to thwart the
advi ce of wi ser heads than mne. Nor should any notive be
percei ved to contradi ct what nay be consi dered by many as
"good progranm ng practices.”

Pretty code vs. dense code often stinulates heated debates. M
closing argunent is invariably the sane. Pretty code is nost
often the preference of those that get paid to program Those
of us that programfor profit tend to | ean the other way. The
matter of style, inside a program is a personal decision.

Programm ng may involve artistic talents but a programitself
is seldomseen in an art gallery. Wth deliberate effort we
can develop a style of coding that is efficient and easy, based
on an awareness of how the interpreter itself works. Adopting
habits encouraged by "experts" in other |anguages, and those
with no practical experience in any programr ng | anguage nakes
no sense in a profession that depends on our ability to reason
| ogically.

At given nonments in time we all vary our inclination, left or
right, depending on the pressures of a particular programm ng
problem Wth alittle luck we will have been found to have

| eaned in the right direction in a mgjority of cases.

Hopeful ly, sone of this will enhance your inclinations. What
has been di spl ayed here was not |earned in school. It has been
nmy style, for quite awhile, reflected in a |lot of prograns
witten in interpreted BASIC. Prograns that have paid for a

| ot of biscuits, even though sone would not likely score a
passi ng grade in a classroom

The Blue Book About GW-BASIC and QuickBASIC -171 -

Chapter 11 = DESI GN

What a program should look like is covered in Chapter 10. How
to build prograns quickly and easily is in Chapter 12. Chapter
13 suggests sone codi ng techni ques for inplenenting various
aspects of a design. In this chapter are sone ideas on how to
first decide what a program should contain, where, why, and
even, how many prograns are needed to satisfy the requirenents
of a conplete application.

The four subject classifications--style, design, nethod, and
techni que--are sonewhat arbitrary, but chosen to mnim ze
redundancy, and to permt concentration on one thene at a tine.
None of these can stand al one, however. They are all tightly
interrelated. It is the sumof these ideas that nake it
possi bl e to generate custom application prograns cheaply, in
BASIC, that work efficiently and safely.

Efficiency, as a design subject, has at |east seven parts:

+ Run tinme performance of a given program

+ The tinme involved in swtching between prograns in a total
appl i cation set.

+ Usage task-tinmes, i.e., the proportional anmount of tine
spent doing things like file maintenance, posting business
transactions, printing reports, changing printer forns and
maki ng back-up copies of software and data files.

+ The manhours involved in building and debuggi ng prograns.

+ The probability of costs for diagnosing failures and making
fixes.

+ The labor-risk for making future nodifications because of
changi ng requirenents.

+ Qperator training and docunentati on updat es.

Safety, as a matter of design, has at |east four parts:

+ Hardware failures; nanely disks, disk drives, and all Kkinds
of el ectronic breakdowns.

The Blue Book About GW-BASIC and QuickBASIC -172 -

+ Programm ng bugs; yours, the interpreter's, DOS, and its
hodgepodge of parts.

+ Corruption caused by "foreign prograns”.

+ Qperator foul-ups of all kinds (also known as "OFU'").

Nearly all of this book to this point has been concerned with
obt ai ni ng maxi mum performance for a given programwhile it is
executing. A fundanental thene has been: The fastest running
prograns are those witten with a full awareness of how the
GV BASI C interpreter works.

Most full-scale applications are nade up of several prograns.
Getting fromone to another, efficiently, is often a critica
function of design. Poor design choices here can sonetines
cripple progranms that woul d ot herw se run |Iike racehorses.

Al efforts for attaining efficiency, in both the man and the
machi ne sense, can be obviated entirely if a hasty design does
not fully consider safety issues. Mangled disk files will make
any user unhappy. Wen it happens, they will be in no nood to
conpensate you for the tine required to diagnose the cause of a
failure, even when you can "prove" that the fault was theirs,
an act of God, Mdther Nature, a chip maker, or sone other
programer .

Al t hough sonme of what follows could be applicable when witing
progranms in al nost any | anguage, the enphasis here is on that
which is peculiar to GM¥BASIC, specifically. Little enphasis
i s needed about particular types of applications. Payrolls,
ganes, and toy prograns all deserve sone thought about design.
Only the anmount of tinme should differ, not the quality of what
goes into such intellectual exercises.

Nearly all prograns have to access di sk-based files of one type
or anot her, sooner or later. To do so quickly, and safely,
consider the ideas listed here, and the rationale on which they
are based. At design time. In that interval of deliberation
before coding is begun. Coding errors can cost a little tine
to find and fix. Design errors on the other hand, can bankrupt
conputers, others, and you.

Whol e stacks of books can be found in the libraries regarding

The Blue Book About GW-BASIC and QuickBASIC -173 -

sof tware devel opnment projects. They invariably propose witing
a lengthy functional requirenments docunent, a project plan, and
an installation and testing plan. D fferent authors choose to
conmuni cate their ideas in various terns. Sone break the whole
into different pieces. Having studied many such books, and
havi ng practiced their advice to one degree or another over the
years, wi th gangs of coding coolies, and in |lone-star efforts,
here is ny synthesis of it all, in this environnent.

Build nenus first. This does two things. Menus are a "list"
of what functions an operator nust be able to do. They also
provi de an "outline" of the major functional tasks that nust
be progranmed for. Hence, this work approxi nates what woul d
go into a requirenments docunent, but it is also an end-use
product, not just reans of paper.

Build data entry and di splay masks next. Concentrate here on
record | ayouts, field sizes, and the like. Thought has to be
given at this point for reporting requirenents so that what
will be needed eventually, w Il have been captured sonmewhere.
This effort also relates to a "requirenents definition", but
it too results in end-product usabl e output.

Bui | d skel eton prograns next. These are really dumm es; the
only one that has a nodicumof intelligence is the one that
provi des for nenu selections. The others nerely display the
various screens that will be seen by an operator, and give
an inpression of how "friendly" the final product will be.

Build a few hel p screens next if on-line help is a basic
requirenent. (If not, resort to an abbrevi ated piece of
witten docunentation.) The subject enphasis here is on how
installation will be done, and the interrelationship of this
application to others in the same system domai n.

The sumof all efforts to this point is akin to what is alluded
to in nmany textbooks as a "prototype design". You now have a
denonstration tool for interacting with the intended user to
ascertain that all of the bases have been covered. And you
have a "plan" that outlines what "nodul es" will be needed. (It
is fromthis that estinates regardi ng schedul es and costs can
be made, al so.)

Now see how t he above suggestions relate to BASIC. The nenus,
entry masks, and help screens are built and used with BSAVE and
BLOAD. Chapter 6 contains sonme technical specifics about this;

The Blue Book About GW-BASIC and QuickBASIC -174 -

Chapter 12 suggests sone ways to do it easily; here we consider
some pertinent design issues.

The use of LPRINT can cause problens sonetines in prograns
that al so do BSAVE and BLOAD. The obvious solution is to
OPEN the printer as a device and PRINT to that "file". Read
this another way: Forget the word LPRI NT.

The di sk space needed for BSAVE/ BLOAD text files is double
what woul d be needed normally, e.g., 2-bytes per character
rat her than one.

BSAVE (and BLOAD) can only address a DOS file nane. And

al ways, an entire file. In nonoadapter machines this neans
every screen, or partial screen, is a file. Miltiple "pages"
can be saved and | oaded as a single file with col or adapters,
but BLOAD al ways | oads an entire file (all pages that were
saved in one file). A lot of screens can nean a lot of file
nanmes, which can have a negative inpact on the tine required
for directory searches for all file nanes, including those
for prograns and data files.

CGA machines "flicker" when you do a BLOAD i nto vi deo RAM
areas. Wile this is not a trenmendous problem it is a fact
of life (and difficult to explain to an operator, even though
it is often only a m nor annoyance.)

BSAVE to a flex disk is very slow, BLOAD is a little faster

but the screen appears to be painted in "chunks". (A floppy
sector is 512 bytes; DVA transfers are done one sector at a

tinme.)

For systens that have only floppies, if the operator renoves
the disk with BLOAD screens on it, PRINT will have to be used
as an alternative neans of conmmunication in error situations.

BSAVE and BLOAD work from point-A to point-B as continuous
and contiguous strings of bytes. In practical ternms, partia
screens can only be done as consecutive, full-width |ines;
pop-ups and pul | -downs nust be designed as screen-w de bl ocks.

As with all design issues, there are trade-offs, of course. A
significant advantage to the use of BSAVE and BLOAD screens is
that prograns thensel ves are nmuch smaller. And nuch faster

Because character attributes are saved (and restored) al ong

The Blue Book About GW-BASIC and QuickBASIC - 175 -

with text, and Iines and boxes, there is far less need for a | ot
of nitty gritty lines that do LOCATE, COLOR and PRINT. And the
text itself is outside of the program freeing-up even nore
space better used for "intelligent procedures” and worKking
storage areas.

BSAVE screens can al so be used to cheaply pass al ong information
to other programs. Suppose an operator selects a report option
froma nmenu, then the nenu program chains to a general purpose
report witing program Just before the chain takes place, mark
the operator's selection on the nmenu and BSAVE it. Wen the
report programstarts running, it can exam ne the menu to see
what it is supposed to do. (The use of COVMON and ot her

I nter-program conmmuni cati on techniques is explored | ater, but
remenber this exanple of a sinple alternative.)

Now it can be further seen why this chapter on design began
with a focus on using BSAVE and BLOAD screens: A decision in
this regard can be significant in how an application is mapped
overall, especially in ternms of how many individual prograns
will be needed, and what they will each do. Typically, because
of the use of "screen files", nore intelligence can be built
into a single programthan woul d otherwi se be the case.

In GMBASIC we have to always keep in mnd that we have to |ive
and work within a 64kb bucket. Oddly enough, this is usually
anpl e; seldom does it have nuch influence on how an application
is best divided into conmponent prograns, assumm ng you agree with
the followi ng attitudes:

+ For performance reasons, short variable nanmes are used, and
all variables are reused, to the maxi num extent possible.

+ For both performance and | abor reasons, dense code is best.

+ For | abor and space-savi ng reasons, screen files are easy
and economni cal .

+ Once the interpreter is |loaded, the big drag is over. An
end- use program can be RUN-| oaded or CHAIN-| oaded pretty
fast if individual tokenized programfiles thenselves are
fairly small.

+ Programfiles will naturally tend to be small if their
bulk is nostly procedural code and not a |lot of "text".

The Blue Book About GW-BASIC and QuickBASIC - 176 -

Assum ng concurrence with this background, how many prograns,
and what each will do can align with what the user wants to do.
A sinple exanpl e can be used to convey this idea; of all of the
di fferent types of business data processing applications, the
sinmpl est one that cones to mnd is a stand-al one General Ledger
accounting application. The basic functional requirenents for
this one conprises a small |ist.

Master file: Small records, one per account nunber.

Fil e mai ntenance: QOperator needs to be able to create new
accounts, del ete obsol ete ones, and nmake m nor corrections to
static descriptions and the |ike.

Transaction file: Each accounting entry is a "record".

Posting operations: Accounting entries are debit and credit
adjustnments to an account bal ance. The current bal ance is
mai ntai ned in the master record; each posting line is tacked
onto the tail end of a transaction file.

Reports: Two kinds, essentially. Journals are listings of
records in the transaction file. Profit and Loss Statenents,
Trial Bal ances, and the |ike, cone fromthe master file.

| gnoring nechanical details for the nonment, see how this sinple
|ist can be expanded to enbrace al nost any data processing
problem The others are sinply nore of the sane, no matter how
sophi sticated their overall requirenments are. Because of this
view, a general -purpose design tenplate can be descri bed.

Master file mai ntenance: One programfor each file. It wll
OPEN its master for both reading and witing. For ISAMfile
situations (qg.v. Chapter 13) tw files may be invol ved--the
real data file, and its associated index. |In sophisticated
applications, master-file mai ntenance prograns nmay al so have
to OPEN ancillary files in a read-only node for validating
operator entries, or for nerely providing visual references.

Posting program Only one (usually). In concept, this is a
data entry program It is also the guts of an application.
This is where it all happens in terns of what a "progrant

can do. At various points in this process nost all nmaster
files nust be open; sone for reading and witing, sone for
read-only. Qutput is to at |east one file; sonetines to nore
than one. The output from posting invoices, for exanple, may
be an internediate file to be used to drive another program

The Blue Book About GW-BASIC and QuickBASIC - 177 -

that prints forns and updates accounts receivabl es bal ances.

Report program Maybe one, maybe many. A distinction nust
be made between those that only read-and-1ist, and those that
list informati on and do concurrent updating of master file
records on the fly (or at the end of the report run).

Wiile the above is not a radical view in any |anguage, on any
conmputer, it is especially apropos to BASIC and DOS. The three
types of prograns--file maintenance, posting and reports--are

a natural definition of separate progranms for at |east three
reasons: Performance, space, and safety.

Performance: The need for speed is different for the three
maj or types of tasks that an operator does. File maintenance
and posting are both operator paced, but differently so in the
sense of key-thunping burst rates and entry rhythm Reports,
on the other hand, run |largely unattended once initiated.

Wil e doing file nmaintenance, little paper shuffling goes on.
Wth the exception of creating new records, not nmuch tinme is
spent on any one record. Enphasis here should be on fast
record access, and rapid displaying of entire records on the
screen.

During posting an operator's eyes are focused on input source
docunents far nore than they are on the screen. Although a

| ot of disk accesses may be needed for each transaction line,
little of that data is actually displayed. Because of an
operator's natural inclination to see-a-line and post-a-line,
it is best to echo each columar entry quickly, and do all
cross-file validation checking at the end of each line.

Reports are typically printer-speed paced. This is stil
often true today in business operations, notw thstanding the
popul arity of large capacity "buffers”, and the sonetinmes
supposed advantages for things |ike spooling and so called
"background nul titasking”. For many "reports” |ike invoices,
nont hl y statenents, and paychecks, further data processing
cannot be done until those runs are fully and successfully
conpl eted, and backed-up, no matter how it is done. Design
enphasi s here nust center on efficient coding of printer

out put sequences.

Space: The mapping of an application into separate prograns
on the "natural basis" suggested here often causes the best

The Blue Book About GW-BASIC and QuickBASIC -178 -

fit automatically in terns of the 64kb naxi num space |imt
per program

Fil e mai nt enance progranms, for exanple, need to fully define
all record fields. Large chunks of procedural code are often
needed to let the operator nove around in a record, and for

t horoughly checking all keyboard input. This programis also
the one that nmust do full index mai ntenance for | SAMTfil es.
Nearly all of these functions often require | arge sequences
of rote code that are unneeded in other progranms within the
same application set.

A bookkeeper sees a debit and credit as two different things.
Programmers see them as essentially the sane; only the signs
are different. Wth small effort, a single set of procedures
can accept input for either an invoice or a credit neno. Two
different entry masks, with different "headings" will benefit
the operator. By designing themso that columar alignnent
is the sane for both (or nearly so), only a single set of
subroutines are needed internally.

No matter how it is done, a programthat prints a report is
nostly rote procedures, but seldomvery lengthy. It is here
however, that nenory constraints can sonetimes inpact the
design of arrays for accunulating totals and internediate
subtotals. In sone, large "lists" nust be constructed and
sorted in order to provide output in a required presentation
sequence.

Safety: Updating disk files is a risky business. Updating
existing relative file records is the least risky--only
that particular file's contents is in jeopardy at any given
nmoment. Adding new records to a relative file is akin to
sequential file output as far as DOS di sk-nmechanics are
concerned. And so is creating any kind of new file. |If a
failure occurs while DOS is fiddling with the FAT, an entire
di sk nay becone totally useless in a pragmatic sense. The
onus is on us to deal with these risks. Buck passing stops
here; we have to cover fully for the sins of DGOS, clunsy
operators, and all "cheap" prograns allowed to run in our
machi ne.

Because nmaster files are relative files, invariably, file
mai nt enance prograns nust contend wth both record updating
ri sks, and those inherent to file-stretching operations.

Posting prograns do not normally have to stretch master files,

The Blue Book About GW-BASIC and QuickBASIC -179 -

but, they do have to update existing records and conti nuously
add-on to the end of transaction files, be they of either type,
rel ative or sequential .

Report prograns present the |east systens integrity risks

if they are of the read-and-list variety. A failure while
readi ng records is unlikely to harm anything on a di sk, save
for the usual risks of physical damage caused by el ectronic
or mechani cal breakdowns of the drives thenselves. Wen it
IS necessary to store report accunul ations in tenmporary work
files, or do batch updating of data records, that program
nmust contend with file and systens integrity issues with the
same sense of responsibility as any type of data processing
program

Havi ng now deci ded how many user task-oriented prograns will be
needed, and what each nust be responsible for, it is tine to
deci de how to hook them all together.

As a matter of habit, ny preference tends to be to do all nenu
selections fromw thin a single program For several reasons.
To you, and an operator, a nmenu program can be seen as a table
of contents. But fromslightly different perspectives.

From a nmenu an operator can choose what type of work they want

to do next. Wen finished with an operation they can return to
the nmenu for another task-oriented selection. Menus provide a
condensed definition of what an application can do, and, serve

as an "office manager" for enforcing procedural discipline.

The nmenu program can al so serve as an "application nmanager".
It is the logical place to do gl obal housekeepi ng chores so
that task-oriented prograns need not have to contend with the
mundane. Having solicited today's posting date, for exanple,
the nenu programcan sinply pass it on to other prograns, SO
they can assune they will receive only valid data. This is
al so an obvi ous place to do nui sance chores like converting
dates to Julian, if that format is needed by several other
prograns as a static val ue.

Anot her type of "gl obal chore" suitable for a nenu/gateway
programis usage | ogging. An operator's nmenu selection can be
"l ogged" before the called-for programis | oaded. By causing
all prograns to exit to this common program success or failure
status indicators and activity counts can be passed back to a
single routine responsible for maintaining a | og of who did

The Blue Book About GW-BASIC and QuickBASIC - 180 -

what to whom and when--an indi spensable aid for doing fault
i sol ati on and di agnosti c work.

Anot her reason for favoring a single gateway concept for an
application's basic architecture is that it is a good place to
take care of configuration idiosyncrasies. Once this program
determ nes how many di sk drives are available, for instance, a
mere status indicator can be passed to other prograns so that
they do not have to duplicate unnecessary procedural tedium

A simlar but often nore |aborious task can be acconpli shed
once, in this one program Mdern printers have nenories of
their owmn. To ensure that a printer has not been left in an
unpredi ctable state by an interim process, the nenu/gateway
programcan arbitrarily reinitialize all printer options just
before a call to any programthat makes use of that device.

The above not only precludes redundancy in all prograns that
print, it also localizes into one area all of those eight bal
codes that are likely to be different for various printers.
The obvi ous payback here cones when a user opts to upgrade his
printer, i.e., only one programw || have to be "updated".

Now for the clincher: Application and systemintegrity. Wen
an application is first started, the "nmenu progrant should do
a thorough check that all is Ok before any type of processing
is allowed. (If not, a RESTORE should be enforced.) Assum ng
all of the progranms within the set are well behaved, subsequent
(but sinpler) checks can be nmade on each return to this single
programto ensure that nothing went haywire while its back was
t ur ned.

By making the start-up gateway process responsible for nmaking
sure that all progranms, screen files, and data files are in
fact resident and ready, discrete progranms can be witten so
as to make a nunber of assunptions w thout having to contend
with every conceivabl e eventuality.

Qovi ously much of the foregoing would be an equally valid set

of considerations no matter what programm ng | anguage i s used.
Bef ore we begin slapping up code in GN¥BASIC, however, there are
several perversities that nust be reckoned with as design-Ievel

i ssues.

Al t hough the manual s devote but a few sentences to descri bing
how RUN and CHAIN work, there are trenmendous differences to

The Blue Book About GW-BASIC and QuickBASIC -181 -

consi der in choosing one vs. the other. Those factors will be
enunerated shortly, but there are fundanmental problens to
consi der about how to get back and forth snoothly fromDOS to
BASIC in the first place.

There are five sizing assunptions built into the interpreter.
Those default values nay be altered by the use of "sw tches",
when GABASI C. EXE i s | oaded. Whatever those values are--the
def aul t val ues, or your own--they remain constant for al
prograns that run fromthen on. The only way to alter these
values is to reload GABASI C. EXE; the only way to do that is
to exit all the way back to DOS command-node | evel. And that
takes tine, especially for the reload of the interpreter.

Suppose at | east one master file in an application has records
of 512 bytes. Suppose a posting programhas to open six files
concurrently. W mght |aunch the application with a conmand
line simlar to this:

GNBASI C AR-MENU /S: 512 /F: 9

My | atest manual says each F-nunber costs 194 bytes, plus the
size of the S-nunmber, for each one. | have not yet figured out
how t o nake accurate use of that advice. Using GABASI C. EXE
version 3.23, the difference reported by FRE(O) in this case is
5772 bytes, vs. what it would be for a "default |oad". (54528
vs. 60300, with no programin nenory.) It would appear from
this that each file costs 642 bytes. |If we increase the nunber
of files to 10, the anmount of menory reported is 760 bytes |ess
than for /F:9, but 9 times 760 does not equate to 5772. On the
ot her hand, 512 (ny file size) less 128 (default size) is 632.
And 632 tinmes 9 is 5688, which is pretty close to 5772, really.

Note: The manuals also say that the S- and F-switches are
ignored if we do not also specify an I-switch. Ilgnore that
tidbit. To the best of ny recollection, slash-1 itself has
been ignored by all versions of the interpreter since about
1982, or so. Slash-I has no influence on anything at all
today, as far as | can see.

When doi ng design estimates ny rul e-of-thunb is:

R
N

Maxi mum record size, plus 130
Maxi mum OPEN-data-fil es requirenent, plus 3

then Rtinmes Nis the approxi mate constant nmenory cost for al
prograns that run after the interpreter is once |oaded. (The

The Blue Book About GW-BASIC and QuickBASIC -182 -

plus-3 for N, by the way, is for the keyboard, nonitor, and
printer; even if we do not plan to open themexplicitly, the
interpreter itself inplicitly anticipates need for them as
nmenti oned in Chapter 6.)

At the risk of kicking a bent bucket: Al of the sizing
options specified when the interpreter is | oaded are fixed
over head costs for all prograns, whether we opt to use those
built-in, or, explicitly nail them down ourselves.

Now gi ven that we know how many progranms are involved, and how
big our run-tinme bucket is, we can decide on a design strategy
for getting fromone programto another. |In BASIC there are
basically two choices: RUN and CHAIN

O these two, RUNis nearly always a best first-cut choice. At

a conceptual level, CHAIN has but one advantage: "Information"
can be passed fromone programto another (via COVMON, or CHAI N
with ALL). If we opt to use RUN, we nust use alternatives for

passi ng "application paranmeters” from one programto another.
Although it may take a little tinme to store such itens with one
program and retrieve themin another, that tinme may actually
be | ess than woul d be the consequence of using CHAIN to pass
"common variables" to a called program

Common? My heritage is, " the conmmon fol k". That is,
wi t hout refinenment in | anguage or manners. Sone wag chose
COMMON as a word denoting data (in variables, in nenory)
that belongs to a community of prograns. The first, nost
sinmplistic definition of this word, according to Wbster,
woul d seemto nmake it a good programm ng | anguage key word.

Di ctionaries and BASI C manual s use about the sane nunber of
words to define COMWON;, in the latter case it is not nearly
enough, because, there is so nuch that is not comonly known.
In fact, COVON, in BASIC, also |acks refinenent in |anguage,
and its manners are often depl orable.

Chapter 3 descri bes how vari ables are stored, and searched for,
by the GWBASIC interpreter. It also nmade passing reference
to the potential performance inpact of using CHAIN and COVMON:
Vari abl es passed to a second programw || be at the top of the
stack in the chained-to program Variables declared in that
program (that are "uncommon") will be slower to reference; a
chai ned-to program may run slower as a consequence. A |ong

The Blue Book About GW-BASIC and QuickBASIC - 183 -

list of COMWON variables (or the use of ALL) deserves sone |ong
t hought if optinmum performance is desired.

The order in which COWON nanes are naned has no significance.
Nor does it matter if they are naned in one or several COVMVON
statenments. Nor if several such statenents are placed one
after another, or scattered throughout the declaring program
Al t hough COVWON st atenents do not have to be "executed", they
cannot, in fact, be conditionally executed.

Wien CHAIN i s executed the interpreter scans the entire program
then in nmenory and | ooks for COMMON decl arations. |t nakes no
di fference where they are | ocated, unless they are on a |ine
follow ng THEN or ELSE, in which case they will be ignored

al t oget her.

It does not really matter how many different COVMON statenents

there are, or if sone of the variables they nane are duplicated
in different places, or even twice within a single declaration.
Sonetines. Read on.

In a sinple context, here is what the interpreter does when it
hits CHAI N

It scans the program | ooking for COVWON statenments (unless
CHAI N specifies ALL).

COMMON statenments will be recognized as such in any |line that
coul d be "executed", even if in fact, programflow never hits
that line, or gets that far.

If COMON is inside a FOR'NEXT or WH LE/ VEND bl ock it wll
be "processed" when it cones tine to CHAIN, even if such
bl ocks of procedures are bypassed during execution because
their "conditions" are never net.

If COMON is contained in any |IF statenent, that declaration
will be totally ignored. (Al though the conditional |ogic
itself will otherwi se seemto work just fine.)

As each variable is encountered in a (recogni zabl e) COVON
statement, that name is located in the variabl es storage
area, and tagged. |If a name was declared to be COVWON, but
never actually used anywhere, it too is effectively ignored,
nothing will be passed al ong, not even the nane.

When the scan for COMON statenents is finished, all of the

The Blue Book About GW-BASIC and QuickBASIC - 184 -

vari abl es that were tagged are "conpressed" into a bl ock,
still stacked in the sane order as they were declared while
thi s program was runni ng.

If a variable is effectively enpty--a zero, or a nul
string--the name will be kept in the block of variables to
be noved, notwi thstanding there is no "data" to be conveyed.

If a variable points to a string literal, that text is copied
at this tinme, fromup inside the program statenment, down into
string space. Grr. This can be a beast. (Re: Strings in

Chapter 4.)

Vari abl es naned in FIELD statenents--that are also naned in
COMMON- - are al so preserved in the block of variables to be
passed on. At that point, the address pointers for those
nanes are ainmed into record buffer areas, as they still wll
be after the CHAIN takes place, notw thstandi ng whether their
associated file has been closed, or left open. Carefull....

Bot h sinple variables and arrays may be decl ared as COMVON.
Both "tabl es" are passed as two distinct blocks of bytes; the
sinple variables are on top, followed by the arrays. Recal
that arrays are passed en nasse; it is not possible to pass
subsets of an array.

If CHAIN with ALL is specified, no prelimnary scan is done;
t he presence or absence of COMMON anywhere is effectively
i gnor ed.

The above description of how COMON works is nerely an enhanced
versi on of what can be gl eaned fromthe manual s (save for that
about COVWMON not working with I'F, which can only be | earned the
hard way). Nowhere is their enough detail provided to enable

us to make design decisions. Mch nore nust be known. A poor
choice at this point may not beconme evident until a |lot of coding
has been done. To reverse our strategy that late in the gane

can cost a lot of hours of hard work.

| F variables naned in FIELD statenents are carried forward via
COMON, their data will be passed along also. This is true even
if you CLOSE a file before doing the CHAIN. (CHAIN does not
close files; they will still be OPEN in the chai ned-to program
unl ess you explicitly CLOSE them) |If you do CLOSE a file then
CHAIN, the data pointed to by all FIELD declarations is stil

that contained in buffers associated with their file nunber. In

The Blue Book About GW-BASIC and QuickBASIC - 185 -

the called program if that file nunber is reused for the sane
or a different file, the data associated with the original FIELD
statenents are effectively |ost.

And renenber from Chapter 3 that arrays are stacked in working
storage after all sinple variables--the nam ng of new sinple
variables in a chained-to programw || cause a slight delay while
the interpreter shifts the arrays downward to allow for insertion
of newWy naned sinple variables in the upper table. And it does
it repeatedly. |[If the incom ng program nanes ten new vari abl es,
the arrays get noved ten times. |If several arrays are invol ved,
and especially if they are large, the "delay" can be a | ot nore
than "slight".

The manual says a given variabl e cannot be naned in nore than
one COWON statenent. The interpreter does not check to see if
we make a "m stake" in this regard, however. You can violate

this "rule" and get away with it. Seemingly. |In the case of
sinple variables, there is no noticeable penalty for such
infractions. |In the case of duplicate declarations of arrays,

the penalty is akin to capital punishnent.

If an array is mistakenly naned twice in one, or in different
COMMON statenments, things really slow down, although it may not
be noticed until the chained-to program begi ns running. But,
run it does not. In fact, it will not even walk very fast. It
will barely crawl along, actually.

The | ethargy contracted by meking a duplicate declaration of an
array to be COWON is amazing. Until you try it, you would not
bel i eve your conmputer could run so slow. Even LIST will nerely
dri bbl e across the screen. Wrse yet, there is no known way to
overcone this mal ady, save for canceling the whole show. Once
infected, the interpreter will thenceforth linp along, no
matter what you do short of going all the way back to DOS and

r el oadi ng GABASI C. EXE

The above nmal ady can be avoided if we are careful and play by
the rules, of course. Unfortunately, the rules are not very
wel | defined. Nor enforced.

There is only one tidbit of advice in the manual s about COVMON
statenments: "... it is recommended that they appear at the
beginning." Rationale for that little gemis not intuitively
obvious. (Recall that the entire program nust be scanned to find
all COMWON statenents, be they up front or scattered hither and

The Blue Book About GW-BASIC and QuickBASIC - 186 -

yon.) W would be far better advised if they had used this
space to tell us the real consequence of opting to CHAIN with
COVWON, or, CHAIN with ALL:

Gar bage clean-up is done of free-string space, even though it
may not be needed, really, before CHAIN is actually execut ed.
Chapter 4 descri bes garbage, and the costs for it, and howto
avoid it. There is no avoiding an inplicit FRE("") however,
for CHAIN with COVON, or, with ALL. Trap this bee in your
bonnet | est you be stung later by a decision to use CHAIN in
lieu of RUN as a design strategy.

At a glance, CHAIN nay seemto be an easy way to acconplish

I nt er program comuni cati on of gl obal information. Sonetines

it is practical. Perhaps. Fromone program to one nore, on a
one-time basis. As a rule of thunb, that is ny advice. For any
application that is designed as a set of prograns that nust be
called recurrently, RUNis a far better choice than CHAIN. No
gar bage clean up is needed, or done, on a RUN

Because no garbage clean up is done on a RUN, it lends itself
to very good use for nore than sinply calling another program
into nenory. A sinple RUN statenment followed by no argunents
is an effective way to restart a program already in nmenory.
Qoviously. It is an effective way to clean up the garbage in
string space without suffering the cost of a FRE(""). A trade-
off has to be made, however, for the tine needed to "save" what
may have al ready been "conputed" before a re-RUN can be done.
O course. (Wiich is effectively no different than what nust
be done in any case of using RUNto switch prograns, be it the
one al ready resident, or not.)

A nore subtle design use can be nade of RUN to a |ine nunber:
Mul ti pl e prograns bound together as a single |oad nodule. This
Is often a handy trick for achieving maxi mum performance.

+ A given program shoul d use the fewest vari abl es possible.

+ Vari abl es should be declared in prioritized order, based
on whi ch ones are used the nost.

+ Once a prioritized stack of variables has been built, there
Is no practical way to re-order that stack

+ Many vari abl es needed i n one phase of a program s operation
may not be needed | ater on. And vice versa.

The Blue Book About GW-BASIC and QuickBASIC - 187 -

If we design a given programas really two, and go from phase-1
via a RUN ainmed at the first line of phase-2, we can optim ze
bot h phases to their own best ends. By mapping the phase-1 and
phase-2 bl ocks of code so that they are physically one program
they can both be brought into nmenory with a one-tine RUN. (Al so,
obvi ously, subroutines can also be shared by nultiple phases,

t hus saving space by m nim zing redundant coding.) Thus, RUN

to a line nunber can be used for achieving greater efficiency

in several ways.

We cone now to the issue of howto best do what is often called
I nt er program comuni cation -- the fancier termfor what COVMON
was i ntended to be used for. A small preanble will provide the
background for several suggestions.

Back about the middle of this century the concept of overlays
becane a popul ar concept in machi ne | anguage progranmm ng. Wen
there was not enough roomin nenory to hold all of a program a
smal |l chunk of nenory was set aside for transient portions of
coding. If a needed segnent was not already resident, it would
be "overlaid' on top of whatever was al ready present in the
overl ay area.

Note: As recent as 1980 or so, we often had to fit our BASIC
prograns into as little as 4kb of usabl e coding space. So,
CHAIN with MERGE was invented. It is as clunsy today as it
was back when it was first conceived. It is unfathomable to
me that any professional progranmer has ever made use of this
gadget. So many superior alternatives exist, CHAI N MERGE
deserves no real contenplation as a designer's choice.

The subject of overlays has been introduced because that is

in fact what all interpreted BASIC prograns really are: The
interpreter itself is a program it pre-allocates a 64kb work
area to contain address pointers, counters, 1/0O buffers, and,
your program \When we RUN or CHAIN, the incom ng programw ||
over|l ay whatever (BASIC) programis already contained in that
portion of the interpreter's working storage space set aside to
hol d our prograns. A GWMBASIC programis a "data area overl ay"
managed, by the real programthat is running, i.e., GABASIC. EXE
itself.

G ven this perception of what a GWBASIC programis, and by
knowi ng where things are in nmenory, sone obvious opportunities
can be seen about where things can be put so that they may be

The Blue Book About GW-BASIC and QuickBASIC - 188 -

passed al ong to subsequent processes. Here is another short
definition of how the interpreter's working-storage area is
mapped. It is an abbreviated version of the five subdivisions
descri bed in Chapter 4.

Bl ock-1: Interpreter's own paraneters and your |1/O buffers.
Bl ock-2: Tokeni zed BASI C program

Bl ock-3: Vari abl es storage area.

Bl ock-4: String space (so called free space).

Bl ock-5: Interpreter's run-tinme stack.

Bearing this sinplified map in m nd, renenber that bl ocks-1, 2,
and 5, are static in size while a programis running. Block-3
grows downward. The space in block-4 is used fromthe bottom

up. An incomng BASIC programis an overlay; it does not w pe
out anything in block-1 or block-5.

When we use CHAIN or RUN to cause a programto be brought into
menory fromdisk, it goes into block-2. At that point, if we
had used CHAIN to conmuni cate sonme vari abl es, they would be
shifted into block-3 so as to end up imediately follow ng the
procedural code in block-2. In the event strings are passed
al ong al so, they would be conpacted at the bottom of bl ock-4.

In the event we use RUNin lieu of CHAIN, the incom ng program
still overlays into block-2, fromthe top downward, but the
interpreter sinply reinitializes its variabl es-pointer to the
top of block-3, and its string-space pointer to the bottom of
bl ock- 4.

Notice the simlarity: Wat needs to be overlaid, is, and,

the interpreter's pointers are adjusted accordingly. Areas
that are not overlaid by incom ng procedural code, or by any
vari abl es passed along, are not "erased". Logi cally, those
bytes that are not overlaid are nerely residue insofar as the
interpreter itself is concerned. Thus, obviously, we can cause
that residue to contain whatever we want, deliberately. Wen a
subsequent programfirst begins, it can then sneak a qui ck PEEK
at the litter left behind by a previous process.

This is a cheap trick for passing along a few paraneters from
one programto another. No doubt. This is neither the tine or
pl ace to deliberate sacral issues. The foregoing is not mneant

The Blue Book About GW-BASIC and QuickBASIC - 189 -

to of fend anyone's sense of what constitutes "good progranmm ng
practices". But, by golly, it does work. And it is an easy and
efficient way to make use of RUN, and avoid the inefficiencies
of an ill-bred CHAIN.

One of the nore neager things that we sonetinmes need to do,
when we RUN to another program is to nane the |ine nunber that
execution should begin on. Hard-coding that |ine nunber in the
calling programis the last thing we want to do, obviously.

(I'f we renunber the lines in called prograns, the callers my
have to be nodified as well--a real pain in the pocket).

Text books and teachers woul d have us pass a paraneter in a

vari able to be exam ned by called prograns so they can GOTO or
RUN-t o an appropriate |ine nunber known unto thensel ves.

Knowi ng what the interpreter still knows, that which it already
knew after another programis |oaded, however, we can make use of
its own nmenory without creating artificial intelligence of our
own. The follow ng suggestion is a sinple exanple, but slightly
| ess risque than the one previously offered. Yet, it too depends
on an awareness of an "undocunented feature" of GMBASIC

ERR and ERL are two paraneters that the interpreter keeps track
of inits own working storage area (up in block-1). ERL wll

al ways be set to zero by any form of RESUME, and by a RUN, or

a CHAIN. ERR, on the other hand, is never actually reset; it
is merely updated when an error occurs. Meanwhile, it contains
t he code-nunber of the last error that did occur, however |ong
ago that was. And it still will, after a RUN or CHAIN t akes

pl ace, although, this is not nentioned in the manual s.

See the possibility: Do an ERROR 101, or ERROR 102, then a
RUN, for exanple. The incom ng programcan then |ook at ERR to
deci de where it should GOTO on the basis of the code in ERR
Anot her qui ck, cheap, and not particularly risky trick, even if
it is not a particularly handsone one.

Otentines only a very small anmount of information needs to be
passed fromone programto another. Like, for instance, a
"switch", or a nmenu selection indicator. Here is another trick,
especially attractive in such cases. Sonetines. Use a few bytes
in the systems Interrupt Vector Table.

Low order nenory in DOS nmachi nes--begi nning at address 0:0--
contain (nostly) segnent and start addresses for routines that

The Blue Book About GW-BASIC and QuickBASIC -190 -

are accessed via BIOS and DOS functions: "interrupt vectors".

This table is organi zed as word pairs, two bytes per word, thus
each interrupt nunber is a 4-byte offset fromzero. By reason
of "PC conpatibility standards", certain ranges of interrupt
nunbers are reserved for special uses. The software interrupt
nunbers ranging from 20h-3Fh, for exanple, are reserved for

DCS. Interrupts 60h-67h and Flh-FFh are "reserved" for "user
progranms”. In theory then, we can store addresses or codes, or
anything we want to in those bytes pre-allocated for "us users".

To pass a nenu-letter then, for exanple, do a DEF SEG=0, and
POKE 384, ASC(@®), assunming contains the letter we want to
pass to another program And 384 is 4 tinmes 96; 96 in deci nal
equates to interrupt 60h; multiplying by 4 gives the physica
offset into the interrupt vector table for that interrupt.

In a foll owon program DEF SEGto zero and PEEK(384) to get
the value stored by the previous program Yea! Very fast,
and very easy. However: You are a "user", but so is anyone
el se not on the payrolls of the folks that wite BIOS and DOS
software. Like the people that supply TSR--Term nate and
Stay Resident--software. Like pop-up cal endars and cl ocks
and notepads, and the like. They too can use these addresses
reserved for all of us "users". Caveat.

Purists will tend to |ike purer forns of interfacing: Store
gl obal application information in interprogram conmuni cati on
files, data files specially contrived for just that purpose.

This is obviously a clean way to do things, especially when

what needs to be conmmuni cated nust survive the big gap: Wen
it 1s necessary to quit BASIC and return to DOS, even if only
for a short interlude. Wich brings to mnd also, one of the
nost awkward desi gn problens that has to be contended with in
the dizzy world of DOS and BASIC. Intertask comuni cations

with DOS itself, or other "packages" witten in any | anguage.

One very serious consideration that nust be nmade at design tine
i s avoi di ng unnecessary di sk fragnentation. Special files used
for interprogram conmuni cation are typically pretty small, but
highly dynamc. |If we manufacture themon the fly, and delete
them frequently, while also creating and stretching real data
files, we will also conpound that old DOS Nenesis, disk space
fragnentation. Before we opt to devise "extra overhead files"
we should consider if sone of those needed for other reasons

The Blue Book About GW-BASIC and QuickBASIC -191 -

can do doubl e duty as interprogram comuni cati on vehicl es.

No intellectual feats are needed to see sone obvi ous choi ces,
but here is a short check list to keep from overl ooki ng the
nor e nmundane.

DCS BAT-fil es thensel ves may be "read" by a BASIC programto
obtain system configuration data. REMIlines in BAT files can
be deli berately devised, easily, for just that purpose.

DOS BAT-files may be nodified by a BASIC program (or even,
manufactured fromscratch). A clean trick for interfacing to
customcreated batch files is to put a "stub” in the one that
starts the BASIC ball rolling in the first place. A stub of
this type may nerely be the nane of a BAT-file that nay or
may not al ready exist. (Qbviously, a generic nane-stub can be
used as an alias for a variety of batch procedures that can
be generated on an as needed basis by any BASI C program

A sinple variant of this second idea can be to pre-code a

set of batch files to cover various situations. Then, in

BASIC, nerely renanme the one needed at a point to have the
same nane as that already inplanted as a stub-alias in the
BAT-file that controls the whole show.

To preclude a BASIC programfrom attenpti ng something that is
not obvi ously inpossible, the prevailing CONFI G SYS file can
be exam ned. Obviously. 1In a few far-out cases it may even
be reasonable to custom nmanufacture a CONFI G SYS on the fly,

and artificially stinulate an automatic reboot.

The design thrust of the above ideas center on avoi di ng having
to create separate, "special files" for the exclusive purpose
of achi eving interprogram communi cation. There is yet another
file that can be read, and nodified, for pre-conditioning how a
programruns: Programfiles thensel ves.

This is an especially effective way to automatically "install"
an application: An installation programcan be witten to OPEN
each of the prograns in a set and inplant "option switches" as
needed. The obvi ous advantage of this trick is that those
programs will run snoothly fromthen on, w thout having to do
any external research every tinme they are run. (Chapter 13 has
sonme specifics for doing this; here we are sinply | ooking at
vari ous design choices before codi ng conmences.)

Wil e sone of the above ideas may offend the sensibilities of

The Blue Book About GW-BASIC and QuickBASIC -192 -

t hose dead set against progranms that nodify thensel ves, such
tricks may often be far |less risky than "conventional coding"
alternatives. Like making use of DOS environnment strings, for
exanpl e, or using systens service calls, or PEEK, to see what
DCS knows, or thinks it does, about what is going on outside
your BASI C box.

Only a small counter-argunent is offered here for those with

platonic ideals: W do you trust the nost? Those who have

blind faith in DOS, or rely on undeserved faith in BASIC (or

any | anguage product) may not be blind, but chances are, they
have not had to suffer many "upgrades"” of successive rel eases
of either.

There is probably nothing nore exasperating than having to
nodi fy old prograns that no | onger work just because sonethi ng
was changed in a recent rel ease of systens software. Even when
such changes may prove eventually to have been a good i dea.

When we design prograns so as to be dependent upon our own
devices, we are nerely susceptible to our personal genius or
ineptitude. |In either case, faith in ourselves should prove
nore worthy of our trust in the long run. The nore we know
about how DOS and BASIC work, and the | onger we use them the
|l ess we are apt to trust either of themat all

In all events, we are ultinately responsible for not only our
end product application, but for the continued integrity of a
user's system A responsibility that nust be kept in mnd at
all times. Wen confronted head on at design tine, thoroughly,
t he burden becones | ess onerous while witing the prograns that
will actually get a job done.

Wil e sone of what has been suggested here is not encouraged in
many school s, distinction nust be made between getting good
grades, and getting paid. Uncouth conprom ses are frequently a
real life fact in conmercial endeavors.

Those | ast thoughts bring to m nd one nore design consideration
that can cause us to rethink the whole problem W nay need
to take a sl ow | ook at Qui ckBASI C before we commence codi ng:

The 64kb menory pagi ng consi derations for BASIC prograns has
dramatically different, but |arger boundari es.

It is virtually inpossible to predict with any accuracy how

The Blue Book About GW-BASIC and QuickBASIC -193 -

| arge a given conpiled programw ||l ultimtely be.

Because QuickBASIC is an in-nenory conpiler, it is nearly

i npossi ble to antici pate when you will run out of menory.
There is a risk wwth |arge prograns that a maintenance update
in the future will necessitate conpletely revanpi ng sone or
al | boundari es between prograns and subprograns.

COMVON rules are so different it is nearly inpossible to use
it in GMBASIC prograns that are to be conpiled sonme day.

CHAIN differs only slightly from RUN--the pragmatic choice
is to design for RUN, and forget the word CHAI N

Conpi | ed progranms are conpl ete progranms; when we RUN or CHAI N
fromone to another, an incom ng program conpletely repl aces
its caller.

The only practical choice for interprogram conmrunication is
via disk files; unconventional tricks used in a GN¥BASIC
programsinply will not work in conpiled prograns.

Havi ng di gressed slightly, and perhaps provoked sone rethinking
about overall design strategies, a final attitude is offered on
the themes of trust, faith, and ethical conprom ses. Wen we
use GWBASIC we may be conpelled to use sone nefarious tricks;
when we use Qui ckBASIC we are vulnerable to tricks they play on
us. Because they change so many things so often, with no hint
of what is comng next, if we are designing for the benefit of
ot hers, GWMBASI C shoul d be an automatic choi ce.

In the final analysis, it is better to trust what we know than
to take chances on the unpredictable. Wat has been listed in
this chapter are the mgjor thoughts that flit through ny m nd
when desi gni ng new applications. Wether you agree w th what
nmy experience tells ne should be considered, few can argue that
serious preneditation is needed before new prograns are born.
Hopefully my |ist provides sone food for thought; it is a diet
that has enabled ne to raise a |ot of healthy prograns.

The Blue Book About GW-BASIC and QuickBASIC -194 -

Chapter 12 = METHODS

The order of presentation of subjects in this book is backwards
conpared to that of nobst other texts. On purpose.

The "user's guide" portion of manuals is always up front. It
tells you how to SAVE and LOAD and EDIT. The reference section
of manuals is arranged |like a dictionary; it assunes you know
how to program but occasionally need to research the syntax

or semantics rules for specific key words.

Text books that teach how to program usually begin with problem
anal ysis and proceed with how to organi ze work tasks. Rarely

do they broach the subject of what is efficient in the context
of how the internals of a |anguage actually works, nor to the

extent that such considerations should influence our decisions
about choosi ng one techni que vs. another.

The order of presentation of subjects in this book was chosen
on the assunption that you already know how to SAVE and LOAD
and EDIT. And that you al ready know nost of the key words of
GWBASI C and how to use them And that you al ready know what
an application's functional requirenments are, and can perceive
how t hose problens m ght be solved with a conputer.

G ven these assunptions, this book began with a | ook at how the
interpreter works, with clarification of what does work as the
manual s say, what does not, and why sone things are nore or

| ess efficient in the mechanical sense.

The reason ny essay describes BASIC fromthe inside out has but
a single notivation: Efficiency. W are bound to wite better
runni ng prograns if we know how the interpreter translates a
program Hence the arrangenent of Chapters 2 through 8. And
Chapter 9 deals with strange encounters that woul d have been
too far afield fromthe gristle presented el sewhere.

Al'l of the preceding is fundanental rationale for suggestions
about programm ng style in Chapter 10. That, plus ny ideas in
Chapter 11 on design are culled from experience in producing
applications that do run efficiently. This chapter and those
that follow are about how to do programm ng chores efficiently.

This seem ngly backward presentation is |logical on reflection.
Turned around, we m ght achi eve personal efficiency, but wi nd up
with inefficient prograns. Being driven by an awareness of what

The Blue Book About GW-BASIC and QuickBASIC -195 -

produces the best perfornmance, we can devel op nethods that are
al so efficient, without adversely affecting the quality of the
end product. In fact, nuch of what has been suggested before
|l ends itself toward this second objective: Getting the nost,
and the best, with the [east effort.

Chapter 1 contends that it is possible to generate nore useful
code, cheaply, in BASIC, than in nearly any other progranm ng
| anguage. Three argunents are fundanental to that contention:

+ GMBASIC is the ol dest high level |anguage in the PC world;
primtive algorithnms witten even ten years ago still work
today, usually just as is.

+ 1t is likely today's prograns will still work for a few
nore years, i.e., as long as GWBASI C gets noved forward
ont o next generation hardware.

+ New prograns can be assenbl ed qui ckly by nerging together
pi eces taken from ol d prograns.

One probable reason for the long-termstability of G¥BASIC is
because of neglect. The nmultitudes seemto want the | atest and
greatest whatever; interpreted BASIC has becone an orphan by
default in the fast nmoving world of PC gadgetry.

It would be inappropriate to enunerate the nmerits of other

| anguages here. Little counterargunent can be offered that
several require far fewer lines of code to achieve a desired
end (for sonme types of prograns). Most have superior editors,
as well. Sone also have inpressive |lists of tools. Few |lend

t hensel ves easily to the idea of reusing fragnents of existing
prograns to create new ones, however. And, many of the newer

| anguages are so young that there cannot yet be very nany "ol d"
prograns in anyone's personal library.

The very fact that there has been little clanor for GW¥BASIC
enhancenents actually works to our advantage. The nore we use
it, the better we are able to use it. For those of us whose
income is directly related to our output, we make nore by using
what we already know. Tinme spent |earning what's new can only
be offset by inproved productivity at sone future date. 1In the
PC i ndustry, what's new happens so often that the future remains
forever elusive. By the tinme we master what is new today, nuch
of that experience will be obsolete.

The Blue Book About GW-BASIC and QuickBASIC -196 -

There are really three ways in which we can take advantage of
the fact that GMBASI C has not changed nuch, or often. Not
only can we maxi nm ze reuse of old code, our nethods can becone
i ngrai ned habits. Once again, tinme spent |earning how to do
old things a new way sel dom produces i medi ately realizable
profits. The nere fact that we nust forget how something used
to work is proof positive that what we did | earn once nmust now
be seen has having been, really, a waste of our tine.

The third advantage to working with a "mature | anguage" is that
our own-code tools sel dom need updating. By conparison, tine
spent devel opi ng a source code generator, for exanple, for sone
| anguages, may never actually be conpensated because of having
to constantly revanp such tools to stay abreast of changes in
the | anguage itself. Every hour spent witing or overhauling
tools nust be recouped tw ce, through inproved productivity, to
justify having fooled with the tool at all. For |anguages that
are subject to frequent changes, it is risky to take tinme away
from paying projects to devel op new tools.

It is wth these thoughts in mnd that the follow ng ideas are
of fered. None are revol utionary, nor are nmany even innovative.
Per haps sonme will |lend thensel ves to your repertoire. In any
event, see how concepts for producing efficient code can al so
relate to producing code efficiently.

Coding: It is unfortunate that many students are still taught
to wite prograns with a pencil, first. 1t is understandable
that |logistics is sonmetines a factor; honmework assignnments for
those that do not own a conputer have to be reckoned with. It
IS not so understandable that how to do |ive coding properly

Is seldom stressed. dd fashioned notions that coding on the
fly is synonynous with "spaghetti code" is still preached in
some schools. Live coding is the way we all do it today. Wen
we adhere to tine-tested disciplines, well organized prograns
are a natural byproduct of our nethods.

Li ne nunbering: Al progranms are nunbered begi nning with 1000,
in increnments of 10, fromthere on. Wile editing, additiona
lines can be inserted using the loworder digits from1 to 9.
When the need for nore space arises, RENUM 1000 is done.

RENUM 1000 is a constant and frequent habit; it is always done
just before a SAVE.. RENUMis itself a handy quality assurance

The Blue Book About GW-BASIC and QuickBASIC -197 -

tool; obviously it is an easy way to detect "unreferenced |ine"
errors. Equally obvious, it is nore efficient to resolve such
errors imredi ately, during coding, rather than at run tine.

For those reluctant to renunber a program because you prefer
to nmenorize GOTO and GOSUB addresses, consider the coding

di sci pli nes suggested below. They require no brain strain at
all. And, they support being able to RENUM often. As we shall
soon see, these nmethods sinplify code swappi ng anbng prograns
as wel | .

The first line of a program (1000) is always, and only, a
remark line. It contains a full-text version of the nane of
the program (i.e., the phrase from which the acronymform

of the file-nane was derived). The release date and version
nunber for this programis al so maintai ned up-to-date on
this top line. This is also where copyright notice is given,
when applicable, to conformto the rules about submtting
listings with copyright applications.

The second line of a program (1010) is always (and usually
only) a GOTO to the |logical beginning of the programitself.

The third line of a program (1020) is always (absolutely) a
SAVE statenent with the file name of the program hard-coded
as a quoted literal. This SAVE statenment is i mediately
foll owed by a LI ST-1020.

Here is a real-life exanple of what has just been descri bed:

1000 'Payroll Ops W2 1.0 08/22/89 (c) ACT-1,Inc. 1989
1010 GOTO 1200
1020 SAVE " POPW2": LI ST-1020

The subtl e advantage of |ine 1020 deserves explanation. Wile
editing, SAVE is done very frequently to guard against tine

| osses due to failures. (Mne, and the power conpany's.) It is
easy to make typing m stakes. Every tinme we type SAVE, with a
name, we increase the odds of unwittingly creating a second

file with a slightly different nanme. Far worse, it is all too
easy to accidentally overwite another programw th the one now
bei ng wor ked on.

So, once a program s nane has been hard-coded into the program
itself, fromthen on, nerely typing RUN 1020 prevents spelling
m stakes. The follow on LIST stops execution, and it provides
vi si bl e feedback, and a rem nder that the rel ease date or

The Blue Book About GW-BASIC and QuickBASIC -198 -

ver si on nunber may need updating. (Even the truly lazy that
like the editor's function-key schenme can use this trick; just
substitute RUN 1020 for one of those several useless strings
we get for free.)

Li ne 1020 has a second purpose: Sem -automatic back-ups to a
second disk drive. Inmediately after a RUN 1020 the cursor
will already be in a handy position. Cursor up one line, hit
t he space bar four tinmes, and tab twice. |If the prograns
nane i s properly positioned, we need to nerely hit the insert
key, then type in a drive letter and a colon, and hit enter.

Qovi ously, your own inclination may be to arrange the contents
of the first fewlines of a programdifferently. Notice the
advant ages, however, of version-control information up front,
and, a built-in SAVE-nane |ine always coded on a |ine nunber
forever dedicated to just that purpose.

Before ranbling on, see ny inclination for depending on habits.
This permts concentration on programl ogic; the nmundane can
depend on our autonmatic reflexes. This thenme perneates all

of what follows as well. Having said it once, here, it is no

| onger necessary to repeat what is so patently apparent.

The first three Iines of a typical programfromny library were
shown above; what follows is a continuation of that same one.
Notice that |ines 1030 through 1190 are nerely a branch table.
And they are a table of contents. This table is also a nodul es
map giving the current entry point into each nodule. The end

of a block can also be easily discerned; it is the nunber of the
line imediately preceding the first Iine of the next block of

code, i.e., that line nunber mnus 10.
1030 GOTO 1310 'trapE ERR error handl er
1040 GOTO 1400 'openQ 1 keyboard & init Qvars
1050 GOTO 1460 " Qpi ck get menu sel ection
1060 GOTO 1790 ' Qrask di spl ay nmenu or hel p pages
1070 GOTO 1970 'openM 2 nmonitor & init Mvars
1080 GOTO 2120 "M ead get enpl IDinto M1-8)
1090 GOTO 2260 'openY 4 payroll files & init Y-vars
1100 GOTO 2440 "Yread get enpl oyees into ssan-tank

1110 GOTO 2580 'openV 5 Vdi sk prep & init V-vars
1120 GOTO 2670 ' openW 6 W2 flex disk output

1130 GOTO 2780 "Wine wite output |line/record
1140 GOTO 2820 " Acode transmtter = 1A & 2A
1150 GOTO 3010 ' Bcode aut hori zation = 1B & 2B

The Blue Book About GW-BASIC and QuickBASIC -199 -

1160 GOTO 3210 ' Ecode enpl oyer 1D = 1E & 2E

1170 GOTO 3420 "W ode W2 wages = 1W & 2W
1180 GOTO 3800 ' Scode suppl enental = 1S & 2S
1190 GOTO 3830 "l code internediate totals = 1l
1200 ' begin

Once again, there is nore to be seen here than is conspi cuous.
Mich nore. The sinple use of LIST-1200 is an obvious and easy
substitute for nenorizing where things are. Wen a RENUM i s
done, this table of contents is automatically updated. Even as
new nodul es are added. Line 1010 always tells us how far to

LI ST, to see this map, and where the program actually begins.

There are several nore advantages to be derived fromthe above
schene, but, we should first dispense with a couple of side

i ssues. One concerns run-tinme efficiency; the second considers
presentation inconpatibilities between interpreted and conpil ed
progr ans.

Performance: One nodule can only call another via GOSUB. It
al ways refers to the GOTO-line for that block, in the branch
table (like the one shown above). No branching is ever done,
directly, to another block's physical address; only |ogica
addressing is permtted. GOSUB, ON ERROR and the |ike, nust
do indirect addressing via the branch table.

As described nore fully el sewhere, GOSUB triggers a stack
entry so the interpreter can renmenber where to RETURN to. On
the first instance of any line-referencing statement, a search
Is made for the target line. Then, once found, that line's
actual address in nenory replaces the hard-coded |ine nunber
in the referencing statenment. And that is pretty efficient.

The use of a branch table is not purely efficient, obviously.
It causes the interpreter to have to do two searches instead

of just one. Plus, it effectively takes two statenments to do
what could be done with only one.

Because |ine searching has to be done only once per RUN, the
overal | performance inpact on an otherw se efficiently coded
programis pretty small. The tine-cost for a back-to-back
G0sUB/ GOTO- - once physical addresses are in place--is so snal
it would be hard to neasure on even ol der and sl ower m cros.
The sumof all of this is small enough to be ignored in favor
of the greater benefits to be derived froma well structured
program This is true for those of us that do not appreciate

The Blue Book About GW-BASIC and QuickBASIC - 200 -

bei ng cal | ed spaghetti-coders, anyway.

Qui ckBASIC:. As we well know, conpilers are ignorant of the
| ogical intent of programm ng statenents beyond what they
can discern fromstatic semantics. They nust depend on how
| ines are physically presented, whereas an interpreter can
follow |l ogic-routing paths. By quickly review ng what has
been suggested above, we can see that nothing was said that
is contrary to either.

The suggestion for hard-coding a SAVE in |ine 1020 is one

m nor nui sance when noving from GMBASIC to Qui ckBASIC. The
conpi | er does not understand SAVE, or LIST, but neither wll
it ignore them The obviously sinple solution is to convert
that line to a remark just before attenpting conpil ation
nerely insert an apostrophe between the |ine nunber and the
wor d SAVE.

Because the initialization section of a programis always the
first block of statenments i mediately follow ng the branch
tabl e, the conpiler has no problemw th "processing"” all of
those GOTO statenents before it gets to the real neat of a
program The conpiler sinply builds tables for procedura
addresses, internally, simlar to those for data addresses.
Because the rest of a programis physically |ocated beyond
the initialization block, which comes physically just after
the branch table, everybody is happy. W can easily read our
prograns, and, so can either the interpreter or the conpiler.

Wth those side issues now aside, we can revert to the major
advant ages of using a branch table in the first place: Cut and
paste tricks, and sinplified debugging. Both of these relate
to other nmethodol ogies as well, so, the business of swapping
code is dealt with first, conpletely. How the branch table can
al so serve as nerely one of several debugging aids cones |ater

On occasion, MERGE is one obviously useful facility for splicing
and grafting code segnments. But, it is slow and cunbersone to
use. Consider as a first choice an easier alternative of using
SAVE, LOAD, RENUM and |ine nunber editing tricks. Like this:

Use RENUM to open-a-gap where a paste-up from anot her program
shoul d be physically inplanted.

SAVE the current program (Renmenber, RUN 1020.)

The Blue Book About GW-BASIC and QuickBASIC -201 -

LOAD the programthat contains the piece of code wanted.
LI ST the inclusive lIines desired.
LOAD t he program being edited (the one that was just saved).

Carefully edit the line nunbers of the piece of code stil
shown on the screen. Be sure to hit Enter after each line
nunber is changed; be sure to not hit Enter until a line's
nunber is in fact changed to correspond to its intended

| ocation in the programcurrently in nenory.

Now see the reason for a uniform schene of |ine nunbering in
all progranms: Al line nunbers are always four digits. It
makes editing easier, and, it benefits changing interna

ref erences once pasted-up |ines have been stored by the use

of Enter. (Because of the discipline of always doi ng RENUM
before any programis saved, it is easy to see what adjustnent
is needed for internal line references in new paste-ups.)

PS: Four digit line nunbers is sufficient, even when al ways
incremented by ten. No single programin ny library ever
gets close to exceeding a thousand |ines.

Chapter 10 nmentioned two aspects of coding style that shoul d
be | ooked at again here. One dealt with having, effectively,

a "table" of variables because they are all named in the
initialization block of a program that table should be kept
current, on the fly, as coding proceeds. 1In a simlar fashion,
the branch table should also be kept up to date. (See how one
habit tends to reinforce the other, also.)

When a new bl ock of code is built, by whatever neans, its table
entry should be inserted at that same tine. Now, RENUM t akes
care of everything else, automatically.

That ot her suggestion about progranm ng style was: Include the
ni ckname for a block, as a remark, at the end of any line that
addresses anot her bl ock. Notice that nicknanes are also a
feature of the branch table (and also reflected in the first
line of a block), and, see how all of this relates to keeping
track of where things are. And how RENUMis a mechanical tool
Li ne nunbers are a physical issue, only incidentally related to
the | ogi cal make-up of a program

It should al so be obvious by now what the real advantage of

The Blue Book About GW-BASIC and QuickBASIC -202 -

a branch table is, beyond that of its aesthetic worth: Bl ocks
can be noved in a program and between prograns, easily. |If,
on the other hand, calls were permtted to physically address
ot her bl ocks of code directly, nore tine would have to be spent
finding and changing all such references. The branch table

| ocalizes all calls external to any bl ock. Although nunerous
calls may be made to a given block, if it is noved or repl aced,
changing its call-line destination address in the branch table
will keep all callers happy, automatically, no matter where
they are calling from

There is one nore small trick closely associated with all of
this business about |ine nunbers. Unknown addresses shoul d be
coded as 9999. Oten while we are doing live coding, we can
think faster than we can type. (W know a junp is needed, but
we haven't yet witten that part, for exanple.) Another case
that is simlar is when we are creating blocks to be nerged
into a programin a separate step, later. RENUMw || flag all
9999-stubs for us, and tell us where they now are.

A second aspect of reusing old code is renanm ng vari ables so
that they conformto current needs. It is sonewhat amazing
that GWMBASIC still has no built-in facility for this. (Al
ot her nodern | anguage products can do it; even, QuickBASIC.)

The Qui ckBASIC editor can in fact be used for this purpose, but
so can nearly any word processor. |In fact, ny preference is

for using nmy favorite word processing program (PC Wite) because
it is a nmuch better editor than QuickBASIC s. 1In either case,
obvi ously, SAVE-as-ASClI| nust be done, and that is always a
tiresome chore.

PS: One of the sinple own-code tools in Chapter 15 is handy
for at least finding variables quickly so that we can edit
them manual |y wi thout junping in and out of BASIC

Only a few nore notes are needed now about reusable code. M
own argot has crept in el sewhere, but a few terns should be
defined here, specifically.

Freeze-dried code is a phrase for tightly condensed bl ocks
that sel dom needs | ogic nodifications no matter where they are
used. They also tend to avoid any internal GOTO-type of
statenments. And they use the m ni num nunber of vari abl es
possi bl e; especially those of a global nature. Because they
do not anticipate nodifications, they sel domcontain any

remar ks, either

The Blue Book About GW-BASIC and QuickBASIC - 203 -

Canned code is a little nmore liquid than freeze-dried; these
can nostly be used in bulk, but may require mnor alterations
in logic when reused in different situations. They are best
constructed such that, even if they resort to internal |ine
referencing statenments, it is easy to see those connections.
One or two-space indenting patterns and a few remarks can
hel p make it easy to reuse bl ocks such as this.

Prefabricated nodules are stored in "library prograns” that
are contrived to be sinply a repository of reusable tricks.
Such as those included in Chapter 14 of this book. Notice
all of those pieces have preanble remark |ines that can be
read for research, but discarded after a nodule is fully
transpl ant ed.

Retread code is the nost flexible of all: Code sw ped from
anot her program in bulk. Chapter 13 contains nany exanpl es
of this type. They tend to be user-task or technique-driven,
sel dom transportabl e generic processing algorithns. Even so,
it often takes a lot less time to edit |arge bl ocks of code
swiped froman old programthan it would to recode it all,
all over again. Equally, far less effort is needed to reuse
ol d ideas that worked well before; especially for those that
are boring, or, undeserving of an intellectual investnent of
our val uable tine.

Transi ent tools: Chapter 15 contains several of these. They
are sel f-contai ned nodul es that can be nmerged into the fabric
of a programduring its devel opnent, but deleted fromthe end
product. Transients may be generally useful, predesigned
tools, or small customcreations for use in a single program
or for several, in an application set.

Refl ecting on all of the ideas suggested thus far about the
overall fabric of a program see now also the worth of a branch
tabl e during devel opnment and debugging: It is easy to reroute
any given branch so that it can tenporarily flow through a
transient tool-routine. Al that is needed is to insert GOSUB
inthe table, in front of a GOTO

Junping to a GOSUB-tool before a GOTO (to a target destination)
is a before-the-event trap, of course. For an after-the-fact
trap, sinply change the GOTO itself to a GOSUB, and follow it
with a GOTO to any transient-tool that ultimtely ends itself
vi a RETURN.

The Blue Book About GW-BASIC and QuickBASIC - 204 -

So, spaghetti-witers Iike TRON and TROFF. W that have nore
method in our madness do it differently, and nore efficiently.
It is unnecessary to "trace" a well organi zed program where
sonet hing i s done shoul d be self-evident by reason of how the
maj or tasks are mapped, and accessed. Traps inserted in the
branch table can be routed to transient-tools to take snapshots
of what is in variables before and after, to isolate what is
going on (right or wong), wthout affecting what is being

di spl ayed.

The branch table is also a handy place to inplant other types
of quality assurance and di agnostic aids: Small watchdogs need
not be full-fledged el aborate subroutines, obviously. STOP is
a natural one, of course. So is FRE

Recal |l all of those adnoni shnents in Chapter 4 about coding so
that unexpected tinme-outs should never occur because of clutter
in your "free" string-space area. After a program has been
fully initialized, insert a LOCATE and PRI NT FRE(O) at a choice
pl ace in the branch table and watch that feedback. In a well
behaved programthe answer should remain constant; if it does
not, sone variabl e has been used that was not pre-named during
initialization.

Anot her sinple watchdog that can be inserted for a while in the
branch table is a couple of statenents that will display usage
counts. LOC is a good one for nmonitoring file processing; it
is especially useful during early testing phases to preclude
runaways that mght inadvertently fill up a disk with junk.

The [ocation of the branch table itself can be a significant
aid. Down in the bowels of a programwe know t hat no GOSUB
shoul d have a "big" line nunber; they are supposed to junp to
the branch table. Because those lines are at the top of the
program a GOSUB ai med at a hi gh-order |ine nunber nay be the
cause of an "Qut of nenory" error. (Due to a stack overflow,
as described in Chapter 10.)

Because of having localized all junp addresses into a single
branch table, it is also easy to identify who is calling whom
fromwhere: Sinply delete a branch table entry and do a RENUM
Al'l callers will announce thensel ves, and where they are com ng
from

The Blue Book About GW-BASIC and QuickBASIC - 205 -

To get accurate feedback, and to keep from having to retype

the table entry in question: Duplicate the table-entry line
nunber by overtyping the loworder O with a 1 (then hit Enter).
Now delete the real GOTO-line. Not only will RENUM correctly
report all lines that contain junps to the m ssing branch table
line, the table wll be rehealed automatically. (If |line 1090
is renunbered as 1091, for exanple, RENUM 1000 will change 1091
back into 1090 for you, for free.)

Havi ng now seen several ways that RENUM can be exploited as a
programm ng aid, here is a final tidbit about Iine nunbers: As
the interpreter strunms along, it saves the nunber of each Iine
that is being executed. By knowing where it is holding this
little gem we can look at it whenever the need ari ses.

See this: L = PEEK(47)*256+PEEK(46). The pair of bytes at

deci mal address 46 and 47 (and a default DEF SEG is where the
interpreter renenbers what |ine nunber is currently executing.
When you STOP, or do a break, the nunmber that is displayed at
that time comes fromthis location, up in the interpreter's own
wor ki ng storage area.

When debuggi ng | ogic-flow problens a sinple expression |like the
one just shown can be inserted at strategic |ocations. After a
brief trial run, the trap-variable (L) can be exam ned as an aid
in determ ni ng whet her specific |lines were ever execut ed.

Another way to find |line-addressing bugs is to use one of the
tools listed in Chapter 15. A conplete GOTO-fromwhere |isting
of all line references in a program can be gotten by using the
tool called LXREF (Line Cross-Reference). A variation of that
tool is called LHI TS (Lines Hit Selectively).

The LHI TS tool lists only those |ines that have been referenced
by an in-line statenment during execution. By stopping a tria
run at a strategic point, and running LH TS, it can easily be
det ermi ned whi ch branch-paths have actually been taken up to
that tine.

The other two tools listed in Chapter 15 are useful for solving
probl ens associated with variables. One sinply lists all of
the variables nanmed in a program and the lines in which they
occur. It is called VXREF (Variables Cross Reference).

The tool called VLIST (Variables List) is especially handy for

The Blue Book About GW-BASIC and QuickBASIC - 206 -

optim zing efforts. Recall how the order of presentation of
vari ables in a program can sonetines have a significant inpact
on run tinme performance. (Viz Chapter 3.)

After a trial run has been fully initialized, the VLIST too
will list all of the variable names that the interpreter has
set up in working storage, in table-search order. By relating
that arrangenent to what variables are used for, a program can
be fine-tuned to ensure the nost frequently used variables are
forced to be near the top of the search list.

VLI ST can al so be used as a traffic cop. Suppose AZ is not the
nane of a real variable in a program (VFIND can be used to
make sure of this.) In an area where |logic-flow seens to be
suspect, inplant a tenporary AZ = 1. Run the program Stop.
Run VLI ST. Wether AZ is listed, or not, will reveal what was
(or was not) encountered while branching to and fro.

The honenmade tools described thus far are used nostly during
debuggi ng exercises. There is another type of tool useful for
simlar purposes: QuickBASIC. The interpreter can only help
find programm ng nistakes in statenents and expressions that
it bunps into "dynamically". A conpiler, by definition, is a
static code analyzer. It scans everything and can thus detect
some coding errors that the interpreter may never get to see.

When we pour a GWBASI C programthrough the conpiler it may
erroneously flag many things that it thinks are errors. Wen
we know the interpreter knows better, we can ignore what the
conpiler says. It is sonetinmes surprising, however, what can
be found by attenpting to conpile prograns witten expressly
for use with the interpreter. (It can be humliating, even,
to have Qui ckBASI C spot real errors in prograns that you knew,
absol utely, were bug free.)

There are tines when Qui ckBASI C programmers can make good use
of GWBASIC. There is one situation even, that practically
demands the use of the interpreter as a platformfor devel opi ng
conpi |l ed programs: QuickBASIC is a nenory hog; it cannot be
used when a large part of nmenory has been allocated as VDI SK
(aka RANDRI VE) .

What has been covered thus far are suggestions about how to
structure a program and how to easily fabricate programs from
pi eces of existing code. And sone ideas for debugging, wth

The Blue Book About GW-BASIC and QuickBASIC - 207 -

enphasi s on using honenmade tools. The following tricks from
nmy bag are nore like jigs, than tools. They are useful when
bui | di ng screens and nenus.

The editor in GMBASIC all ows us to wander around on the screen
and type anything, anywhere. It nmakes no attenpt to "read" what
we are seeing until we hit Enter. Wen we do hit Enter, al

that is |ooked at is the line the cursor is on at that point.
So, it is possible to draw a picture, and BSAVE it, w thout

ever having to exit BASIC

Drawi ng boxes is tiresome, however, when done with codes and
the Alt-key. And it is not easy to renmenber all of those codes
for the different box-characters. The followng two primtives
are useful for drawing with the cursor arrow keys. They can be
used as GOSUB-tools, as is. They are also easy to nodify for

di fferent screen nodes. (They can also be used as a basis for
building a full fledged, custom zed, nmass production screen
editor, PS.)

The first subroutine is for drawing |ine-boxes. It nakes use

of the nuneric keypad as a mmenonic tenplate. Seeing those
keys as a square, 7 is an upper-left corner; 3 is a bottomright
corner. And 5 draws a center-intersection. And 4 for exanple,
draws a vertical line with an intersection comng frominside
the box. And so on.

The letter-keys S, D, V, and H set or change the "style" of
box that can be drawn. S and D nmean single, or double |ines.
V nmeans doubl e-lines vertically, but single horizontally; His
the opposite, double horizontal, with single vertical I|ines.

The insert-key is a toggle switch. Wen on, the nunmber keys
(wth Num Lock on) print corners and intersections, and the
cursor keys draw lines in the direction indicated. Wen the
insert-key is toggled off, the cursor nmay be repositioned on
the screen without drawi ng anything. The space bar can be used
for erasing mstakes. Exit is via the Esc-key.

7000 ' Ldraw

7010 DEFI NT C-L: DEFSTR Q

7020 Q&MKI $(0): L=CSRLI N: C=PCS(0) : G=0: 1 =0: D=1

7030 WVH LE G 27: LOCATE L,C 1

7040 LSET Q=MKI $(0): WH LE Q=MKI $(0) : M D$(Q 1) =I NKEY$: VEND
7050 G=ASC(Q:F=ASC(M D$(Q 2))

7060 H=I NSTR(" SDVH', CHR$(Q)) +I NSTR(" sdvh", CHR$())

7070 IF H THEN D=H:. F=0: G=0

The Blue Book About GW-BASIC and QuickBASIC - 208 -

7080 | F F=82 THEN I=I XOR 1:F=0:G=0
7090 K=I NSTR(" 123456789HPKM' , CHR$(F+G)) +1: H=SGN(K) * D

7100 |F H=l THEN K=ASC(M D$(" @\YCE4ZB?33DD', K))+128 'single
7110 | F H=2 THEN K=ASC(M D$(" HI<LNOIK;:: MW, K))+128 ' doubl e
7120 | F H=3 THEN K=ASC(M D$(" SP=GWSVR7::DD', K)) +128 ' dbl vert
7130 | F H=4 THEN K=ASC(M D$(" TO>FX5UQB33MM', K)) +128 ' dbl horz
7140 L=L+(L>1 AND F=72)-(L<25 AND F=80):|F G=32 THEN K=32
7150 C=C+(C>1 AND F=75)-(C<80 AND F=77):|F F THEN LOCATE L, C
7160 |F G+F*I THEN PRI NT CHR$(K);

7170 VEND

7180 RETURN

The follow ng shorty is a sinple dupe-key routine. Wen Enter
is hit, it "captures" whatever character the cursor is resting
on. The insert-key toggles drawi ng node on or off. Wen on,
the cursor arrow keys "dupe" the character that was captured by
Enter, and nove in the direction indicated. Wen draw ng node
is turned off, the cursor arrows work as they normally woul d.
Again, the Esc-key is the exit key.

8000 ' (dr aw

8010 DEFI NT C-L: DEFSTR Q

8020 &=MKI$(0): L=CSRLIN: C=POS(0):1=0

8030 WHI LE ASC(Q -27: LOCATE L,C 1

8040 LSET Q=MKI $(0): WH LE Q=MKI $(0) : M D$(Q 1) =I NKEY$: VEND
8050 G=ASC(Q:H=G F=ASC(M D$(Q 2)):IF F=82 THEN I =l XOR 1: H=0
8060 | F G=13 THEN K=SCREEN(L, C

8070 | F &31 THEN F=77 ELSE H=K

8080 L=L+(L>1 AND F=72)-(L<25 AND F=80)

8090 C=C+(C>1 AND F=75)-(C<80 AND F=77)

8100 IF I*H THEN PRI NT CHR$(H);

8110 VEEND

8120 RETURN

The above shorties can easily be used as transient tools. Wen
editing a program do a direct-execution GOSUB on a |ine that
is unused at that point. Draw whatever, then nove the cursor
to a position where the "Ok" will not irritate you when you hit
escape. (As we all know, RETURN froma directly executed GOSUB
returns control to the BASIC editor.)

It is sonmetimes handy to keep the above two subroutines in your
tool kit, even when you have spent tine devel opi ng a grandi ose
screen builder. Consider, for exanple, a nmenu programthat has
sel f-mai nt enance capabilities. O a report-witer that lets an
operator draw pretty boxes.

The Blue Book About GW-BASIC and QuickBASIC - 209 -

One final shot: Reusable code should be fundanental to our

met hods for building progranms in BASIC. Prograns whose primary
structure is based on a branch table are easily debugged, and,
they can be econom cal ly mai ntai ned.

Od timers will undoubtedly notice that nothing suggested here
is really new, at all. Branch table concepts date back to the
earliest days of progranm ng. And way back when, we all kept
ol d decks of punched cards that contained our favorite pieces
of canned code. All that has been remarked upon here is sone
i deas on how to bring those old, tinmeworn concepts up to date.

The iron is dramatically different today, but what we have to
do as programrers is fundanentally the sane as it has al ways
been. A nouse may be a clever device to some, but the essence
of efficiency is a function of our nethods, not our gadgets.

Per haps sonme will find sonme of the above useful; it has been
the basis of nmy nmethods for a long tinme, |ong before things
i ke a nouse or a nonitor were ever invented.

The Blue Book About GW-BASIC and QuickBASIC -210 -

Chapter 13 = TECHNI QUES

Cl everness is undoubtedly a core personality trait of people
who |ike to program W enjoy devising clever solutions to
probl ems. Ego plays an inportant part as well; we tend to
think we are nore clever than nost. Mst of the tinme, anyway.

Havi ng no knowl edge of psychol ogy, there is also a confusing
aspect to our nakeup: Seldom can anyone el se see how cl ever we
are. Users may favorably comment on our products, yet all they
can see is what we have made visible. Little do they know what
is really happening inside a program

Conmpliments fromlay operators are neager fuel for our egos.
When they offer criticism a defensive inpulse is triggered.
How can anyone take potshots at what they cannot see, or, when
t hey cannot even begin to understand the intellectual feats of
our fait acconpli.

The above thoughts seemed appropriate preanble, to ne, for a
chapter that offers ideas about progranm ng technique. It is
a natural tendency, for nost of us, to view rather skeptically
what anot her progranmer thinks is clever. After all, we are
cl ever too.

Whi | e skimm ng what follows, |ook for the cream and excuse any
uni nt ended braggadoci o with clenched teeth. You can freely use
any gens deened worthwhile, with inpunity. No one will ever
know t hat you actually stole an idea froma book. Equally, ny
ego is in no jeopardy; whatever you mght guffaw at will remain
unknown to ne. Wen you opt to use superior techniques of your
own, savor your cleverness. Either way, what is offered here
Is meant to be food for thought. Healthy prograns are well fed
prograns; it matters little where the beans cone from assun ng
they were grown in fertile soil in the first place.

Touch-typists like to keep their fingers on the hone keys. The
foll owi ng menu nakes use of initial-letter selection, for just
that reason. And it matters not whether caps-lock is on or

off. Which is good technique.

As programrers, we appreciate the worth of menonics. So w ||
our users. It is obviously easier to renenber that S neans

Search, for exanple, than F1 or F7, or sonmething. And few of
us have fingers |ong enough to reach the function keys w thout

The Blue Book About GW-BASIC and QuickBASIC -211 -

exagger at ed hand novenent.

Because data entry operators have to constantly shift their
eyes back and forth between input docunents and the nonitor,
we should nmake it as easy as we can for themto nenorize the
keys used for nenu selections. Experienced operators do not
"read"” nenus (nor | ook at the keyboard). 1In actual practice,
they seldomread anything on the screen; they nerely glance up
now and then to confirmthey are in step wth what the program
i s doing.

Vi deo highlighting is one way to hel p an operator spot things
on the nonitor quickly. Easy pattern recognition is another.
Col or-bar highlighting of menu lines can be seen as steps on
a ladder. After a little practice, few users actually read
what is printed on a rung. They nerely confirmthe step they
are on.

The nmenu driver that follows is attuned to all of that advice
fromthe human factors engineers, and it goes one step farther.
It also lets those that prefer, to nove the color-bars with the
cursor arrow keys and nmeke sel ection of a highlighted choice
with the Enter key. And it does it all fairly efficiently in

i nterpreted BASIC

Code needed during programinitialization:

2000 DEFSTR M Z: DEFI NT G- L

2010 Q=MKI $(0) " RKeys
2020 QL=CHR$(0) ' QlKey
2030 DME5 " DoMenu
2040 BM=&HBOOO ' BaseMoni t or (nono)

A "mai n menu" di spl ay-and-sel ect subrouti ne:

2700 ' menuM

2710 CLS: LOCATE 4, 1, 0: LSET QL=CHR$(13)
2720 PRINT ,, " Keys index ";Ql

2730 PRINT ,, " Nanme scan QL

2740 PRINT ,, " SS# search ";Ql

2750 PRINT ,, " Add record ";Ql

2760 PRINT ,, " Posting " QAL

2770 PRINT ,, " Tax changes "; QL

2780 PRINT ,, " Run reports "; QL

2790 PRINT ,, " Di sk jobs " QL

2800 PRINT ,, " Qit POPS "; QL

2810 L=DMvr2+2: DM=0O "last DM Iine

The Blue Book About GW-BASIC and QuickBASIC -212 -

2820 DEF SEG=BM 'vi deo RAM

2830 WHI LE DM=0O: C=(L-1)*160+57 ‘col (29*2-1)
2840 FOR | =C TO C+24 STEP 2: PCKE |, 112: NEXT ‘color 0,7
2850 LSET @=MKI $(0) ‘clear kb
2860 WH LE CVI (@) =0: M D$(@, 1) =I NKEY$: VEND 'get a key
2870 FOR I =C TO C+24 STEP 2: POKE 1, 7: NEXT "color 7,0
2880 LSET QL=Q2:|=INSTR("HP", RIGHT$(@, 1)) " up/ down
2890 L=L+2*(1=1 AND L>4)-2*(1=2 AND L<20) ' cur sor
2900 DMl NSTR(" KNSAPTRDQ', Q1) +I NSTR(" knsapt rdg", Ql) 'letter
2910 I F ASC(Ql)=13 THEN DM=(L-3)/2 "enter
2920 I F 1+DM=0 THEN SOUND 99, 3 ' oops

2930 VEEND: DEF SEG
2940 RETURN

Several variations can be derived fromthe above. Paint-tine
with PRINT is never very fast, no matter howit is done. One
better alternative is to BLOAD the screen. Sonetines. The
keyboard driver above, fromline 2810 down, can be used either
way.

See al so how a basic technique is incorporated for the nmenu to
"remenber" what selection was made |ast. By respecting DM as
a gl obal -vari able, when a return to the nenu is done, the |ine
that is highlighted indicates where we are returning from DM
is a nunber--11to 9 in this case--that is used initially in an
ON GOSUB as a nmjor-task dispatcher. It can also be used
thereafter for node testing, in subroutines that may be call ed
fromnore than one nmjor task

There is also an opportunity here to influence an operator's
choi ce about what to do next, by preloading DMwith a default
selection. |If they agree wth what they see, they nerely have
to hit Enter.

Anot her good technique, at tinmes, for you and the operator is
to anticipate. |If the Esc-key is the nmenu-trigger for exanple,
a pretest can be done using a conpound | NSTR expression |ike
the one in line 2900, to save having to junp to the nmenu at
all. Wich saves you both time. (A la, "hot keys".)

Per f ormance-w se one of the fastest functions in GMBASIC i s
INSTR. It is especially fast when the string to be exam ned
is a hard-coded literal, as typified in the keyboard driver
above. (Renenber the overhead involved when the interpreter
has to search for a variable, viz Chapter 3.)

The Blue Book About GW-BASIC and QuickBASIC -213-

Even

when three or four variables are involved, | NSTR can still

often be a solid quoin for functional structures. See how it
is a keystone in the followi ng routines that are useful for a
particul ar type of ISAM (Assunes DEFSTR MZ and DEFINT C-L.)

3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110

3120
3130
3140
3150
3160
3170
3180
3190
3200

3210
3220
3230
3240
3250

3260
3270
3280
3290
3300
3310
3320
3330

3340
3350
3360

' openkV
FV=4: OPEN VI AS FV LEN=250 "VI = index file
FI ELD FV, 250 AS VB: GET FV "VBuffer; 1st GET
FIELD FV, 10 AS V1,230 AS V2,10 AS V3 'Vfields
| F LEN(VO) THEN 3110 'already initialized
VO=V1: V4=V3 "shift-out buffers
VF=LEFT$(V1, 8) "VFind = search-for key
VG=VF "VGot = last key found
CVv=I NSTR(VB, VF) "Col V = buffer position
LV=LOC(FV) "LocV = buffer record #
=0 "CGotV = target record #
RETURN
" Vget
CV=INSTR(VB, VF): | F CV THEN 3180 "in buffer
VWH LE VF<VB AND LOC(FV)>1: GET FV, LOC(FV) - 1: VEEND ' back up
VWH LE VF>V3 AND V3>" ": GET FV: EEND "forwards
LV=LOC(FV) : CV=I NSTR(VB, VF) : | F CV THEN 3180 "exists
CV=1: WHI LE VF>M D$(VB, CV) AND M D$(VB, CV) >" ": CV=CV+10: \END
GV=ASC(M D$(VB, CV+8)) * 100+ASC(M D$(VB, CV+9)) - 10100

LSET VG=M D$(VB, CV)

RETURN

"Vchg

GOSUB 9999: GOSUB 9999 'Vget:Vdel; preload VF with old key
LSET VF=(8 '@ is holding replacenent key

GOSUB 9999: GOSUB 9999 ' Vget : Vadd

RETURN

" Vdel

L=LEN(VB) - 10: M D$(VB, CV) =M D$(VB, Cv+10, L) "overl ay

M D$(VB, 11) =LEFT$(VB, L) "shift right

PUT FV, LV: LSET V4=STRI NG$(10, 0) ' unl oad

FOR | =LOF(FV)/ LEN(VB) TO LV STEP-1: GET FV, | "from bottom
LSET VO=V1: LSET VB=M D$(VB, 11, L): LSET V3=Vv4 'shift left
PUT FV, | :LSET V4=VO0: NEXT: GET FV, LV "rewite

RETURN

' Vadd

LSET VO=VF "key entry

M D$(VO, 9) =CHR$(G\ 100+100) "rcd pointer

The Blue Book About GW-BASIC and QuickBASIC -214 -

3370 M D$(VO, 10) =CHR$(GV MOD 100+100) '2nd byte

3380 LSET V4=V3: L=LEN(VB) 'shift out
3390 |F Cv<L-9 THEN M D$(VB, CV+10) =M D$(VB, CV, L) ' make sl ot
3400 M D$(VB, CV) =VO: LSET V0=V4 "insert

3410 WH LE V3>" ":PUT FV, LOX(FV) ‘until end
3420 GET FV: LSET V4=V3: M D$(VB, 11) =LEFT$(VB, L- 10) ' shift ri ght
3430 LSET V1=VO: LSET VO=V4: WVEND 'shift in
3440 PUT FV, LOC(FV): LSET VG=VF: GET FV, LV ‘rewite

3450 RETURN

The above I SAM routines are froma custom accounts payabl e
application. They do full index managenent in the programthat
provi des for operator nmintenance of the vendor's file. That
application has the follow ng functional requirenents:

Total active records on file is not expected to exceed nore
than a few t housand.

Addi tions and del etions are sonmewhat infrequent; generally,
not nore than a few of either are ever done at one tine.

Duplicate keys are not permtted, but, the spelling of keys
that do exist may be changed at any time. (Keys are seldom
changed in actual practice, however.)

Record keys may be from 1l to 8 characters, and may be any
conmbi nation of upper case letters, digits, and synbols in

t he code range 32-90, decimal, but a key may not begin wth
a space-character

The nmechani cal principles of this | SAM schene are:
Keys are mai ntained in al phabetically ascendi ng sequence.
New keys are in-sorted when new records are created. Keys
for deleted records are renoved fromthe index, and the index

is shortened accordingly, but, the target record renmains in
situin the naster file (for historical reporting purposes).

The overall length of the index file grows with new additions,
but only when such additions exceed the original |ength of
that file. The overall length of the index file is never

shortened; space once taken up by keys that are del eted w nd
up as hex-zero strings at the bottomof the index (so that an
"ol d" index-entry slot can be reused for future additions).

The system performance issues related to this schene are:

The Blue Book About GW-BASIC and QuickBASIC -215-

Master file records are |arge (512 bytes).
Several other files nmust be open at the sane tine.

To keep disk thrashing to a mninum the fewer the nunber of
accesses needed into the index file, the better.

By maintaining the overall physical length of the index file
(and the naster) as constant as possible, fewer nonconti guous
clusters will be used. Wen conpress-type operations are

done, "old" clusters will be forever contiguous. Meanwhil e,
only the newest clusters allocated will be displaced fromthe
rest.

By reason of the index file being separate fromthe naster
and because each index-entry is a nere 10 bytes, up to 51
entries can be grabbed into a DOS buffer on a single GET. By
keeping only active-record keys in the index--conpressed
toward the top of the file--key searching and sorting need
not be hanpered by keys associated with dead records.

| mpl ement ati on of the above code assunes the follow ng:
Each of the four nodules are called on as needed.

The 9999-stubs in the Vchg (Vendor Change) nodul e nust be
readdressed to point into the branch table, so as to cal
the other subroutines in the order indicated. (Chapter 12
covers the branch tabl e business in detail.)

The VF vari abl e (Vendor Find) nust be prel oaded with the
key of a record to be found before Vget is called.

The content of VF nust be quality-checked before it is
passed to Vget.

VF can be conpared to VG (Vendor Got) after a search to see
if a mtch was found. |If not, VGw Il contain the key of
what woul d be sequentially next, if the search key did in
fact exist. (And LV and CV are already positioned for a cal
to Vadd, to in-sort a new addition, or a changed spelling of
an old key.)

VG w Il contain the first key in the index, or the |ast one,
if the search key is |lower or higher in sequence than are
those already in the index.

The Blue Book About GW-BASIC and QuickBASIC -216 -

Vget can be used on a trial basis, to guard against attenpts
to coin new keys that would duplicate already existing ones.

GV nust be preloaded with the relative record nunber of a
new master record, and VF nust contain its key before Vadd
(Vendor add) is called. Wich also neans GV nust contain the
rel ati ve record pointer-portion of keys being repositioned
because their spelling is being changed, when successively
calling Vdel and Vadd from Vchg. (A not very fast, but,
cheap technique for a seldom used capability.)

Now see the role of INSTR as fundanental to the above | SAM
subroutines: On a GET, 10 keys are pulled into a 250-byte
string. A sinple INSTR can search that buffer, quickly, to
see if it contains a given 8-byte record key. If it does,
the two bytes immediately foll owi ng the matchi ng key contain
a relative pointer for that associated record in the master
file.

If a search fails, if the key being | ooked for is |ess than
the left-nost one of the index record buffer, we can wal k
backwards in the index file. Wen the search key is |arger
than the right-nost key in the buffer-string, a forward search
can be done. Each test is effectively "paging"” in increnents
of ten; physical disk accesses are thus at |east one-tenth of
what they m ght be, otherw se. Theoretically, at least. (GET
in BASIC only equates to a physical read if a needed record is
not yet in a DOS buffer, as we already know.)

Enpirical experience on old 4.77 Mz nachines results in an
average find-tinme in the nei ghborhood of 75 mlliseconds, wth
about 1500 active keys stored on a hard disk that clains an
average access tinme of 35 Ms. Not too shabby for a GW¥#BASIC
program it can even conpete favorably with sone of the new 4G
products that |like to denigrate us poor BASIC fol ks.

The two-byte record pointer that foll ows each key is specially
contrived to ensure that | NSTR does not confuse "binary val ues”
wi th characters contained in keys. Lines 3350 and 3360 in Vadd
encode record pointers; line 3180 in Vget decodes them

Because valid characters in keys are restricted to codes | ess
than 100 (decinmal), adding 100 to each of the two bytes that
represent record pointers ensures that INSTR will always align

The Blue Book About GW-BASIC and QuickBASIC -217 -

on keys properly. This does nean that the largest relative
record nunber that can exist in the master file is 15,599. But
it also nmeans that the index file can be | ooked at as ASC |
text. Like with the DOS TYPE conmand, for exanple, while doing
testing and debuggi ng.

A secondary advantage to the way key entries are stored in the
i ndex described above is that the index file may be redefined
for the benefit of other progranms. Such as:

OPEN VI AS 1 LEN = 10 "VI = index file
FIELD FV,8 AS VK, 2 AS VL "Vendor Key, Vendor Location

During posting, for exanple, a conventional binary search can
be used in an alternative Vget (Vendor Get) nodule. Simlarly,
during report runs, the index can be read serially, as 10-byte
records. A key beginning with CHR$(0) denotes the end of the
index if LOF has not been encountered. See again how doi ng
things the hard way, in BASIC, can also nmake it easy for sone
to be done the best way, depending on our needs at a particul ar
point in tine.

An alternative | SAM schene can be based on MR (Menory Resi dent
I ndex) principles. For short key requirenments--of 6 or fewer
characters--a doubl e-precision array can be used efficiently
as the in-nenory index tank. That entire tank can be | oaded
qui ckly using BLOAD. |If any changes are made (to the index) it
can be unl oaded, quickly, at the end of the job with a BSAVE

The follow ng program exhibits these several techniques. It is
also a "prefab progranm. Having this programstored as is, on
a di sk somewhere, a totally new application can be fabricated
by maki ng changes and additions to this skel eton.

1000 ' 6-byte MR -1 SAM skel et on
1010 GOTO 1070

1020 SAVE "MRI": LI ST-1020

1030 GOTO 1360 ' keyM rebuil d key index
1040 GOTO 1470 ' newM add new record

1050 GOTO 1570 'fixM fix index (del/chg)
1060 GOTO 1660 'getM | ocate record

1070 ' begin

1080 DEFSTR M Z: DEFI NT C-L: DEFDBL A

1090 1=0: E=0: F=0: H=0 "l ocal s
1100 CLS: KEY OFF: FOR I =1 TO 10: KEY |, "": NEXT

The Blue Book About GW-BASIC and QuickBASIC -218 -

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

1300
1310
1320

1330
1340
1350

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

1470
1480
1490
1500
1510
1520
1530

AME2000 " Absol ute MR

| ME1 "I ndexM - A(IM
FMEL "MasterFil e#
LM=80 "LenMast er Rcd
DEF FNEMFLOF(FM / LM " EndMast er

DEF FNGVECVI (M D$(MB, 7)) ' Get Mast er
MB=MKD$(0) : M6=SPACES$(6) "MRIfields
M="testfile.nri" " Mast er | ndex
M-="testfile.dat" "MasterFile

DI M A(AM " MRl t ank

OPEN MF AS FM LEN=LM
FIELD FM 6 AS MK, 2 AS M, LM 10 AS MD ' MKey, M_oc, MDat a
FI ELD FM LM AS MB " Mast er Buf f er
IF LOF(FM THEN 1270 "master exists
LSET MK=CHR$(254) : GOSUB 1040 ' newM
A(0) =1: BSAVE M, VARPTR(A(0)), Avr8+8

BLOAD M, VARPTR(A(0)) 'l oad MRItank

I F A(0)=0 THEN GOSUB 1030 ' keyM (or enforce a restore)
LSET MB=MKD$(A(1)): GET FM FNGM "first record

LR IR RS b b O b S b b I S S S S R R R S I S R S I R S
Pk mai nl i ne code goes here *x
LR IR RS Ik b S b S b b b S S S R S R R S I S R S R I R S
RESET

BSAVE M, VARPTR(A(0)), AMr8+8 "rewite MR

END

' Mkeys

| F SGN(A(0)) THEN 1460

A(0) =FNEM 'size index
FOR =1 TO A(0): GET FM 1 : A(1) =CVD(MB) : NEXT

L=A(0): H=(L-1)/2 "sort index

WHI LE H: FOR | =1 TO H+1: E=1: WHI LE E: E=0
FOR J=I TO L-H STEP H
| F MKDS(A(J)) >MKDS(A(J+H)) THEN SWAP A(J), A(J+H): E=1
NEXT
VEND: NEXT: H=H\ 2: VEND

RETURN
" newM
E=A(0) : LSET MB=MKD$(A(E)): LSET M_=MKI $(FNGV)
| F ASC(MB) =254 THEN 1510 " MK=new key

A(0) =A(0) +1: E=A(0) : LSET M.=MKI $(E) 'stretch file
A(E) =CvD(MB) : LSET MB=MB: PUT FM FNGM 'on bottom
FOR | =E TO 2 STEP-1 " bubbl e up

LSET MB=MKD$(A(1)):LSET M6=MB: LSET MB=MKD$(A(l-1))

The Blue Book About GW-BASIC and QuickBASIC -219 -

1540 |F MB<LEFT$(MB, 6) THEN SWAP A(1), A(l-1) ELSE I Ml : =0
1550 NEXT
1560 RETURN

1570 'fixM

1580 PUT FM CVI (M) "updat e master
1590 FOR I=IM TO A(0)-1: A(1)=A(I1+1): NEXT 'shuffle keys up
1600 M D$(MB, 1) =MK: A(A(0)) =CVD(MB) "put on bottom
1610 FOR I =A(0) TO 2 STEP-1 " bubbl e up

1620 LSET MB=MKDS(A(1)):LSET Ms=MB: LSET MB=MKDS(A(I-1))
1630 |F MB<LEFT$(MB, 6) THEN SWAP A(1), A(l-1) ELSE I Ml :1=0
1640 NEXT

1650 RETURN

1660 'getM

1670 H=(A(O0)): I =H 2: H=H+1: F=0 "search for MK
1680 FOR E=0 TO 1:LSET Mc=MKD$(A(1))

1690 |IF MK<M6 THEN H=l: 1 =I-(HF)\2

1700 IF MK>M6 THEN F=l: 1=l +(HF)\2

1710 E=ABS(MK=Mb OR | =H OR | =F) : NEXT

1720 I Ml - ((MK<=M6 OR | =A(0)) =0) "1 SAM poi nt er
1730 LSET MB=MKD$(A(IM): GET FM FNGM ‘get master
1740 RETURN

The above programis predicated on several design assunptions:

Record keys may be from1l to 6 characters. Any character is
permtted that has an ASC val ue | ower than 254.

Duplicate record keys are not permtted.
Keys are dynam cally maintai ned i n al pha-ascendi ng sequence.
The contents of a key may be changed.

Keys may be del eted; active keys are kept conpressed toward
the top of the index.

The maxi mum | ength of the associated master file cannot be
greater than the DIMargunent for its index (but it can be
| ess).

Whien a master file record is deleted, its key is changed by
overlaying a CHR$(254) in the first byte, and the index is
updat ed by down-sorting that key to the bottom of the index.

The Blue Book About GW-BASIC and QuickBASIC - 220 -

Whien new master records are added to that file, "ol d" deleted
records are reused, if any exist, so as to mnimze unneeded
file growth.

Calls to the three primary nodul es nust adhere to fairly sinple
rul es.

1 - newM Quality check the operator's "new key", then nove
it to MK and call getM [|If M6 and MK are not equal, M is
not a duplicate, so, call newMto update the index, and to
prewite the associated master file record.

2 - fixM This routine does double duty. It shuffles keys
for both changed-keys, and del eted records. For either, nove
the existing key into MK and call getM For a change, put
the new key in MK and call fixM To delete a record, the new
key is the old one, nodified by MD$(M 1) = CHR$(254) before
the call to fixMis made.

3 - getM If the key in MK can be found, MB will contain the
requested record, and IMwill point to that key in the index.
On a "not found", the record fetched (and IM wll be that of
what woul d be next in sequence, if the requested key really
did exist.

Some speci al advantages can be had with this basic schene. On
any CGET, LOC(FM should equal CVI(M.)--if it does not, the
master file is probably corrupt. The BSAVE-index file can be
used as an operations-integrity safeguard. On any first need
to "update" anything, nove A(O) to a hold-variable, set A(O) to
zero, and BSAVE the index (then restore A(0) as it was). See
line 1280. On every start-up a test is nmade to see if A(Q0) is
zero, which would indicate an abnornmal term nation. (Line 1340
is for a "normal" ending. After RESET purges DOS buffers, the
updated index is rewitten to disk, with A(0) indicating how
many records are currently in the master file.)

That ot her functional routine included here (keyM is for
(re-) building an index. This is useful for "converting" an
exi sting master file com ng fromsone other source, or, for
reconstruction of the index in the event that file has been
cl obbered or lost. To use keyM set A(O) to zero, then junp
to it via a GOSUB.

File integrity nust constantly be a concern of any responsible
programer. Yet, in the wonderful world of DOS, the manual s

The Blue Book About GW-BASIC and QuickBASIC -221 -

continuously treat this subject |lightheartedly. Wtness what
the (IBM DOS 3.3 Techni cal Reference says:

“An application program should not concern itself with the
way that DOS allocates disk space to a file. The size of a
cluster is only inportant in that it determ nes the small est
anount of space allocated to a file at one tine."

The (MS) DOS 3.3 User's Reference says:

"You should run CHKDSK occasionally on each disk to check for
errors.”

It is not anusing that the manual for us technical-types says
not to worry, but the manual for "users" says they should (but
no definition is given for "occasionally").

The expensi ve nanual does have a chart showing howto figure
out cluster sizes for floppies. Nothing is provided anywhere,
in the software or the manuals, to aid us in determning the
size of a cluster on a hard disk. The manuals nerely say one
cluster is 1 or nore sectors; the nunber of sectors is based
on the size of a disk, and howit is partitioned. No nore is
sai d, however, about how it is actually conputed.

Here is one clunsy technique for dynam cally determning the
size of a cluster:

1000 DEFSTR M Z

1010 SHELL "chkdsk >junk.one" ' phase-1
1020 OPEN "junk.one" FOR I NPUT AS 1

1030 FOR I=1 TO 7

1040 LI NE I NPUT #1, X

1050 NEXT: WX

1060 CLOCSE

1070 SHELL "chkdsk >junk.two" ' phase- 2
1080 OPEN "junk.two" FOR I NPUT AS 1

1090 FOR I=1 TO 7

1100 LI NE | NPUT #1,Y

1110 NEXT

1120 PRI NT VAL(W -VAL(Y) "answer
1130 CLGCSE

1140 KILL "junk.*"

RUN

2048

The seventh line of output from CHKDSK is the one that says how

The Blue Book About GW-BASIC and QuickBASIC -222 -

many bytes are available on a disk (in DOS 3.3). The first
phase above gives us a starting value. The second creates a
second small file. The difference in the two reports tells us
how many bytes were "all ocated" for that second file. A sector
Is 512 bytes, thus, in this case, a cluster is equal to four
sectors. (This was done on a DOS-dedicated 20 MB hard disk.)

Because FAT nechani sns are based on clusters, and because DOS
file processes chain fromone cluster to another, and because
time |lags occur between the updating of FAT, DIR, and data
areas, chains can becone disjointed or intertwi ned. W that
wite applications nust KNOWwhen this happens, if we want to
guarantee the accuracy of the data we are being paid to watch
over.

One techni que useful for ascertaining the integrity of file
cluster-chaining is to store relative record nunbers in the
records thenselves (as in the MR -1SAM routi nes shown above).
Wen we OPEN a file, for exanple, GET the last record in the
file using LOF (divided by the | ength of one record). Check
t he nunber stored in that record. |If it is the sane as the
LOF- expression, the end-to-end integrity of the file is .
Pr obabl y.

Al t hough there is a m nuscul e chance that a positive test is
the result of coincidence, if the above test fails, sonething
is badly wong. This is at |east one definition of what
"occasional ly" should nmean: Run CHKDSK, now.

And, having stored record nunbers in the records thensel ves,
we have provided ourselves with a rudinentary aid for acting
on that nebul ous piece of advice in the user's nanual that
says "... you should consider repairing the disk."

Presumably, the sage that said that, and he who said that we
need not be concerned wth how DOS al |l ocates cl usters have
never had a payroll system go haywi re an hour before the pay
checks have to be handed out. Nor have they had to wonder
why RUN-program or CHAI N suddenly seens to take | onger than
it used to.

A programfile is a sequential file, essentially. Wen we are

| oadi ng, and editing, and saving, it is possible that a program
becones di sjoi nted--one chunk is in one cluster, another may

be cl ear across the disk, and the next somewhere in between.

And so on. Wiich causes a load to take |onger than need be.

The Blue Book About GW-BASIC and QuickBASIC - 223 -

So, we shoul d i ndeed be "concerned".

A sinple technique for ensuring that ready-to-deliver prograns
i ndi vidually span contiguous clusters is to do a LOAD, then a
SAVE, to a newWy formatted floppy. And while we are at it, we
can stack the files on that disk in a prioritized order, based
on the nost frequently used-first, to enhance directory search
times.

To ensure all of that work was not for naught, just before a
new application is installed on the target machine, the user
should run a conpress utility on their systemdisk to ensure
that COPY will wite the target files into contiguous clusters.
By copying the files in our preferred order, their nanmes wll
be added to directories in the order we intended.

But we still nust be careful. Directories are in clusters too.
As names are added, when a cluster is filled, another nust be
all ocated. Wen copying a series of new files onto a disk, we
know for sure, if directory add-on clusters nust be used, they
are going to be interspersed between real files. So, after al
new fil es have been successfully copied, run your favorite
conpress utility one nore tine.

I ndeed we shoul d be concerned about how clusters are nmanaged.
And not just because we are striving for optinmum performance.
A broken programfile chain can be disastrous. FRE can be the
basis for a technique to ensure the integrity of a program

Get a FRE(O) report with no programin nenory. After a LOAD--
not a RUN or CHAI N -see what FRE(0) says, then put a test
statenment near the front of the program |f that dynamc

| oad-test fails, stop the show RUN may run into sonme funny
bytes that just happen to | ook |ike the tokens for KILL, or
CHAIN, or NAME, or SHELL, or CALL, or....

Duri ng devel opment FRE(O) varies as we edit |lines of a program
Editing (and CLEAR) resets FRE(O) to correspond to the anount

of menory consumed by a static program in the sane way a LOAD
woul d. A sinple technique for ascertaining what the integrity

test factor should be is to CLEAR and PRINT FRE(O). If the
test-literal has been precoded as single precision, it wll
occupy four bytes in the tokenized programtext. It still wll

after we edit it to reflect the now current test-size argunent.

If FRE(O) reports 60300 with no programin nenory, for exanple,

The Blue Book About GW-BASIC and QuickBASIC -224 -

and we know our current test argument is 34555, then a "cold
start" statenent |ike the one bel ow can be used.

| F SGN\(60300! - 34555! - FRE(0)) THEN oops

Note: A variation of this technique can al so be devised to
ensure that no one has been doi ng unaut horized nodifications
to your program At a selected warmstart point, use the
then current FRE in an expression that uses the |ast four
digits of your Social Security nunber as an add-on val ue,
for exanple, and do a NEW Any editing change wil| upset
the apple cart on a RUN, and, obliterate all conspicuous
evi dence of where the self-destruct statenent is |ocated.

Li ke any 49-cent padl ock, the determ ned can bust it. |If
you suspect they have, it will be obvious because they had
to tanmper with an unknown factor in the test expression.

There are no sinple and fast ways for doing length-integrity
tests on sequential data files. APPEND-files are especially
vul nerable to being scattered around the disk in disjointed
clusters. For short files, the risks are mnimal, of course.
Short in this case nmeaning not |onger than the | ength of one
cluster. (One nore reason for wanting to know cl uster sizes
in given situations.)

For the fainthearted, one of the tricks shown in Chapter 14
is for generating BCC (Bl ock Check Code) hash totals. |If you
are willing to suffer the performance tine required, store a
BCCin afile. After an OPEN for RANDOMwith a record | ength
of one, serially read each byte and generate a new BCC, then
conpare it to what is expected. A bad answer can nmean bad
news.

A slightly |l ess cunbersone technique for doing integrity tests
on sequential files can be based on know edge of what shoul d be
contai ned near the end. For traditional files, for exanple, we
expect the last byte to be a CHR$(26), control-Z code.

First, OPEN a sequential file as a relative file with a record
| ength of one byte. |If it is file nunber one, GET 1,LOF(1)
will read the last byte. |If it is a control-Z, the file may
be Ck. If it is not, it is not one that was cl osed accordi ng
to DOS traditions, or the DIR length of the file was not
updat ed correctly, or the FAT has been fried, or a chain has
been broken, or.... (PS: This is valid technique for files
having | ess than 32768 bytes, only, viz Chapter 8.)

The Blue Book About GW-BASIC and QuickBASIC - 225 -

For those less inclined toward paranoia, but that al so want the
best performance possible, sinply do not use |arge sequentia
files, or do piggybacking with APPEND. Use relative files,

and a techni que such as the one described earlier that puts
record nunbers in the records thenselves. Not only can a test
be made after OPEN, it can be done after every GET. |If CET and
got do not agree, sonmething is rotten in the state of DOS. (O
we have a bug in the programthat did the PUT.)

As an overal | safeguard, consider doing a CHKDSK in the BAT
that starts an application. Send the report to a file. Wen
the first program gets going, open the check-file and check its
LOF. By knowing the length of a "clean report”, a longer file
means CHKDSK reported errors. Then...

Anti ci pating hardware and operating systemerrors was the thene
above. Another suspect that should worry us even nore is the
operator. Merely saying that they should do a RESTORE is often
not enough. If they continue processing with what we have good
reason to believe has been corrupted, and back up that over the
top of what may have been a "clean" back-up, no nere mracle
will ever untangle it all.

A techni que based on using NAME to renane a file is a sinple,
fast, and nearly fool proof way of detecting abnormal endings.

Li ke, when updating is going on. And we want to make sure the
programgot all the way to RESET (which purges all buffers, and
updates directories).

Nearly any static file can be used as a safety check. On any
first attenpt to wite to a data file, just before PUT is done
NAMVE " FI LESAFE. LOG' AS "FI LEOPEN. LOG', for exanple. As a |ast
act, after RESET, use NAME to change open back to safe. 1In a
menu or gateway process then, attenpt to OPEN "FI LESAFE. LOG'.
If that attenpt fails, it is probably not safe to go ahead.

NAMVE in BASI C neans RENAME to DOS. It can only be done on
files that are not open. No data file access is done. No FAT
changes have to be made. Only one (directory) sector has to be
updat ed.

Yes, it is possible that the power could go out between a RESET
and a NAME change. So, this technique could cause us to insist
that a RESTORE be done needlessly. Better to be safe than

sorry, however. And the odds of a failure occurring during the

The Blue Book About GW-BASIC and QuickBASIC - 226 -

i nterval between RESET and NAME are pretty renote, even in the
nmysterious world of DOS and BASIC. (Mysterious because none of
our manuals tell us when, or in what specific order such things
are done.)

That safety-check file suggested above, with the dot-LOG nane
extension, can also in fact be a job-log file. Before a RUN
to another programis done, for exanple, make a log entry of

what is about to be done. DATE$, TIME$, and the program name
may be useful information |ater.

Note: To nmake a log file general to an overall system you
may want to call it dot-COM and put it in the root. This
will preclude having to specify a path in every programt hat
makes use of it. (DOS can find EXE, COM and BAT files in
the root of the default drive, no matter what path we are
executing from But, it nmakes no check to see if in fact a
COM or EXE or BAT file are what they are supposed to be.)

An error handl er that cannot cope with a problem at hand m ght
also log ERR and ERL with DATE$ and TIME$ and that progranis
name. A log such as this can be an invaluable aid when it
comes to having to figure out what really did or did not happen
bef ore things went belly-up. (Few operators can renenber what
they did, precisely, five mnutes after a crash.)

Assuming there is a body available for an autopsy, a job-Iog
can al so serve as the basis for a technique to prevent a user
from doing a RESTORE from an out - of - sequence set of back-ups.
Good DP practices are predicated on father-son schenes, with
successi ve back ups done on different vol unmes of back-up nedi a,
used on a rotating basis. Rue the day when a trusted operator
I nadvertently does a RESTORE wth a back-up nmade | ast week,
instead of fromthe one done yesterday.

The | ast several techniques were for guardi ng oursel ves agai nst
system and operator failures. The next one to be dredged up
acknowl edges a different kind of risk--the risk of software
changes in future rel eases--but, ignores that risk because of
the need for speed today: CALL machi ne-code routi nes when we
are coerced into doing so.

Being reluctant to go native is a neritorious attitude. It is
a very good way to get into trouble. Not especially because
we are inept or incapable, but because soneone is apt to pul
the rug out fromunder us in sone future software rel ease. M

The Blue Book About GW-BASIC and QuickBASIC - 227 -

opi nions on this thenme have been exhausted el sewhere. Still,
there are tinmes when we nust prostitute our principles and get
our hands dirty.

In BASIC it is easy to clear the nonitor, and we can scroll up
by putting the cursor on the bottom of the screen and doing a
PRINT. The "normal" way to scroll down, however, is by going
to the top, and reprinting all lines, one line farther down.
And that is s-1-o0-win any |anguage.

A sonetines acceptable alternative in BASICis to use BSAVE and
BLOAD. That sinple concept has been covered el sewhere. It is
relatively easy to do, and it is fairly quick when we can make
use of VDISK, but a little slower for hard disk (and absolutely
| et hargi ¢ when done to fl oppies).

When we are really pushed to mimc the fast scrolling that nost
word processing prograns can do, we nmerely need to mmc their
techni que: BIGOS service calls.

The foll ow ng subroutine is useful as is for doing high speed

screen scrolling. It will shift all lines up or down one |ine.
It was taken froma programthat has a wi ndow t hat extends from
line five, down through twenty. It should be evident how it

can easily be nodified to suit any size w ndow. (Renenbering
t hat machi ne | anguage argunents are zero-based offsets.)

PS: An excellent book on BIOS nechanics is called "System
BICS for | BM PC/ XT/ AT Conputers and Conpati bl es” publi shed
by Phoeni x Technol ogies Ltd. It is fromthat source that
the follow ng "argunents" were derived.

1500 ' pageV

1510 I F CM THEN E=&H1700 ELSE E=&H700 'cl ear in blue or black
1520 1 =&H100: ON FR GOTO 1530, 1540, 1550, 1560: | =0: GOTO 1560
1530 D=&H700: F=(L-1)*256: GOTO 1570 'ins = fromL down to 20
1540 D=&H600: F=(L-1)*256: GOTO 1570 'del = from20 up to L

1550 D=&H700: F=&H400: GOTO 1570 "up key = scroll down

1560 D=&H600: F=&H400 "dn key = scroll up

1570 M D$(V, 1) =Kl $(&HB4+D) 'B4dd nov ah,d scroll 6=up/7=down
1580 M D$(V, 3)=MKI $(&HBO+I) 'BOii nmov al,i i rows (0O=clear)
1590 M D$(V, 5)=WI $(&HB7+E) 'B7ee nov bh,ee attribute (7/23)
1600 M D$(V, 7) =MKI $(&HB5+F) 'B5ff nmov ch,f top row (4-19)
1610 M D$(V, 9) =MKI $(&HB1) "B100 nov cl,00 left col (0-79)
1620 M D$(V, 11) =WI $(&H13B6) ' B613 nov dh, 13 bottom row (19)
1630 M D$(V, 13) =Wl $(&H4FB2) ' B24F nov dl, 4F right col (0-79)
1640 M D$(V, 15) =WI $(&H10CD) 'CD10 int 10 (video func AH)

The Blue Book About GW-BASIC and QuickBASIC -228 -

1650 M D$(V, 17) =MKI $(&H2CA) ' CA02 ret 2 (2*1 param
1660 M D$(V, 19) =MKI $(0) ' 00 (2nd wor d)
1670 DEF SEG B=VARPTR(V) +1: B=PEEK(B+1) * 256+PEEK(B) : CALL B(I)
1680 RETURN

To make use of the above subroutine, follow these rules:

CM (Col or Main) indicates the background color of the area
that wll be cleared upon conpletion. As coded here, any
nunber in CMw Il clear with blue; zero will use black
(See lines 1510 and 1590.)

FR (Function Request) sets up one of five (1-5) options, via
the ON GOTO in |ine 1520.

1 =1Insert a blank Iine and shift those bel ow down 1 |ine.
2 = Delete a line by up-shifting those below up 1 line.

3 = Scroll all lines down and bl ank the top one.

4 = Scroll all lines up and bl ank the bottom one.

5 =

Clear the entire wndow (Done by any code save 1-4).

For options 1 and 2, L should equal the current CSRLIN. \Wen
scrolling is done, the (now) blank |line needs to be repainted
with a LOCATE and a PRI NT.

Notice that V has already been established as a string (wth a
DEFSTR) and that it is already at |east 20-bytes |ong, and that
all other variables have been prenaned. And that there is

anot her reason for including this handy nodule in this chapter:

This is a technique for calling any machi ne | anguage routine.
Si mply manufacture code in any string variable. And to heck
wi th passing argunents. Force-fit themas literals in the
machi ne code itself, just Iike an assenbler would do it.
(Hnt: DEBUGis an easy way to see what machi ne codes | ook
like in assenbl er | anguage.)

Thi s basic concept can be varied, of course. Routines that have
no options can be set up as string constants. Longer routines
can be fetched froman external file as prefab sequences with
nul s occupying positions that are to be nodified with dynam c
argunments. |If 255 bytes are not enough, use nultiple strings
initially allocated back-to-back. The key suggestions here are
to execute machi ne code sequences fromstrings, rather than by
shortening the default 64kb BASI C page size. And we can skip
fooling around with the passing of paraneters. (Wich is how

t he manual s encourage us to do it.)

The Blue Book About GW-BASIC and QuickBASIC - 229 -

By the way, CALL in Qui ckBASIC nust be done differently. (Not
better, just different.) One nore aggravation to contend with
when designing prograns that we want to use either way. It
seens sone fol ks get perverse pleasure out of making our lives
nore conplicated than need be. What they tell us in just one
sentence can sentence us unfairly if we fail to renmenber such
got chas when choosi ng t echni ques.

Havi ng seen ny ideas for executing machi ne | anguage subrouti nes
fromwi thin a BASIC program here is another handy one: Ever

wi sh you could wite a "COM' programin BASIC? Like the TYPE
command, for exanple, but nmuch inproved so that pages can be
read wi thout scrolling faster than you can hit Pause. W can
easily wite our own "general purpose" prograns. Wiat is not
obvious is how to pass a file nane (or swtches) to our prograns
directly froma DOS-pronpt conmmand |i ne.

Use a BAT file to start the ball rolling; pass whatever is wanted
in BAT-file "variables". Like this:

GABASI C WWTYPE %A %2 %3

That's the easy part. To invoke MYTYPE. BAT, and cause it to open
a file naned on the DOS command line, as in

MYTYPE README. DOC

we need to be able to get ahold of "README. DOC', just |ike the
big boys do it. Inside the MYTYPE program the follow ng start
up sequence will do it.

1000 ' get DTA

1010 DEF SEG DEFI NT C-L: DEFSTR M Z: B=0: BS=0: BP=0: | =0
1020 MC=STRI NG$(128,0) 'machi ne code

1030 B=VARPTR(MC) +1: B=PEEK(B+1) * 256+PEEK(B)

1040 M D$(MC, 1) =CHR$(&H6) ' push es
1050 M D$(MC, 2) =CHR$(&H53) ' push bx
1060 M D$(MC, 3) =CHR$(&HLE) ' push ds
1070 M D$(MC, 4) =CHR$(&H52) " push dx
1080 M D$(MC, 5) =MVKI $(&H2FB4) 'nov ah, 2f get DTA
1090 M D$(MC, 7) =MKI $(&H21CD) "int 21h
1100 M D$(MC, 9) =CHR$(&H6) ' push es
1110 M D$(MC, 10) =CHR$(&H53) ' push bx
1120 M D$(MC, 11) =CHRS$(&H5A) " pop dx

The Blue Book About GW-BASIC and QuickBASIC - 230 -

1130 M D$(MC, 12) =CHR$(&H1F) ' pop ds

1140 M D$(MC, 13) =MWKI $(&H25B4) "mov ah, 25 set int
1150 M D$(MC, 15) =MKI $(&H60B0) ‘nov al, 60 int#
1160 M D$(MC, 17) =MKI $(&H21CD) “int 21h

1170 M D$(MC, 19) =CHRS$(&H5A) " pop dx

1180 M D$(MC, 20) =CHR$(&H1F) ' pop ds

1190 M D$(MC, 21) =CHR$(&H5B) ' pop bx

1200 M D$(MC, 22) =CHR$(&H7) ' pop es

1210 M D$(MC, 23) =MKI $(&HCA) ‘ret O exi t
1220 M D$(MC, 25) =MKI $(0) ' end

1230 CALL B

1240 DEF SEG=0

1250 BS=PEEK(387) * 256+PEEK(386) ' PSP def seg address
1260 BP=PEEK(385) * 256+PEEK(384) " DTA of f set

1270 DEF SEG=BS
1280 FOR | =1 TO PEEK(BP): M D$(MG, |) =CHR$(PEEK(BP+I)) : NEXT

1290 [I=INSTR(2,MC, " ")+1
1300 OPEN M D$(MC, |, PEEK(BP)-1-1) FOR I NPUT AS 1
1310 'la de da, and so on, hereafter

This works because: GWBASIC is an EXE program DOS technica
manual s tell us that a PSP--Program Segnment Prefix--is set up

by the | oader routine in COMWAND. COM This is just as true for
the interpreter programas it is for any EXE file. W are also
told that a default DTA--Data Transfer Area--is contained in

the PSP at offset 80h in the PSP. And that whatever is typed on

a coomand line, after the initiating programis nane, will be a
string of bytes in the DTA. And that the first byte of the DTA
string wll be a length-of-string value of fromO to 127.

So: The above machi ne | anguage instruction sequence nakes a DOS
function call to find out where the DTAis for GABASI C. EXE. Then
it saves that gemof wisdomin the Interrupt Vector Table as if
it was the address of a "user" interrupt servicing routine, for
interrupt 60h. (See Chapter 11 about passing paranmeters in this
sacred area.)

The loop in 1280 copies the string pointed to by our "interrupt”
into our program In this case, it wll contain two nanmes. The
first one is the nane of the programthat GABASIC was told to

| oad. The second nane is the one we want. Line 1290 is a crude
parser to find the beginning of the second nane. PS: Notice
that BASIC effectively ignores this name, but it is sitting up
inits DTA area just the sane.

And see how we can do anything we want to in BASIC. Fromthe
operator's perspective, MYTYPE can be nade to work as if it was

The Blue Book About GW-BASIC and QuickBASIC -231-

witten in C Pascal, or any of the other favorites of those that
will argue that BASIC is incapable of such sophisticated feats.

Since we have already entered the red light district, we may
as well go on and get our noney's worth: Prograns that nodify
t hensel ves, or others...

There are at |least two rational reasons for using nefarious
techniques of this type. It costs tine--and sonetinmes nore than
alittle space--to store things in files for the benefit of
subsequent processes. Here is an alternative, practical for
several types of problens (strictly in GW¥BASIC).

OPEN "program bas" AS 1 LEN =7 : FIELD 1,7 AS X

Chapter 2 describes what a tokenized programfile |ooks |ike;
an abbreviated rem nder is sufficient to see the significance
of the openi ng sequence above.

The 7-byte-X record size permts a straight shot into the first
line of a program i.e., record nunber two. Here is what is
ski pped over in record nunber one:

Byte 1. CHR$(255) or CHR$(254), dependi ng on whet her SAVE
was done with the P-to-protect option.

Wwrd 1: A 2-byte in-nmenory real address value for the first
line of the program

Wrd 2: Another 2 bytes; the Iine nunber of the first |ine.

Wrd 3: Two tokens. [If the first line is coded as a DATA
statenment, these two bytes should be a code 132 and a 32, in
deci mal ternms. (The token for DATA, followed by a space.)

Because we are clever, and because we know DATA statenents wil |
al ways contain text-characters, and because we put no unneeded
spaces between the |ine nunber and the word DATA, we can jab
what ever codes we want to in our pseudo-record nunmber tw. O,
three, or four, or nore, as long as we "know' how | ong that
first line is, and our READ | ogic knows what to expect.

One good reason for resorting to this trick is for tailoring a
set of prograns with an installation program That program can
solicit the answers to a variety of questions, then inplant the
answers into each of the progranms in the run-tine set with an

The Blue Book About GW-BASIC and QuickBASIC -232 -

OPEN- PUT- RESET sequence. Those prograns then nmerely need to do
a READ into specific variables to see what they want to know.
Which is faster and | ess cunbersone than having to read sone
application global-file that contains such information every
time a programis used.

O her uses can be nade of this technique, of course. Such as
"remenbering" what an operator last did when a program was

| ast used. Just before termnation, sinply open the program
then in use, then save what you want it to remenber. The next
time it is RUN, READ will provide instant recall w thout taxing
anyone's patience. (Next check-nunber, or the serial nunber to
be used for the next invoice or purchase order are natura

candi dates for this technique. It can also be the fundanental
basis for doing a did-it-run-till-done test.)
And see how this deviation can still adhere to the adopted

rul es described in Chapter 11. |If the first line is a DATA
statement, sinply shift the programidentification REMinfo
down onto line 1010, follow ng the GOTO that gets the show on
the road. Resorting to sinful techniques (in the eyes of sone)
does not nean that we should forsake our religious principles
al t oget her.

Lest the obvious be m ssed, see also how easy it is to get rid
of the protect-lock for prograns that were saved with conma-P.
Sinply GET 1,1 and stuff a CHR$(255) in byte-1, then PUT 1, 1.
It is a nmystery to me why the manual s make a nystery out of
this. Cever kids can figure this out; if they were not clever
they would not be learning to program Wuld they?

Few clients seemto care nmuch about what techni ques we use to
solve their problens. They sinply care about results. Until
they find they have been trapped into a costly corner, anyway.

Most often our decisions about alternative techniques is a
private affair. Still, good or bad, right or wong, clunsy or
cl ever shoul d be serious matters of debate in our own m nd.

What has been exhi bited here are not proposed techni ques; they
are nmerely nmeant to be extensions to your own |list of possible
alternatives. Even if your list is only slightly |onger now,
nei ther of us has wasted our tine.

The Blue Book About GW-BASIC and QuickBASIC - 233 -

Chapter 14 = TRI CKS

To turn off the high order bit of a byte held in an integer

vari abl e, use AND. The decimal nunber to use on one side of AND
is 32639. Wich is 32767-128. Half of 65536 is 32768. A 2-byte
word, 16-bits, can represent a positive whole nunber of fromO

to 65535. And on, and on, and on.

It is not hard to renenber that Bool ean operators can be used
to flip bits on and off. \What is hard for ne to renmenber is
whi ch nunber to use for specific cases, and how to construct
the expression. Especially if |I have not done it in a nonth
or so. O a week, or sonetinmes even a day or two.

It is not hard to figure it out all over again, of course, but
it my take a few m nutes of experinmenting in direct execution
node. And a few nore mnutes to test it thoroughly. And...

Even if you are a trivia chanp with instant recall, a |ot that
nmust be done in a lot of prograns is way nore than trivial. And
even if you enjoy thinking out conplicated algorithns, not many
of us enjoy the | abor involved in thoroughly testing a newy

rei nvented one. Depending on just how conplicated a piece of
coding is, the tinme required for thorough testing can be a | ot
nore than just a few m nutes.

One alternative is to hunt up an old programthat used the sane
expression. O, if in a hurry, or feeling lazy, just say to
heck-with-it and use |IF and THEN and ELSE, or anything el se
that requires | ess headwork. O, copy one fromthis chapter.

Here are sone freebees, |oosely grouped by type of function
rat her than by what kind of prograns they are useful in. A

bi nary search is a searching trick usable in payroll prograns,
shots at the nmoon, and in ganes for kids.

And "tricks" sone of these are. Sone use so-called standard
programm ng practices. Sonme are so perverse that they shoul d
be used only in private. Hours were spent upon the issue of

i ncludi ng those that m ght be viewed as belonging only in a
red-light district. The outcome was to include everything from
ny not ebooks that m ght be usable to soneone el se.

Judge ne not, and I'Il do likew se. Sonetines, anything that
wor ks ought to be legal. One criteria for judging is the old

The Blue Book About GW-BASIC and QuickBASIC - 234 -

saw that a good programis one that works--one that doesn't
may be pretty, and pretty useless. Copy anything that follows
that you like. lgnore anything that seens obscene. Many of
your own tricks may be far superior to mine. No inference is
i ntended that any of these are the "best way" to do sonething.

My coding style reflects personal habits, one of which nust be
known up front. Wth no notes to the contrary assune al ways:

DEFDBL A "Accounting Amounts (noney) and Accunul ations
DEFSNG B " Bi gger nunbers, Binary addresses and BASIC
DEFI NT C-L "Counters, Do-loops, Indexes and Limts
DEFSTR MZ ' Messages, M D$, and the rest of the Zoo

AVERAGES line
find MEAN average, sorted array 1080
find MEAN average, unsorted array 1130
find MEDI AN average, sorted array 1250
find MODE (norm, unsorted array 1340
find SIMPLE average, unsorted array 1550

1080 'find MEAN average, sorted array

1090 ' call: A(n)= table of nunbers (anytype)

1100 ' F= 1st elenment, L= Last elenent; max= 32767
1110 * exit: A= A(F) + A(L) divided by 2

1120 A=(A(F)+A(L))/2 "answer

1130 'find MEAN average, unsorted array

1140 ' call: A(n)= table of nunbers (anytype)
1150 F= 1st elenent, L= Last el enent

1160 ' exit: A= A(lowal) + A(hival) divided by 2
1170 * tenmp: 1= Incr, J= lowal ptr, K= hival ptr
1180 J=L "swag | owal ptr
1190 K=L "swag hival ptr
1200 FOR I=F TO L

1210 I F A(l)<A(J) THEN J=I "new | owal ptr
1220 I F A(l)>A(K) THEN K=l "new hival ptr

The Blue Book About GW-BASIC and QuickBASIC - 235 -

1230 NEXT
1240 A=(A(K)+A(J))/2 "answer

1250 'find MEDI AN average, sorted array

1260 ' call: A(n)= table of nunbers (anytype)

1270 F= 1st elenent, L= Last el enent

1280 ' exit: A= nedian of A(first) and A(l ast)

1290 ' temp: I=md ptr-1 of A(n) if L-F is odd
1300 J=md ptr+1 of A(n) if L-F is odd
1310 I =(L-F)\ 2+F "md ptr rounded up
1320 J=(L-F+1)\ 2+F "md ptr rounded down
1330 A=(A(l)+A(J))/2 "answer

1340 'find MODE (norn), unsorted array

1350 ' call: T(n)= table (anytype)

1360 ' F= 1st elenment, L= Last el enment
1370 * exit: G CGot ptr of nost-of in T(n)
1380 ' | atter-one of dupes

1390 ' tenp: I=1Incr, H= Had ptr

1400 ' K= had cnt, J= found cnt, E= exit
1410 FOR J=L TO F STEP-1 "redef L

1420 FOR I=F TO L "init Found

1430 IF T(1)=T(J) AND I<>J THEN G=I:I=L:L=J: J=0
1440 NEXT

1450 NEXT '"J starts as -1
1460 FOR E=L TO F STEP-1

1470 K=0 "reset had cnt
1480 FOR I=F TO L "sanpl e | oop

1490 IF T(1)<>T(Q THEN I F K=0 THEN H=l: K=-1
1500 IF T(1)=T(H AND K<O THEN K=K-1

1510 IF J>K THEN | =L: G=H: J=K ' Got repl aces Had
1520 NEXT

1530 | F ABS(J)>E THEN E=0 "early finish
1540 NEXT

1550 'find SIMPLE average, unsorted array

1560 ' call: A(n)= table of nunbers (anytype)
1570 F= 1st elenent, L= Last el enent
1580 ' exit: A= sumof A(all) divided by L
1590 ' tenp: I= Incr

1600 A=A(F) "first
1610 FOR | =F+1 TO L: A=A+A(1) : NEXT
1620 A=A/L "answer

The Blue Book About GW-BASIC and QuickBASIC - 236 -

bi t
bi t
bi t
bi t
bi t
bi t
get
get
get
get
di sp
1140
1150
1160
1170
1180
1190

1200
1210

1220
1230
1240

1250
1260
1270

EAN . l'ine
EXPRESSI ON exanples, 1140
RESET (make binary 0) 1220
REVERSAL (toggle OV OFF state) 1250
SET (make binary 1) 1280
SHI FT (all bits, 1 position in unison) 1310
TEST (sanple for binary O or 1) 1340
GREATER of 2 numbers 1380
GREATER of 2 sStrings 1430
SMALLER of 2 nunbers 1480
SMALLER of 2 strings 1530
lay BYTES in nuneric variables 1580

"bit EXPRESSI ON exanpl es

" call: E=integer (using |ow order byte)
" mask: |128]|64|32|16|8|4|2|1
" bit # | 7] 6] 5] 4]3|2|1]0]

E=E- 32*(E>64 AND E<91) 'force |ower case
E=E+32* (E>96 AND E<123) 'force upper case

E=E+32* (E>96 AND E<123)-32*(E>64 AND E<91) 'flip case
E=E AND 32639 "force 7-bit off

"bit RESET (make binary 0)
E=E OR E XOR 8 ‘set #3 OFF
E=E OR E XOR 68 "set OFF bits #6 and #2 (68= 64+4)

"bit REVERSAL (toggle OV OFF state)
E=E XOR 32 "#5 REVERSED
E=E XOR 21 "#4, #2, & #0 REVERSED (21= 16+4+1)

The Blue Book About GW-BASIC and QuickBASIC - 237 -

1280
1290
1300

1310
1320
1330

1340
1350
1360
1370

1380
1390
1400
1410
1420

1430
1440
1450
1460
1470

1480
1490
1500
1510
1520

1530
1540
1550
1560
1570

1580
1590
1600

"bit SET (make binary 1)

E=E OR 16 "set ON #4

E=E OR 48 "set ON #5 and #4 (48= 32+16)
"bit SHIFT (all bits, 1 position in unison)

E=E/ 2 "RICGHT (#0 lost, #7 is 0)
E=E*2 AND 255 "LEFT (#7 lost, #0 is 0)

"bit TEST (sanple for binary 0 or 1)

| F E AND 8 THEN "true for #3 ON

IF E AND 4=0 THEN ‘'true for #2 OFF

IF E AND 33 THEN 'true for #5 & #0 ON (33= 32+1)
'get GREATER of 2 nunbers

" call: [I= any nunber, J= any nunber

" exit: E= greater of 1,J (I and J unchanged)

' note: logic equals: |IF 1> THEN E=I ELSE E=J
E=I * ABS(| =>J) +J* ABS(J>I])

'get GREATER of 2 strings

" call: X= any string, R= any string

" exit: S=the greater of X, R (X and R unchanged)
" note: logic equals: |IF X>R THEN S=X ELSE S=R
S=LEFT$(X, LEN(X) *- (X=>R)) +LEFT$(R, LEN(R) *- (R>X))

'get SMALLER of 2 nunbers

" call: [I= any nunber, J= any nunber
" exit: E=smaller of 1,J (I and J unchanged)
' note: logic equals: |IF I<J THEN E=I ELSE E=J

E=l * ABS(| <J) +J* ABS(J<=I)

‘get SMALLER of 2 strings

" call: X= any string, R= any string

" exit: S=the smaller of X, R (X and R unchanged)
" note: logic equals: |IF X<R THEN S=X ELSE S=R
S=LEFT$(X, LEN(X) *- (X<R)) +LEFT$(R, LEN(R) * - (R<=X))

"display BYTES in nuneric variabl es
" call: A= any value, DEFtype A as needed
" tenp: I=lncr, B= var adrs, G= var type

The Blue Book About GW-BASIC and QuickBASIC - 238 -

1610 ' C= byte, F= Factor bits

1620 G=ASC(VARPTR$(A)) - 1: B=VARPTR(A) "var type & adrs
1630 FOR I =0 TO G C=PEEK(B+l) "chr 1 oop

1640 |F C<31 THEN PRINT "."; ELSE PRI NT CHR$(O);

1650 PRI NT SPC(8);: NEXT: PRI NT

1660 FOR I =0 TO G C=PEEK(B+l) "hex | oop

1670 PRI NT STRI NGH(-1*(C<16), 48); HEX$(C) ; SPC(7) ;

1680 NEXT: PRI NT

1690 FOR I =0 TO G C=PEEK(B+l) "octal |oop
1700 PRI NT STRI NGH(-1*(C<64), 48); STRI NGH(-1*(C<8), 48);
1710 PRI NT OCT$(C); SPC(6) ;

1720 NEXT: PRI NT

1730 FOR | =0 TO G C=PEEK(B+l): F=128 "bits | oop
1740 VWM LE F: PRINT CHR$(48+SGN(C AND F));

1750 F=F\2: VEEND: PRI NT " *;

1760 NEXT: PRI NT

NUMBER BASE CONVERSIONS l'ine
convert BCD (Binary Coded Decimal) to DECIMAL 1170
convert BINARY to DECIMAL 1250
convert BINARY to HEXADECIMAL 1330
convert BINARY to OCTAL, 1430
convert DECIMAL to BCD (Binary Coded Decimal) 1520
convert DECIMAL to BINARY 1600
convert DECIMAL to HEXADECIMAL 1680
convert DECIMAL to OCTAL 1760
convert HEXADECIMAL to BINARY 1840
convert HEXADECIMAL to DECIMAL 1930
convert HEXADECI MAL to OCTAL 2010
convert OCTAL to BINARY 2120
convert OCTAL to DECIMAL 2200

The Blue Book About GW-BASIC and QuickBASIC - 239 -

convert OCTAL to HEXADECIMAL 2280

1170
1180
1190
1200
1210
1220
1230
1240

1250
1260
1270
1280
1290
1300
1310
1320

1330
1340
1350
1360
1370
1380
1390
1400
1410
1420

1430
1440
1450
1460
1470
1480
1490
1500
1510

1520

‘convert BCD (Binary Coded Decinmal) to DECI MAL
" call: X= bytes in range O00H 99H

" exit: S= ASClIIl digits 0-9

" tenp: I=Incr

S=""

FOR | =1 TO LEN(X)

S=S+HEX$(ASC(M D$(X, 1)))

NEXT

"convert BINARY to DECI MAL

" call: X= ASCIl zeros and ones
exit: A= positive whol e nunber

" tenmp: I=Incr, B= factor position
A=0: B=1

FOR | =LEN(X) TO 1 STEP-1

A=A+(ASC(M D$(X, 1)) MOD 2)*B: B=B*2

NEXT

"convert BINARY to HEXADECI MAL

" call: X= ASCI| zeros and ones

" exit: S= ASCIl, 0O-F, X=length adj MOD 4

" tenp: I=1lncr, J= hex digit

X=STRI NG((4-LEN(X) MOD 4)*-(LEN(X) MDD 4>0), 48) +X: S=""

FOR I =1 TO LEN(X) STEP 4
J=VAL(M D$(X, 1, 1)) *8+VAL(M DS(X, | +1, 1)) * 4
J=J+VAL(M D$(X, | +2, 1)) *2+VAL(M D$(X, | +3, 1))
S=S+M D$(" 0123456789ABCDEF" , J+1, 1)

NEXT

‘convert BI NARY to OCTAL

" call: X= ASCI| zeros and ones

exit: S= ASCII 0-7, X=length adj MOD 3

" tenp: I=lncr, J= octal digit

X=STRI NG5((3-LEN(X) MOD 3)*-(LEN(X) MOD 3>0), 48) +X: S=""
FOR I =1 TO LEN(X) STEP 3

J=VAL(M D$(X, I, 1))*4+VAL(M D$(X, 1 +1,1))*2

J=J+VAL(M D$(X, | +2, 1)) : S=S+CHR$(48+J)
NEXT
"convert DECIMAL to BCD (Binary Coded Decimal)

The Blue Book About GW-BASIC and QuickBASIC - 240 -

1530
1540
1550
1560
1570
1580
1590

1600
1610
1620
1630
1640
1650
1660
1670

1680
1690
1700
1710
1720
1730
1740
1750

1760
1770
1780
1790
1800
1810
1820
1830

1840
1850
1860
1870
1880

1890
1900

" call: X= ASCIl digits 0-9

" exit: S= bytes, range 00H99H, X= length adj MDD 2
" tenp: |= Incr
X=STRI NGS(LEN(X) MOD 2, 48) +X: S=""

FOR 1 =1 TO LEN(X) STEP 2

S=S+CHR$((ASC(M D$S(X, 1)) - 48) * 16+ASC(M D$S(X, | +1)) - 48)
NEXT

'convert DECI MAL to Bl NARY

" call: A= positive whol e nunber

" exit: S= ASCI| zeros and ones, A= 1
tenp: |I= Incr, AQ quotient

S="": A=A+1

FOR | =A>1 TO 0: AQ=I NT(A/ 2)

S=CHR$(48- (A=AQ*2)) +S: A=A- AQ | =A>1

NEXT

"convert DECI MAL to HEXADECI MAL

" call: A= positive whol e nunber

' exit: S= ASCI, O-F, A=0

" tenp: I=1lncr, J= hex digit

| =0: WHI LE A=>16"1:1 =] +1: \END: S=""

FOR I=I-1 TO 0 STEP-1:J=I NT(A/ (16"1))

S=S+M D$(" 0123456789ABCDEF", J+1, 1) : A=I NT(A- (J*16"1))
NEXT

"convert DECI MAL to OCTAL

" call: A= positive whol e nunber

' exit: S= ASCIl, 0-7, A= 0

" tenp: I=lncr, J= octal digit

| =0: WHI LE A=>8"1: 1=l +1: V(END: S=""

FOR I=1-1 TO O STEP-1:J=I NT(A/ 8"l)
S=S+CHR$(48+J) : A=I NT(A- (J*8"1))

NEXT

"convert HEXADECI MAL t o Bl NARY

" call: X= ASCIl O-F

" exit: S= ASCIl zeros and ones

" tenp: I=1lncr, Q= translate string

Q="0000000100100011010001010110011110001

001101010111100110111101111"
S=""
FOR 1=1 TO LEN(X)

The Blue Book About GW-BASIC and QuickBASIC -241 -

1910 S=S+M D$(Q (| NSTR(" 123456789ABCDEF", M DS(X, |, 1)) *4) +1, 4)
1920 NEXT

1930 'convert HEXADECH MAL to DECI MAL

1940 ' call: X= ASCII O-F

1950 ' exit: A= positive whole nunber
1960 ' tenp: I= Incr

1970 A=0

1980 FOR | =LEN(X) TO 1 STEP-1
1990 A=l NT(A) +I NSTR(" 123456789ABCDEF", M D$(X, | , 1))
2000 A=A*16"(LEN(X)-1): NEXT

2010 'convert HEXADECI MAL to OCTAL

2020 ' call: X= ASCIl O-F
2030 ' exit: S= ASCIl O-7
2040 ' tenp: I=1Incr, J= hex digit, A= decinmal

2050 S="":A=0
2060 FOR | =LEN(X) TO 1 STEP-1
2070 A=l NT(A) +I NSTR(" 123456789ABCDEF", M D$(X, |, 1))

2080 A=A*16"(LEN(X)-1): NEXT: | =0: WHI LE A=>8"| : | =I +1: W\END
2090 FOR I=I-1 TO 0 STEP-1:J=I NT(A/ 8"I)

2100 S=S+CHR$(48+J): A=l NT(A- (J*8~1))

2110 NEXT

2120 'convert OCTAL to BI NARY

2130 ' call: X= ASCIl 0-7
2140 ' exit: S= ASCI| zeros and ones
2150 ' tenp: I=1Incr, = translate string

2160 Q="000001010011100101110111": S=""

2170 FOR | =1 TO LEN(X)

2180 S=S+M D$(Q (I NSTR("1234567", M D$(X, |, 1)) *3) +1, 3)
2190 NEXT

2200 'convert OCTAL to DECI MAL

2210 " call: X= AsC|l 0-7

2220 ' exit: A= positive whol e nunber
2230 ' tenp: |I=Incr

2240 A=0

2250 FOR | =LEN(X) TO 1 STEP-1
2260 A=l NT(A) +I NSTR(" 1234567", M D$(X, | , 1)) *8A(LEN(X) - I)
2270 NEXT

The Blue Book About GW-BASIC and QuickBASIC -242 -

2280

'convert OCTAL to HEXADECH MAL

2290 ' call: X= ASCl O0O-7

2300 ' exit: S= ASCIl O-F

2310 ' tenp: I=1Incr, J= octal digit, Q translate string
2320 Q="0000010100111001011101121": S=""

2330 FOR | =1 TO LEN(X)

2340 S=StM D$(Q (I NSTR("1234567", M D$(X, 1,1))*3)+1, 3)

2350 NEXT

2360 Q=STRI NGH((4-LEN(S) MDD 4)*-(LEN(S) MDD 4>0), 48) +S: S=""
2370 FOR 1 =1 TO LEN(Q STEP 4

2380 J=VAL(MD$(Q1,1))*8+VAL(MD$(Q | +1,1))*4

2390 J=J+VAL(M D$(Q I +2,1))*2+VAL(M D$(Q | +3, 1))

2400 S=S+M D$("0123456789ABCDEF", J+1, 1)

2410 NEXT

HASHI NG . . .o line
generate BCC (Bl ock Check Code) 1-byte hash 1060
generate COKE codes (consonants only keys) 1160
generate SOUNDEX code (phonetic search key) 1280
1060 'generate BCC (Bl ock Check Code) 1-byte hash

1070 ' call: X= string less than 255 bytes

1080 ' exit: X= X+CHR$(bcc), as often used in RS232

1090 ' tenp: 1= 1Incr, K= bcc hash

1100 X=LEFT$(X, 254) +CHR$(0) : K=0 "1 en(X) <255
1110 FOR I =1 TO LEN(X)-1 STEP 2

1120 K=K XOR CVI (M D$(X, 1)) ‘pairs

1130 NEXT

1140 K=PEEK(VARPTR(K)) XOR PEEK(VARPTR(K) +1) "fold over
1150 M D$(X, LEN(X)) =CHR$(ABS(K)) "insert BCC
1160 'generate COKE codes (consonants only keys)

1170 ' call: X= the "nane", upper case ASCI |, |en<255
1180 ' exit: S= any 1st Itr + consonants, no doubl es

1190 ' tenp: I=Incr, C= ptr

1200 S=X+" ":1F MD$(S, 2,1)=LEFT$(S,1) THEN M D$(S, 2)="."
1210 FOR I =2 TO LEN(S)-1

1220 C=I NSTR(" BCDFGHIKLMNPQRSTWKYZ" , M D$(S, |, 1))

1230 IF C=0 THEN M D$(S,1)="."

1240 IF MD$(S,1,1)=MD$(S, | +1,1) THEN M D$(S,1)="."

The Blue Book About GW-BASIC and QuickBASIC - 243 -

1250 NEXT: C=I NSTR(S, ". ")
1260 WHI LE C: M D$(S, C) =M D$(S, C+1): C=I NSTR(S, ". ") : VEND
1270 S=LEFT$(S, INSTR(S," "))

1280 'generate SOUNDEX code (phonetic search key)

1290 ' call: X= the "nane" in upper case ASC I
1300 ' exit: S= 1st letter of name + 3 ASCI| digits
1310 ' tenp: I= Incr, J= scan, C= ptr

1320 S="0000": M D$(S, 1, 1) =X: C=2
1330 FOR | =2 TO LEN(X)

1340 J=I NSTR(" RVMNLDTCGIKQSXZBFPV"', M DS(X, | , 1)) ' key
1350 |F J THEN M D$(S, C, 1) =M D$(" 655433222222221111",J) ' sub

1360 IF J THEN C=C+1:1F C4 THEN | =255

1370 NEXT

DATA TRANSLATI ON e e e l'ine
det ermi ne CURRENCY denominations (US) 1120
mask-of f high order BIT (#7) in character strings 1390
shift LOAER case ASCI| letters to UPPER case 1460
shift UPPER case ASCI| letters to LOAER case 1530
switch UPPER and LOAER case ASCI| letters 1600
t okeni ze repeated CHARACTERS in ASCI| strings 1670
t oken- expand repeated CHARACTERS in ASCII strings 1800
transl ate BYTES of strings using find/swap strings ... 1880
transl ate ORDI NAL nunmber to CARDI NAL string 1990

1120 ' determ ne CURRENCY denoni nations (US)

1130 ' call: A= positive dollars anmount

1140 S= string, len>9

1150 ' exit: nonitor output, S= string anount
1160 ' tenp: |= Incr, K= cnt

1170 PRI NT USI NG " ##t#####. ##"; A - PRINT STRI NG$(10, 29) ; : K=1
1180 FOR | =POS(0) TO POS(0) +9
1190 M DS$('S, K) =CHR$(SCREEN(CSRLI N, 1)) : K=K+1: NEXT: PRI NT

The Blue Book About GW-BASIC and QuickBASIC -244 -

1200 K=VAL(LEFTS$(S, 4))

1210 |F K THEN PRI NT K;"thousands"; MKl $(- (K=1) *8221)
1220 K=VAL(M DS$(S, 5, 1))

1230 |F K THEN PRI NT K;"hundreds"; MKI $(- (K=1) *8221)
1240 K=VAL(M DS$(S, 6, 2))

1250 |F K>49 THEN K=K-50: PRINT " 1 fifty"

1260 |F K>39 THEN K=K-40: PRINT " 2 twenties"
1270 | F K>19 THEN K=K-20: PRINT " 1 twenty"

1280 |F K>9 THEN K=K-10:PRINT " 1 ten"

1290 |F K>4 THEN K=K -5:PRINT " 1 five"

1300 |F K THEN PRI NT K; "ones": MKl $(- (K=1) *8221)
1310 K=VAL(RI GHTS$(S, 2))

1320 |F K>74 THEN K=K- 75: PRINT " 3 quarters"
1330 | F K>49 THEN K=K-50: PRINT " 2 quarters"
1340 | F K>24 THEN K=K-25:PRINT " 1 quarter"
1350 |F K>19 THEN K=K-20: PRINT " 2 di nes"

1360 |F K>9 THEN K=K-10: PRINT " 1 di me"

1370 |F K>4 THEN K=K -5:PRINT " 1 nickle"

1380 | F K THEN PRI NT K; "pennys": MKl $(- (K=1) *8221)

1390 'mask-off high order BIT (#7) in character strings

1400 ' call: Q= any string
1410 ' exit: Q with all bytes < chr$(128)
1420 ' tenp: |= Incr

1430 FOR I =1 TO LEN(Q: C=ASC(M D$(Q 1))
1440 M D$(Q |)=CHR$(C AND 32639)
1450 NEXT

1460 'shift LOAER case ASCI| letters to UPPER case

1470 ' call: Q= any string
1480 ' exit: Q= with no | ower case
1490 ' tenp: I=Incr, C= chr val

1500 FOR I =1 TO LEN(Q : C=ASC(M D$(Q 1))
1510 M D$(Q |)=CHR$(C- 32* (C>64 AND C<91))
1520 NEXT

1530 'shift UPPER case ASCI| letters to LOANER case

1540 ' call: Q= any string
1550 ' exit: Q= with no upper case
1560 ' tenp: I= Incr

1570 FOR 1 =1 TO LEN(Q : C=ASC(M D$(Q 1))
1580 M D$(Q |) =CHR$(C+32* (C>96 AND C<123))
1590 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 245 -

1600 'swi tch UPPER and LOANER case ASCI| letters

1610 * call: Q= any string
1620 ' exit: Q= with all upper/lower cases reversed
1630 ' tenp: I= Incr

1640 FOR 1=1 TO LEN(Q : C=ASC(M D$(Q 1))
1650 M D$(Q |)=CHR$(C+32*(C>96 AND C<123)-32*(C>64 AND C<91))
1660 NEXT

1670 'tokeni ze repeated CHARACTERS in ASCII strings

1680 ' call: X= string, S= pack-character (often " ")
1690 ' exit: X= repeats tokenized CHR$(127+ # of S)
1700 tokens follow S-characters

1710 ' tenmp: 1= 1Incr, J=cnt, E= exit

1720 E=LEN(X)

1730 E=E+(E-128)*(E>128) "max 128 or |en(X)

1740 FOR I =E TO 3 STEP-1 "trips at |east

1750 J=I NSTR(X, STRI NG$(1, S)) "repititions of S
1760 | F J THEN X=LEFT$(X, J) +CHR$(127+) +M D$(X, J+1)

1770 1=1-(J>0) 'sane sequence agai n?
1780 | F I NSTR(X, STRING$(3,S))=0 THEN | =3
1790 NEXT

1800 't oken-expand repeated CHARACTERS in ASCI| strings
1810 ' call: X= string, bytes > CHR$(128) are tokens
1820 ' exit: X= token-byte-1 repeated, token-128 tines
1830 ' tenmp: 1= Incr, E= expander
1840 FOR I =LEN(X) TO 2 STEP-1 "scan right-to-1left
1850 E=ASC(M D$(X, 1)) "t oken test
1860 | F E>128 THEN X=LEFT$(X, I1-1)+
STRI NGB(E- 128, M D$(X, 1 - 1)) +M D$(X, | +1)
1870 NEXT

1880 'transl ate BYTES of strings using find/swap strings
1890 ' call: X= any string

1900 ' Q@ find-in-this string

1910 S= swap-with-in string

1920 ' exit: E=len(X) or, O0if len(S)<>len(Q
1930 ' X=translated if E, else unchanged
1940 ' tenp: I=lIncr, C= ptr

1950 E=LEN(X) *- (LEN(Q) =LEN(S))

1960 FOR I =1 TO E: C=I NSTR(Q M D$(X, I, 1))
1970 |F C THEN M D$(X, |)=M D$(S, C, 1)
1980 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 246 -

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350

"transl ate ORDI NAL nunber to CARDI NAL string

" call: Q translate string, |en=>213

' X= mask string, |en=>9

' P= parse string, |en=>11

' A= input nunber <= 99, 999, 999. 99

" tenp: I=1Incr, L=cnt, C cnt, K= cents

" exit: printed, I= L= C= junk, A=unchanged
note: output is akin to "check anpunts”

LSET Q="1lone2t wo3t hr ee4f our 5fi ve6si x7seven8ei ght "

M D$(Q 41) ="9ni ne: ten; el even<t wel ve=t hirt een”

M D$(Q 73)=">fourteen?fifteen@i xt eenAsevent een"”

M D$(Q 108) ="Bei ght eenCni net eenDt went yEt hi rty"

M D$(Q 140)="Fforty&iftyHsi xtyl seventyJei ghty"

M D$(Q 173) =" Kni net yLhundr edM housandNmi | | i onO'
L=CSRLI N: C=PCS(0) : PRI NT USI NG " ########. ##" ; A, : LSET X=""
FOR I=1 TO 11: M D$(X, |) =CHR$(SCREEN(L, C)) : C=C+1: NEXT
PRI NT: K=VAL(RI GHT$(X, 2)) : LSET P=LEFT$(X, 8)

| LE ASC(P)=32: LSET P=M D$(P, 2) : WEND: J=77

WH
FOR | =INSTR(P," ")-3 TO 2 STEP-3

M D$(P, 1 +1) =M D$(P, 1): M D$(P, |) =CHR$(J) : J=J+1

NEXT

FOR I =INSTR(P," ")-2 TO 2 STEP-4:C=VAL(MD$(P, -1, 1))

IF C THEN M D$(P, 1 +1) =M D$(P, 1): M D$(P, 1) ="L"

NEXT: C=1

L=I NSTR(P, "NOOOM') : | E L THEN M D$(P, L+1) =M D$(P, L+5, 80)
FOR I =1 TO INSTR(P," ")-1:L=ASC(M D$(P, 1))

J=VAL(M D$(P,1,2)):1F J>9 AND J<20 THEN L=J+48:1=] +1

| F J>19 THEN L=J\10+66:1F J MOD 10 THEN J=-1 ELSE I =| +1
E=l NSTR(Q CHR$(L))

| E E THEN LSET X=M D$(Q E+1, | NSTR(E, Q CHR$(L+1)) - E- 1)

| F C THEN M D$(X, 1) =CHR$(ASC(M D$(X, 1)) - 32)

| F E THEN PRI NT LEFT$(X, | NSTR(X, " ")-1);

C=VAL(M D$(P, | +1, 1)) *(L>66 AND L<76)

IF C THEN PRINT "-": ELSE IF L-48 THEN PRINT " ";
C=0: NEXT: | F | NT(A)=0 THEN PRI NT "Zero ";

PRI NT "Dol | ar"; STRI NG$(ABS(| NT(A) <>1), 115);

PRINT " and";K;"Cent"; STRI NG$(ABS(K<>1) , 115)

DATE and TIME e line
cal endar MONTH di spl ay, years 1901-2000 1200
conput e DAY of WEEK for 1901-2000 1440

The Blue Book About GW-BASIC and QuickBASIC - 247 -

convert
convert
convert
convert
el apsed
el apsed
el apsed

fielded

DATE, Gregorian to Julian

DATE, Julian to Gregorian

T

T

I ME, 12-hour (AMPM to 24-hour

| ME, 24-hour to 12-hour (AMPM

DAYS, Julian dates, 1900-1999

T

T

| ME, 12-hour, hhmssA or hhmmssP

| ME, 24-hour, hh:mmss

DATE, Julian, 2-bytes, encode/decode

ref ormat DATE, ddmmyy as mmidd/yy

reformat DATE, mm dd/yy as ddmmyy

reformat DATE, mm dd/yy as nonth day, year

val idate DATE, Gregorianuuiiiiiunanienn..

validate DATE, Julian

val idate TIME, 12-hour, hhmssA or hhmssP

validate TIME, 24-hour, hh:mmss

1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340

" cal endar MONTH di spl ay, years 1901-2000

c

t

all: T= string | en=>182, Y= string | en=>100
| = year (1901-2000), J= nonth (1-12)
enp: T= nonths, Y= years, E= exit, |= days

K= 1st day, L= line, C= col, H= hold, J= flag

exit: display on nonitor

LSET Y =" CDEMABCKFGAI DEFNBCDL" ' 1901- 20

M D$(Y, 21) =" GABJEFGHCDEMABCKFGAI " ' 1921-40

M
M
M
M
M
M

D$

D$
D$
D$
D$
D$

(Y, 41) ="DEFNLCDLGABJEFGHCDEM' ' 1941- 60
(Y, 61) ="ABCKFGAI DEFNBCDLGABJ" ' 1961- 80
(Y, 81) ="EFGHCDEMABCKFGAI DEFN' ' 1981- 00
LSET T ="Al144725736146B255136147257"
(T, 27) ="C366247251361D477351362472"
(T,53) ="E511462473513F622573514624"
(T, 79) ="G733614625735H145136147257"

The Blue Book About GW-BASIC and QuickBASIC - 248 -

1350
1360
1370
1380
1390
1400
1410
1420
1430

1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570

1580
1590
1600
1610
1620
1630
1640
1650
1660
1670

1680
1690
1700
1710
1720
1730
1740
1750

M D$(T, 105) =" 256247251361J367351362472"
M D$(T, 131) ="K471462473513L512573514624"
M D$(T, 157) =" M523614625735N734725736146"
K=VAL(M D$(T, | NSTR(T, M D$(Y, | - 1900, 1)) +J, 1))
E=ASC(M D$(" 303232332323", J))- (1 MOD 4=0 AND J=2)-20
PRINT " Su Mo Tu W Th Fr Sa": H=1:1=1
FOR L=1 TO 6: FOR C=1 TO 7: J=(H<K OR | >E)
IFJ THEN PRINT " "; ELSE PRI NT USI NG "###"; | ;
| =1 - (J=0) : H=H+1: NEXT: PRI NT: NEXT

"conpute DAY of WEEK for years 1901-2000

" call: X= string, Julian date as yyddd, |en=>5

' @ string, |en=>101

" exit: B= cvs(3-letter-day-nane-space)

' E=0if Xis not |ogica

" tenp: Q= translate string (day years begin on)
' | = year, J= day pointer

LSET ="5612346712456723457123567134": M D$(Q 29) =Q

M D$(Q 4) =LEFT$(Q 101): M D$(Q 1) =" 734" "years=Jan 1
| =ABS(VAL(LEFT$(X, 2))): EEVAL(M D$(Q 1 +1,1)) ‘'year starts
J=((VAL(M D$(X, 3,3)) +E-1) MOD 7+1)*4 " day pointer
B=CVS(M D$(" Sat Sun Mon Tue Wed Thu Fri ", J))

E=(VAL(M D$(X, 3, 3)) <=365-(1 MOD 4=0)) "l ogi c check
| F E THEN PRI NT MKS$(B) ' di spl ay
"convert DATE, Gregorian to Julian

" call: X= string, midd/yy (assuned valid)

' exit: B= single precision whole nunber, yyddd

" tenp: |=Incr

B=VAL(M D$(X, 4, 2)) "date

FOR | =VAL(LEFT$(X,2))-1 TO 1 STEP-1

B=B+ASC(M D$(" CACBCBCCBCBC", 1)) - 36

NEXT "per nonth
B=B+((B>59) * SGN(VAL(RI GHT$(X, 2)) MOD 4)) 'l eap year
B=B+VAL(Rl GHT$(X, 2)) *1000 " append year
"convert DATE, Julian to Gregorian
" call: B= whole nunber, yyddd (assuned valid)
' S= string, |en=8
" exit: S= mmdd/yy, B= junk
" tenp: I= nonth, J= days

RSET S=STR$(| NT(B/ 1000) +100) ‘get year
B=B- | NT(B/ 1000) *1000 'get days
FOR I =1 TO 12

The Blue Book About GW-BASIC and QuickBASIC - 249 -

1760
1770
1780
1790
1800
1810
1820

1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940

1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

J=ASC(M D$(" C@BCBCCBCBC', |))-36
J=J-(1=2 AND VAL(S) MOD 4=0) "l eap year
| F B<=J THEN M D$(S, 3) =STR$(| +100) : | =12
B=B- J: NEXT "per nonth
M D$(S, 1) =STR$(B+J+100) " f or mat
MD$(S, 1)=MD$(S,5,2): MD$(S, 4) =M D$(S, 3, 2)
MD$(S,3)="/":MD$(S, 6)="/"
"convert TIMg, 12-hour (AMPM to 24-hour
" call: X= hhmssAM or PM | en=>7
' assunmed valid ("M not used)
' R= string, |en=>8
" exit: R= hh:nmmss
" tenp: |= hour, E= noon/nidnight
| =VAL(LEFT$(X, 2)) - 12* (LEFT$(X, 2) <="12") "nighttine
E=12* (1 NSTR(X, " P") =0) ' norni ng
E=E+12* (1 =24) - 12* (LEFT$(X, 7) =" 120000A")
LSET R=STR$(| +E+100): LSET R=M D$(R, 3) " f or mat
MD$(R, 4)=MD$(X, 3): MD$(R, 7) =M D$(X, 5)
MD$(R 3)=":":MD$(R 6)=":"

‘convert TIMg, 24-hour to 12-hour (AM PM

" call: X= hh:mmss, [en=>8, assuned valid

R= string, |en=>7

' exit: R= hhmssdM (d= "A" or "P")

' "M included if Ris |ong enough

" tenp: I=hour, E=1 or 2 (AMPM

| =12*(X>"12: 59: 59") - 12* (VAL(X) =0) +VAL(X) ' adj hour
E=2+(LEFT$(X, 8) <"12: 00: 00" OR VAL(X)=24) 'set AM PM
LSET R=STR$(|+100): LSET R=M D$(R, 3) " f or mat
MD$(R 3)=MD$(X, 4,2): MD$(R, 5) =M D$(X, 7)

M D$(R, 7) =M D$(" AVPM', E*2)

"el apsed DAYS, Julian dates, 1900-1999

" call: X= frondate, yyddd, |en=>5 (assuned vali d)
' R= thrudate, yyddd, |en=>5 (assunmed valid)
' exit: B= days el apsed

' E=0if fromthru reversed

" tenmp: I=Incr, J= fronyear, K= thruyear
J=VAL(LEFTS$(X, 2)): K=VAL(LEFT$(R, 2)) "fromthru
B=0 "cl ear

FOR 1=J TO K-1

B=B+365- (| MOD 4=0)
NEXT ' per year

The Blue Book About GW-BASIC and QuickBASIC - 250 -

2170 B=B+VAL(M D$(R 3,3))-VAL(M D$(X, 3,3)) ' subtract
2180 E=(B=>0) * (LEFT$(R, 5) >LEFT$(X, 5)) '| ogi cal ?

2190 'el apsed TIME, 12-hour, hhmssA or hhmmssP

2200 ' call: S= start tinme (assuned valid), |en=>7
2210 X=end time (assuned valid), |en=>7

2220 ' R= string, |en=>6

2230 ' exit: R= elapsed tinme (hhnmss)

2240 ' tenp: |I= hours, J= mnutes, K= seconds, E= flag
2250 K=VAL(M D$(X, 5,2))-VAL(M D$(S, 5, 2)) ' seconds
2260 J=VAL(M D$(X, 3,2))-VAL(M D$(S, 3, 2)) +(K<0) 'm nutes
2270 |1 =VAL(LEFTS$(X, 2)) - VAL(LEFTS$(S, 2)) +(J<0) "hours
2280 E=(RI GHT$(S, 1) <>RI GHT$(X, 1)) "AM PM f 1 ag
2290 K=K-60*(K<0):J=J-60*(J<0) "adj ust
2300 I=1-12*(1<0)-12*(1<0 AND E=0)-12*(1=>0 AND E<O0)
2310 LSET R=STR$(I1+100):1=CVI (M D$(R, 3)) " f or mat

2320 LSET R=STR$(J+100): J=CVI (M D$(R, 3))
2330 RSET R=STR$(K+100): M D$(R 3) =MKI $(J) : M DS(R, 1) =MKI $(1)

2340 'el apsed TIME, 24-hour, hh:nmss

2350 ' call: S= start time (assuned valid), |en=>8
2360 X=end time (assuned valid), |en=>8

2370 ' R= string, |en=>8

2380 ' exit: R= elapsed tinme (hh:mm ss)

2390 ' tenp: |= hours, J= mnutes, K= seconds

2400 K=VAL(M D$(X,7))-VAL(MD$(S, 7)) ' seconds
2410 J=VAL(M D$(X, 4))-VAL(M D$(S, 4)) +(K<0) "'m nutes
2420 | =VAL(X) - VAL(S) +(J<0) ' hours
2430 K=K-60*(K<0):J=J-60*(J<0):1=Il-24*(1<0) " adj ust
2440 LSET R=STR$(I+100):1=CVI (M D$(R, 3)) " f or mat

2450 LSET R=STR$(J+100):J=CVI (M D$(R 3))
2460 RSET R=STR$(K+100): M D$(R 4) =MKI $(J) : M DS(R, 1) =MKI $(1)
2470 MD$(R, 3)=":": M D$(R, 6)=":"

2480 'fiel ded DATE, Julian, 2-bytes, encode/ decode
2490 ' call: B= yyddd (assuned valid)

2500 R= 2-byte string (typically fielded)
2510 ' exit: B= decoded R, R= encoded B

2520 ' tenp: C= year, D= days

2530 C=B/ 1000: D=B- C*1000 " encode
2540 | F D>255 THEN C=C+128: D=D- 128

2550 LSET R=CHR$(C): M D$(R, 2) =CHR$(D)

2560 C=ASC(R): D=ASC(M D$(R, 2)) ' decode

The Blue Book About GW-BASIC and QuickBASIC -251 -

2570
2580

2590

2600 '

2610

2620 '
2630 '

2640
2650
2660
2670

2680

2690 '

| F C127 THEN C=C- 128: D=D+128
B=C*1000+D
"reformat DATE, ddnmmyy as nm dd/yy
call: X= ddmmyy (assuned valid), |en=>7
R= string, |en=>8
exit: R= mdd/yy
tenp: J= nonth nunber
J=I NSTR(" ANEBARPRAYUNULUGEPCTOVEC', M D$(X, 4, 2))\2
LSET R=STR$(J+100): LSET R=M D$(R, 3)

M D$(R, 4) =M D$(X, 1) : M D$(R, 7) =M D$(X, 6)
M D$(R, 3)="/": M D$(R, 6)="/"

"reformat DATE, nm dd/yy as ddmmyy
X= mm dd/yy (assuned valid), |en=>8

call:

2700 '

2710 '
2720 '

2730
2740
2750
2760

2770

2780 '

exit:
t enp:

R= string, |en=>7
R= ddnmyy

none

LSET R=M D$(X, 4, 2) : M D$(R, 6) =M D$(X, 7, 2)
M D$(R, 3) =M D$(" JFMAMIJASOND" , VAL(X) , 1)
M D$(R 4) =M D$(" AEAPAUUUECCE" , VAL(X) , 1)
M D$(R 5) =M D$(" NBRRYNLGPTVC', VAL(X), 1)

"reformat DATE, nm dd/yy as nonth day, year
X= mm dd/yy (assuned valid), |en=>8

call:

2790 '

2800 '

exit:

2810 '

2820 '

2830
2840
2850
2860
2870
2880
2890
2900
2910

2920

2930 '
2940 '
2950 '

t enp:

R= string, |en=>19

R= nont h- nanme daySS, year
(SS= st,nd,rd or th)

= 1Instr, J= nonth
J=VAL(X):1=(J MOD 3+1)*9-8

LSET R=M D$(" Mar ch January February",1,9)
| F J>3 THEN LSET R=M D$("June Apri | May", 1, 9)
| F J>6 THEN LSET R=M D$(" Sept enber Jul y August ", 1, 9)
| F J>9 THEN LSET R=M D$(" Decenber Cctober Novenber",|,9)
I=INSTR(R " "): MD$(R |)=STRS(VAL(M D$(X, 4)))
| =1 NSTR(" 1 21312 223 23", MD$(R 1,3))+1
MD$(R INSTR(R " "))=MD$("th,st,st,st,nd,nd, rd, rd,", I, 3)
MD$(R INSTR(R, ", ") +1) =STR$(1900+VAL(M D$(X, 7)))
"val i dat e DATE, Gregori an
call: X= midd/yy, |en=>8
exit: E=0if Xisinvalid
tenp: none

The Blue Book About GW-BASIC and QuickBASIC -252 -

2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060

3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170

3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300

3310
3320
3330
3340
3350
3360

E=32- VAL(M D$(" 141212112121", VAL(LEFT$(X, 2)) +1, 1))
E=E- (E=28 AND (VAL(M D$(X, 7,2)) MOD 4=0))
E=E*VAL(M D$(X, 4, 2)) * (VAL(M D$(X, 4, 2)) <=E)

E=E* SGN(VAL(X)) * (VAL(LEFT$(X, 2)) <13)

E=E* (M D$(X, 3, 1) =M D$(X, 6, 1)) * (M D$(X, 3, 1) ="/")
E=E* SGN(| NSTR(" 01", M D$(X, 1, 1))) * (LEN(X) >7)
E=E* SG\(| NSTR(" 0123456789", M D$(X, 2, 1)))

E=E* SGN(| NSTR(" 0123", M D$(X, 4, 1)))

E=E* SGN(| NSTR(" 0123456789", M D$(X, 5, 1)))

E=E* SG\(| NSTR(" 0123456789", M D$(X, 7, 1)))

E=E* SGN(| NSTR(" 0123456789", M D$(X, 8, 1)))

"val i dat e DATE, Julian

" call: X= yyddd, len=>5

" exit: E=0if Xis invalid

' tenp: none

E=(VAL(LEFT$(X, 2)) MOD 4=0)

E=VAL(M D$(X, 3, 3)) *(VAL(M D3$(X, 3, 3)) <=365-E)
E=E* SGN(| NSTR("0123456789", M D$(X, 1, 1)))
E=E* SG\(| NSTR(" 0123456789", M D$(X, 2,1)))
E=E* SGN(| NSTR("0123", M D$(X, 3, 1))) *(LEN(X) >4)
E=E* SG\(| NSTR(" 0123456789", M D$(X, 4,1)))
E=E* SG\(| NSTR(" 0123456789", M D$(X, 5,1)))

"validate TIME, 12-hour, hhmrssA or hhmssP

" call: X= hhmssyb, |en=>7

' (yis Aor P, bis blank, null, or M
" exit: E=0if Xisinvalid

' tenp: none

E=(LEN(X) =7 OR INSTR("M ", M D$(X, 8, 1)) <>0)

E=E* (VAL(LEFTS$(X, 2)) <13) * SG\(VAL(LEFT$(X, 2)))
E=E*I NSTR(" 01", M D$(X, 1, 1)) *I NSTR("AP", M D$(X, 7, 1))
E=E*I NSTR(" 0123456789", M D$(X, 2, 1))

E=E*| NSTR("012345", M D$(X, 3, 1))

E=E*I NSTR(" 0123456789", M D$(X, 4, 1))

E=E*I NSTR(" 012345", M D$(X, 5, 1))

E=E*| NSTR("0123456789", M D$(X, 6, 1))

"validate TIME, 24-hour, hh:mm ss

" call: X= hh:mmss, |en=>8

" exit: E=0if Xisinvalid

' tenp: none

E=(LEFT$(X, 2) <>"24" OR LEFTS$(X, 8) ="24:00: 00")
E=E* (VAL(LEFTS$(X, 2)) <25) *I NSTR(" 012", M D$(X, 1, 1))

The Blue Book About GW-BASIC and QuickBASIC - 253 -

3370 E=E* SGN(| NSTR(" 0123456789", M D$(X, 2, 1)))

3380 E=E*I NSTR("012345", M D$(X, 4, 1))

3390 E=E* SGN(| NSTR(" 0123456789", M D$(X, 5, 1)))

3400 E=E*| NSTR("012345", M D$(X, 7, 1))

3410 E=E*| NSTR("0123456789", M D$(X, 8, 1))

3420 E=E*(M D$(X, 3, 1) =M D$(X, 6, 1)) * (M DS(X, 3, 1) =": ")
3430 E=E* (LEFT$(X, 8) <>"00: 00: 00")

NUVBER EDI TING e e e e i line
edit DOLLARS, floating-$, $277,777,7ZD.DD- 1080
edit DOLLARS, floating-(, (ZZZ,6ZZZ,ZZD.DD) 1240
edit PHONE nunber as (999) 999-9999 1400
edit PHONE nunber as 999-999-9999 1500
edit SOCI AL SECURITY nunmber as 999-99-9999 1590

1080 'edit DOLLARS, floating-$, $277,6 777, 7ZZD. DD-

1090 ' call: A= whole nunber, S= string, |en=>16
1100 ' exit: S= edited string, right justified
1110 ' tenp: I=Instr, L= 1len(S)

1120 LSET S=STR$(|NT(A)/100): M D$(S, 1)="-"

1130 I =INSTR(S," "):L=LEN(S)

1140 |IF INSTR(S,".")=0 THEN M D$(S,1)=".00":1=1+3
1150 IF I-INSTR(S,".")=2 THEN M D$(S,1)="0":1=1+1
1160 | F LEFT$(S,2)="-." THEN M D$(S, 2) =LEFT$(S, L)
1170 | F LEFT$(S,2)="--" THEN M D$(S, 1)="-0":1=l+1

1180 RSET S=LEFTS$(S, |): M D$(S, L) =CHR$(32- 13* SG\(A<0))
1190 | =L+7*(VAL(LEFT$(S, L-7)) <0)

1200 |F I<L THEN M D$(S, 1)=M D$(S, 2, 1): M D$(S, 1) =", "
1210 | =L+11*(VAL(LEFT$(S, L-11)) <0)

1220 |F I<L THEN M D$(S, 1)=M D$(S, 2, 1): M D$(S, 1) =", "
1230 M DS$(S, INSTR(S,"-"))="$"

1240 'edit DOLLARS, floating-(, (ZZz, ZZZ, ZZD. DD)

1250 ' call: A= whole nunber, S= string, |en=>16
1260 ' exit: S= edited string, right justified
1270 ' tenp: I=Instr, L= 1len(S

1280 LSET S=STR$(INT(A)/100): M D$(S,1)="-"

1290 I =INSTR(S," "):L=LEN(S)

The Blue Book About GW-BASIC and QuickBASIC - 254 -

1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

1400

1410
1420 '
1430 '

1440
1450
1460
1470
1480
1490

1500

1510 '
1520 '
1530

1540
1550
1560
1570
1580

1590

1600 '
1610 '
1620

1630
1640
1650
1660
1670

IE INSTR(S,".")=0 THEN M D$(S, 1)=".00":1=| +3
IF I-INSTR(S,".")=2 THEN M D$(S, 1)="0":1=| +1
| F LEFT$(S, 2)="-." THEN M D$(S, 2) =LEFT$(S, L)
| F LEFT$(S, 2)="--" THEN M D$(S, 1)="-0": 1=l +1

RSET S=LEFTS$(S, 1): M D$(S, L) =CHR$(32- 9* SG\(A<0))
| =L+7* (VAL(LEFT$(S, L- 7)) <0)

| F I<L THEN M D$(S, 1) =M D$(S, 2,1): M D$(S, 1)=","

| =L+11* (VAL(LEFT$(S, L- 11)) <0)

IF I<L THEN M D§(S, 1)=M D§(S,2,1): MD§(S, 1)=","

M D$(S, | NSTR(S, "- ")) =CHR$(32- 8* SG\(A<0))

"edit PHONE nunber as (999) 999-9999

call: A= 10-digit whol e nunber, S= string | en=>14
exit: S= (zzz) zzz-zzzz, left justified, zero filled
tenp: |= inspect for spaces

LSET S=STR$(A)

VH LE M D$(S, 14, 1) =" ": MD$(S, 2) =LEFT$(S, 13) : VEND
MD$(S, 2)=MD$(S,5,3): MD$(S, 7) =M D$(S, 8, 3)
MD$(S,5)=")":MD$(S,1)="(": MD$(S, 10)="-":1=I NSTR(S, "

VH LE 1*(1<15): MD$(S,1)="0":1=INSTR(S," "):WEND
M D$(S, 6) =" "

"edit PHONE nunmber as 999-999-9999
call: A= 10-digit whole nunber, S= string | en=>12
exit: S= zzz-zzz-zzzz, left justified, zero filled
tenp: |= inspect for spaces

LSET S=STR$(A)
WHI LE M D$(S, 12,1)=" ": M D$(S, 2) =LEFT$(S, 11) : \END
MD$(S,1)=MD$(S, 3,3): MD$(S, 5 =M D$(S, 6, 3)
MD$(S, 4)="-":MD$(S,8)="-":1=INSTR(S," ")
WHILE 1*(1<13): M D$(S, 1)="0":1=INSTR(S," "):WEND
"edit SOCI AL SECURI TY number as 999-99-9999
call: A= 9-digit whole nunber, S= string | en=>11
exit: S= zzz-zz-zzzz, left justified, zero filled
tenp: |= inspect for spaces

LSET S=STR$(A)

VH LE M D$(S, 11, 1) =" ": MD$(S, 2) =LEFT$(S, 11) : VEND
MD$(S,1)=MD$(S, 3,3): MD$(S, 5 =M D$(S, 6, 2)

MD$(S, 4)="-":MD$(S,7)="-":1=INSTR(S," ")

WHILE 1*(1<12): M D$(S, 1)="0":1=INSTR(S," "):WEND

")

The Blue Book About GW-BASIC and QuickBASIC

- 255 -

search for

search for

search for

search for

1070
1080
1090
1100
1110
1120
1130
1140

1150
1160
1170
1180
1190
1200
1210
1220

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

1340
1350
1360

BYTE, largest within a string 1070
BYTE, smallest within a string 1150
ELEMENT in an array (binary search) 1230

SUBSTRI NG (| ongest repeated, in string) ... 1340

"search for BYTE, largest within a string

cal | :
exit:
t enp:

C=0

X= any string
C= asc(largest byte), E= 1lst position
I = Incr

FOR | =1 TO LEN(X)
E=ASC(M D$(X, 1)) : C=E* ABS(E=>C) +C* ABS(C>E) : NEXT
E=I NSTR(X, CHR$(C))

"search for BYTE, smallest within a string

cal | :
exit:
" tenp:

X= any string
C= asc(smal |l est byte), E= 1st position
I = Incr

C=- 255* (LEN(X) >0)
FOR | =1 TO LEN(X)

E=ASC(M D$(X, 1)) : C=E* ABS(E<C) +C* ABS(C<=E) : NEXT
E=l NSTR(X, CHR$(C))

"search for ELEMENT in an array (binary search)
" call: F=find, A(n)= array, sorted, ascending
' H= hi ghest el enent, L= |owest el enent
" exit: I=position, E=0if Fis not found
" tenp: H= Hgh, L= Low, I=lIncr, E= Exit
" note: for descending order switch | ess/greater signs
| =H\ 2: H=H+1: L=L-1
FOR E=0 TO 1
I|F F<A(l) THEN H=l:l=l-(HL)\2
IF F>A(l) THEN L=l:I=l+(HL)\2
E=ABS(F=A(1) OR I=H OR | =L): NEXT: E=(F=A(1))

"search for SUBSTRI NG (| ongest repeated, in a string)

cal | :
exit:

X= any string, |en>2
F= From (1st one), L=Len, as in md$(X F, L)

The Blue Book About GW-BASIC and QuickBASIC - 256 -

1370 ' tenp: I=Instr
1380 ' note: includes overlaps ("aaaaa" is F= 1, L= 4)
1390 | =LEN(X): L=SGN(I): F=1
1400 WHI LE |
1410 1 =I NSTR(F+1, X, M D$(X, F, L+1)) : L=L+SGN\(1)
1420 |IF I=0 THEN I =I NSTR(F+L, X, M D$(X, F+1,L)): I F | THEN F=I
1430 |IF I=0 THEN I =I NSTR(F+L, X, MD$(X, F,L)):1F | THEN F=I
1440 WEND: F=I NSTR(X, M D$(X, F, L))
1450 L=L*-(L>1) "L=0 if no repeats of at |east 2-bytes
DATA ORDERI NGo e e line
reverse NAMES, Doe, John J. Jr. as John J. Doe, Jr. 1140
reverse NAMES, John J. Doe, Jr. as Doe, John J. Jr. 1320
reverse sequence of BYTES in a string 1450
reverse sequence of ELEMENTS in an array 1520
shuffle significant ELEMENTS to top of an array 1590
sort BYTES of a string, ascending 1700
sort BYTES of a string, descending 1810
sort ELEMENTS of an array, ascendi ng (bubbl e-sort) 1920
sort ELEMENTS of an array, ascending (shell-sort) 2020
sort ELEMENTS of an array, descendi ng (bubbl e-sort) 2160
sort ELEMENTS of an array, descending (shell-sort) 2260
1140 'reverse NAMES, Doe, John J. Jr. as John J. Doe, Jr.
1150 ' call: X=last, first mddle rank
1160 ' S= string, |en=>len(X)
1170 ' exit: S=first mddle |ast, rank
1180 ' tenp: I= ptr, J= ptr
1190 LSET S=X
1200 FOR I=1 TO LEN(S):J=ASC(M D$(S, 1))
1210 M D$(S, |) =CHR$(J-32*(J>64 AND J<91)): NEXT
1220 J=INSTR(S," iv")+INSTR(S," ii")
1230 J=J+INSTR(S," jr")+I NSTR(S," sr")

The Blue Book About GW-BASIC and QuickBASIC - 257 -

1240 J=J*SGN(INSTR(". ", M D$(S, J+3,1)) OR J+3=LEN(S))

1250 1 =INSTR(S," iii")

1260 1=I*SGN(INSTR(". ",MDS$(S,1+4,1)) OR | +4=LEN(S))
1270 J=I*ABS(1=>J)+J*ABS(J>I):1=J: | F J=0 THEN J=LEN(S)+1
1280 WHILE | AND I <LEN(S): M D$(S, 1)=" ":1=I+1: WEND

1290 1=INSTR(S,","):LSET S=M D§(S, | +2)

1300 M DS$(S, | NSTR(S, " ") +1) =LEFT$(X, | - SGN(I) +1)

1310 | =LEN(S): J=I *ABS(| <J) +J* ABS(J<=1): M D$(S, J) =M D$(X, J)

1320 'reverse NAMES, John J. Doe, Jr. as Doe, John J. Jr.

1330 ' call: X= first mddle |last, rank

1340 S= string, |en=>len(X)

1350 ' exit: S=last, first mddle rank

1360 ' tenp: I= ptr, J= ptr

1370 LSET S=X: I =INSTR(S,","):IF 1=0 THEN | =LEN(S)

1380 FOR I=LEN(S) TO I STEP-1: M D$(S,1)=" ":NEXT

1390 I=LEN(S): WHILE I>1 AND M D$(S,1,1)=" ":1=1-1: VEND
1400 J=l:VWH LE J>1 AND M D$(S, J, 1)>" ":J=J-1: \END
1410 J=J-(MD$(S,J,1)="")

1420 LSET S=EMD$(S,J): I =INSTR(S," "):MD$(S, 1)=","
1430 M D$(S, |1 +2) =LEFT$(X, J-1): I =INSTR(X, ", ")

1440 IF I THEN M D$(S,INSTR(S," "))=MD$(X, |+1)

1450 'reverse sequence of BYTES in a string

1460 ' call: X= any string
1470 ' exit: X= byte sequence reversed
1480 ' tenmp: 1= Incr, C= Chr

1490 FOR | =1 TO LEN(X)\ 2: C=ASC(M D$(X, LEN(X) - | +1))
1500 M D$(X, LEN(X)-1+1)=M D$(X, I, 1) : M D$(X, |) =CHR$(C)
1510 NEXT

1520 'reverse sequence of ELEMENTS in an array

1530 ' call: T(n)= array, F= 1st position, E= last position
1540 ' exit: T(n)= el enment sequence reversed
1550 ' tenp: I= Incr

1560 FOR | =F TO E/ 2
1570 SWAP T(I1), T(E-1)
1580 NEXT

1590 'shuffle significant ELEMENTS to top of an array

1600 ' call: T(n)= array, F= 1lst position, L= last position
1610 ' exit: T(n)= nulls shifted to "bottont of table
1620 ' tenmp: E= Exit, I= Incr

The Blue Book About GW-BASIC and QuickBASIC - 258 -

1630 ' note: for nuneric array change LEN to SGN
1640 FOR E=F TO L

1650 |F LEN(T(E))=0 THEN | =E ELSE | =L+1

1660 FOR I=L TO | STEP-1

1670 IF LEN(T(1)) THEN SWAP T(E), T(!)

1680 NEXT

1690 NEXT

1700 'sort BYTES of a string, ascending

1710 * call: X= any string
1720 ' exit: X= bytes sorted left-to-right
1730 ' tenp: E= Exit, I=1Incr, J= Juggle, L= len(X

1740 L=LEN(X)

1750 FOR E=L>0 TO 0

1760 FOR 1=1 TO L-1:J=M D$(X, I, 1)>M D$(X, | +1, 1)

1770 1F J THEN MDS(X, |)=M I (x | +1, 1) +M D$(X, |, 1) : L=
1780 NEXT

1790 E=L<l AND L>0

1800 NEXT

1810 'sort BYTES of a string, descending

1820 ' call: X= any string
1830 ' exit: X= bytes sorted right-to-Ileft
1840 ' tenp: E= Exit, I=1Incr, J= Juggle, L= len(X

1850 L=LEN(X)

1860 FOR E=L>0 TO 0

1870 FOR =1 TO L-1:J=M D$(X, | +1, 1) >M D$(X, I , 1)

1880 IF J THEN M DS(X, 1)=M DS(X I +1, 1) +M DS(X, I, 1) : L=I
1890 NEXT

1900 E=L<l AND L>0

1910 NEXT

1920 'sort ELEMENTS of an array, ascendi ng (bubble-sort)

1930 ' call: A(n)= array, F= 1lst position, L= last position
1940 ' exit: A(n)= sorted, ascending, positions F thru L
1950 ' temp: E= Exit, I= Incr

1960 FOR E=-1 TO 0

1970 FOR I=F TO L-1

1980 I F A(1)>A(I+1) THEN SWAP A(1), A(l +1): L=l
1990 NEXT

2000 E=L<I

2010 NEXT

The Blue Book About GW-BASIC and QuickBASIC - 259 -

2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

2160
2170
2180
2190
2200
2210
2220
2230
2240
2250

2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390

"sort ELEMENTS of an array, ascending (shell-sort)
" call: A(n)= array, F= 1st position, L= |last position
" exit: A(n)= sorted, ascending, positions F thru L
" tenp: E= Exit, H= Half, 1= Incr, J= Juggle
H=(L-F)/2
VH LE H
FOR | =F TO H+F: E=1
VWHI LE E: E=0
FOR J=I TO L-H STEP H
| F A(J)>A(J+H) THEN SWAP A(J), A(J+H): E=1
NEXT
VEEND
NEXT: H=H\ 2
VEND
"sort ELEMENTS of an array, descendi ng (bubble-sort)
" call: A(n)= array, F= 1st position L= last position
" exit: A(n)= sorted, descending, positions F thru L
" tenp: E= Exit, I= Incr
FOR E=-1 TO O

FOR I=F TO L-1
I F A(l+1)>A(l) THEN SWAP A(1),A(l+1): L=l
NEXT
E=L<I
NEXT
"sort ELEMENTS of an array, descending (shell-sort)
" call: A(n)= array, F= 1st position, L= last position
" exit: A(n)= sorted, descending, positions F thru L
" tenp: E= Exit, H= Half, I= Incr, J= Juggle
H=(L-F)/2
VH LE H
FOR | =F TO H+F: E=1
VWH LE E: E=0
FOR J=I TO L-H STEP H
| F A(J+H) >A(J) THEN SWAP A(J), A(J+H): E=1
NEXT
VEEND
NEXT: H=H\ 2
VEND

The Blue Book About GW-BASIC and QuickBASIC - 260 -

Chapter 15 = TOOLS

Back when Altair and Al buquerque were unusual nanes to sone,
and apples were just fruit to everyone, and RENUM had yet to
be i nvented, some of us spent as many hours changing |ine
nunbers, sonetines, as we did witing useful code. It was not
| ong, naturally, before we wote a programthat woul d renunber
the lines of another program all automatically.

W all didit. W programmers. And every programer had his
own little tool box in which he kept all of his honenade tools.
Me too.

Ti mes have changed. MW Altair vanoosed years ago. Now we see
Washi ngton and New Yor k addresses on the backs of nmanuals. And
not all apples grow on trees. And RENUMis a built-in feature.
But nost of us still have tool boxes. M too.

The tools in this chapter are sone of ny favorites. Favored
because they are so necessary (not because they are ny own).
The need for this mninmmset has not dimnished. 1In fact,
they are needed nore today than ever.

Time was, when 4 KB was a big program and you |left out remarks
to conserve nmenory. Now we can afford 4 KB-worth of remarks,

al one. But bigger prograns can also nmake it a bigger job to
keep track of what is what, and where what is. A job that can
be ever so nuch easier with just a few tools.

These prograns are shared with a proviso: They were handmade
by nme, for nme. They work just fine, on ny machine, wth ny
prograns. Reiterated differently: They were not witten to
suit the world. They may not do everything for everyone, on
all machines, on all versions of the interpreter, forever and
ever. Ad infinitum

This is not to say they cannot be nade to work, differently, or
in adifferent environnent. They are all witten in BASIC, and

they can be overhaul ed to whatever extent need be. If they
fail to work as described, custom ze them Hopefully enough
hel p has been provided that you will be able to easily add them

to your own tool box, for your own use.

Conmpatibility is, undoubtedly, the nost overworked word in

The Blue Book About GW-BASIC and QuickBASIC - 261 -

conmput er advertising today. These tools are sensitive. They
can cohabit, but not always blissfully. They all depend on
know ng certain addresses up in the interpreter’'s own worKking
storage areas. The addresses used were found in manuals. Not
all of themare in any one manual, however, and they are not
easily found. But, because they have been published, at |east
once, sonmewhere, they are likely to renmain unchanged. For a
whil e, anyway. Here are the ones taken advantage of:

Usi ng DEF FNB(B) =PEEK(B+1) * 256+PEEK(B) t hen. . ..

FNB(46) = line nunber of line currently executing
FNB(48) = beginning of first |ine of object program
FNB(856) = address of first sinple variable

FNB(858) = address of first array variable

FNB(860) = begi nning of free-space (end of vari abl es)

The accuracy of the last three addresses is easily enough
confirmed by use of VARPTR They have all been correct, for

me, for three successive releases of, three different versions
of BASIC interpreters: One with a last nanme of EXE, and two
that are COMfiles that |ink-up wwth that part of the software
that is frozen in ROM If yours is different than m ne you may
have to do sone peeking and poking. In the nanuals and in the
sof t war e.

Anot her type of generation gap is possible. Al of these
tools analyze a programin situ. Chapter 2 tells howto
exam ne prograns sitting in nmenory. New gadgets are added
to the language fromtinme to tine. |If the key word tokens
or other bits in yours do not align with mne, getting these
progranms to work correctly may require some research of the
type suggested there.

An overview. All of these prograns are "nergeabl e nodul es”
They are stored as files using SAVE with the conma- A opti on.
Qobvi ously their nanes can be changed to protect the innocent.
(And the guilty.) As you can see, they are all nunbered

begi nning with Iine 9000 so that they can be nmerged onto the
Tail end of an application program (In ny world no regular
program has |ine nunbers that even get close to 9000.) Al

of these tools can be renunbered so as to start with a higher
nunber, if you like. Wth the exception of VLIST, they nust
all be nunbered high enough to cause themto be situated beyond
the last line of a programto be worked on. By nunbering them
all alike, they can MERGE over the top of each other.

The Blue Book About GW-BASIC and QuickBASIC - 262 -

They are all terse. And cryptic, and tricky. But they are
also small and fast. They were kept small so that they can
be left in a programwhile it is in devel opnment, at a m ni mum
cost to that programis need for nenory. The tricks used to
make them as efficient as possible are to save ne tinme. Not
others. They are not intended to be nodels of howto wite
good prograns. They are tools. 'nough said. Gab one.

The Blue Book About GW-BASIC and QuickBASIC - 263 -

LXREF = Li ne Nunbers Cross Reference

Runs through a program top to bottom and conpiles
alist of all Iine-references. (GOTO, etc.) Prints
a listing, in line-nunber order, of all lines that
are referenced by statenents in other lines. Each
target-line nunber is followed by a listing of the
line nunbers that point to it.

Usage: LOAD "progrant "the object programto be anal yzed
MERGE " LXREF" "must be | ast bl ock of code
RUN 9000 "printer on? on-|ine? paper?
(0 ¢ "ends with an END
DELETE 9000- "if no | onger needed

Rul es: Load size is 800 bytes; needs about 8100 nore to run.

9000
9010
9020
9030
9040
9050
9060
9070
9080
9090
9100
9110
9120
9130
9140
9150
J=0

9160
9170
9180
9190
9200

Assunes object programhas no invalid line references.
(Report will include bad references, sanme as valid.)
Can report up to 999 references; crashes (ERR=9) if
too many. Can be RUN repeatedly, once in residence.

PRI NT "Lxref": DEF SEG DEFI NT | - J: B=PEEK(47) * 256+PEEK(46)
H=VARPTR(#1) +51: POKE H, 6: FOR | =H+1 TO H+252: POKE |, 1: NEXT
POKE |, 0: POKE | +1, 0: POKE | +2, 0: POKE H+11, 2: POKE H+12, 2
POKE H+14, 3: POKE H+15, 0: POKE H+132, 6: POKE H+143, 6

POKE H#+28, 2: POKE H+29, 4: POKE H+31, 8: POKE H+34, 5:1=0: J=0
F=B: B=PEEK(49) * 256+PEEK(48) : C=B: A=B: DI M B(999) , A(999)
A=PEEK(B+1) * 256+PEEK(B) : B=B+3: C=PEEK(B) * 256+PEEK(B- 1)

| F C<F THEN PRI NT C;:LOCATE ,1 ELSE 9170

B=B+1

ON PEEK(H+PEEK(B)) GOTO 9080, 9110, 9140, 9110, 9120, 9130, , 9110
B=B+2: GOTO 9090

B=B+PEEK(H+PEEK(B)) +1: GOTO 9090

B=B+1: | F PEEK(B)=34 THEN 9080 ELSE | F PEEK(B) THEN 9120
B=A: GOTO 9060

A(1) =C: B(|) =PEEK(B+2) * 256+PEEK(B+1) : FOR J=I TO 1 STEP-1

I F B(J)<B(J-1) THEN SWAP B(J), B(J-1): SWAP A(J), A(J-1) ELSE

NEXT: | =I +1: B=B+3: GOTO 9090
Hel-1: FOR 1=0 TO H: I F A(1)<0 THEN 9200 ELSE LPRINT B(1),
FOR J=I TO H I F B(1)=B(J) THEN LPRINT A(J);:A(J)=-1
NEXT: LPRI NT: H=H+(A(H) <0)

NEXT: LPRI NT: LPRI NT DATES$, TI ME$: END

The Blue Book About GW-BASIC and QuickBASIC - 264 -

LH TS = Line Nunbers Cross Reference (Selective)

Is like LXREF, save it only lists lines that have
been addressed since a RUN was | ast done.

Usage: LOAD "progrant "the object programto be anal yzed
MERGE "LH TS" "nmust be | ast bl ock of code
RUN ‘start your program
BREAK "keyboard or END or STOP (optional)
GOTO 9000 "or GOSUB; outputs to printer
K "add your own END or add a
DELETE 9000- "RETURN to use as a subroutine

Rul es: Load size is 807 bytes; needs about 8100 nore to run.
Can report up to 999 references; crashes (ERR=9) if
too many. Can be RUN repeatedly, once in residence.

9000 PRI NT "Lhits": DEF SEG DEFI NT | -J: B=PEEK(47) * 256+PEEK(46)
9010 H=VARPTR(#1) +51: POKE H, 6: FOR | =H+1 TO H+252: POKE I, 1: NEXT
9020 POKE I, 0: POKE | +1, 0: POKE | +2, 0: POKE H+11, 2: POKE H+12, 2
9030 POKE H+13, 3: POKE H+14, 2: POKE H+15, 0: POKE H+132, 6: POKE H+143, 6
9040 POKE H+28, 2: POKE H+29, 4: POKE H+31, 8: POKE H+34, 5: 1 =0: J=0
9050 F=B: B=PEEK(49) * 256+PEEK(48) : C=B: A=B: DI M B(999) , A(999)

9060 A=PEEK(B+1) * 256+PEEK(B) : B=B+3: C=PEEK(B) * 256+PEEK(B- 1)

9070 | F C<F THEN PRINT C;: LOCATE ,1 ELSE 9170

9080 B=B+1

9090 ON PEEK(H+PEEK(B)) GOTO 9080, 9110, 9140, 9110, 9120, 9130, , 9110
9100 B=B+2: GOTO 9090

9110 B=B+PEEK(H+PEEK(B)) +1: GOTO 9090

9120 B=B+1:|F PEEK(B)=34 THEN 9080 ELSE | F PEEK(B) THEN 9120
9130 B=A: GOTO 9060

9140 A(1)=C: B(|)=PEEK(B+2) * 256+PEEK(B+1) : FOR J=I TO 1 STEP-1
9150 | F B(J)<B(J-1) THEN SWAP B(J), B(J-1): SWAP A(J),A(J-1) ELSE
J=0

9160 NEXT: | =I +1: B=B+3: GOTO 9090

9170 H=l-1: FOR 1=0 TO H I F A(1)<0 THEN 9210 ELSE A=B(I)+3

9180 PRI NT PEEK(A+1)* 256+PEEK(A),

9190 FOR J=I TO H: I F B(1)=B(J) THEN PRI NT A(J);:A(J)=-1

9200 NEXT: PRI NT: H=H+(A(H) <0)

9210 NEXT: PRI NT: PRI NT DATES$, TI ME$: END

The Blue Book About GW-BASIC and QuickBASIC - 265 -

VFI ND = Vari abl es Fi nder

Asks you for a variable nane to search for, then
runs through a program top to bottom and displays
the |ine nunbers that that name was found in.

Usage: LOAD "progrant "the object programto be anal yzed
VERGE " VFI ND" "must be | ast block of code
RUN 9000 "start too
VFi nd? "enter search argunent
K "ends with an END
DELETE 9000- "if no | onger needed

Rul es: Load size is 981 bytes; needs about 450 nore to run.
WIIl only find nanes that obey syntax rul es.
WIl also find key words that are not tokeni zed.
WIIl report the "B" and "BF" used in graphics (like

in LINE), as if they were variable nanes.

Include "FN' in front of user defined function nanes.
For array names, include the |left-parenthesis, only.
Al pha characters may be upper or |ower case.
Can be RUN repeatedly, once in residence.

The Blue Book About GW-BASIC and QuickBASIC - 266 -

9000
9010
9020
9030
9040
9050
9060
9070
9080
9090
9100
9110
9120
9130
9140
9150
9140,
9160
9170
9180
9190
9200
9210
9220

PRINT "Vfind? ";:DEF SEG B=PEEK(47) * 256+PEEK(46)
DEFSTR M Z: DEFI NT | : HEVARPTR(#1) +51: POKE H, 6
FOR | =H+1 TO H+252: POKE |, 1: NEXT: POKE |, 0: POKE | +1, 0
POKE | +2, 0: FOR | =H+11 TO H+14: POKE |, 2: NEXT

POKE |, 0: POKE H+132, 6: POKE H+143, 6: POKE H+28, 2

POKE H+29, 4: POKE H+31, 8: POKE H+34, 5: POKE H+209, 9

FOR | =65 TO 90: POKE H+l, 3: NEXT

Z=SPACES$(255) : F=B: B=PEEK(49) * 256+PEEK(48) : C=0: A=B
LINE INPUT Q1F Q"" THEN PRI NT ELSE END

FOR I=1 TO LEN(Q: I F ASC(M D$(Q |))<97 THEN 9110

M D$(Q |) =CHR$(ASC(M D$(Q 1)) - 32)

NEXT: M=" ######" +STRI NGS(6, 29)

A=PEEK(B+1) * 256+PEEK(B) : B=B+3: C=PEEK(B) * 256+PEEK(B- 1)
| E C<F THEN PRINT USING M C, ELSE PRI NT SPC(6): END
B=B+1

ON PEEK(H+PEEK(B)) GOTO

9170, 9210, 9170, 9180, 9190, , 9170, 9200

B=B+2: GOTO 9150

B=B+PEEK(H+PEEK(B)) +1: GOTO 9150

B=B+1: | F PEEK(B)=34 THEN 9140 ELSE | F PEEK(B) THEN 9180
B=A: GOTO 9120

| =3: LSET Z="FN': B=B+1: GOTO 9220

| =2: LSET Z=CHR$(PEEK(B)) : B=B+1

WHI LE

| NSTR(" ABCDEFGHI JKLMNOPQRSTUVWKYZ0123456789%#% . ", CHR$(PEEK(B)))

9230
9240
9250
9260

M D$(Z, |) =CHR$(PEEK(B)) : B=B+1: | = +1: VEND

| F PEEK(B) =40 THEN M D$(Z, 1)="(": B=B+1: | =I +1
| F LEFT$(Z, | - 1) <>Q THEN 9150

PRI NT STRI NG$(6, 28) ; : B=A: GOTO 9120

The Blue Book About GW-BASIC and QuickBASIC - 267 -

VLI ST = Vari abl es Lister

Di spl ays the nanes of variables presently in use, in
the order in which they are stacked in nmenory, in the
vari abl es- st orage work area.

Usage: LOAD "progrant "the object programto be anal yzed
MERGE " VLI ST" "anywhere, but not over your lines
RUN "start your program
BREAK "keyboard or END or STOP (optional)
GOTO 9000 "or GOSUB; outputs to nonitor
K "add your own END or add a
DELETE 9000- "RETURN to use as a subroutine

Rul es: Load size is 688 bytes; needs about 54 nore to run.
Assunmes you have no array called O (report wll
include this name. Does a default DEF SEG ot herw se
has no inpact on a live program

9000 DEF SEG O (0) =PEEK(857) * 256+PEEK(856) ' Ml i st

9010 WHI LE O (0) <PEEK(859) * 256+PEEK(858) : O (1) =PEEK(Ol (0))
9020 O (0)=0 (0)+2: | F PEEK(O (0)-1)>127 THEN PRI NT "FN';
9030 PRI NT CHR$(PEEK(O (0)-1) AND 32639);

9040 PRI NT STRI NG$(SGN(PEEK(O (0))), PEEK(O (0)));

9050 O (0)=0 (0)+1: O (2) =PEEK(O (0))

9060 WHI LE O (2): 0 (0)=0 (0)+1: O (2)=0 (2) -1

9070 PRI NT CHR$(PEEK(O (0)) AND 32639);: WEND: O (0) =0l (0) +1
9080 PRI NT M D$(" 9!...#", O (1),1): 0 (0)=0 (0)+0 (1): VEND
9090 WHI LE O (0) <PEEK(861) * 256+PEEK(860) : O (1) =PEEK(Ol (0))
9100 O (0) =0 (0)+2: PRI NT CHR$(PEEK(O (0)-1)):

9110 PRI NT STRI NG$(SGN(PEEK(O (0))), PEEK(Q (0)));

9120 O (0) =0 (0)+1: O (2) =PEEK(O (0))

9130 WHI LE O (2): O (0)=0 (0)+1: O (2) =0 (2) - 1

9140 PRI NT CHR$(PEEK(O (0)) AND 32639); : VEND

9150 O (0)=0 (0)+1: PRINT M D$(" 98!...#", 0 (1),1);"("

9160 O (0) =0 (0) +2+(PEEK(O (0) +1) * 256+PEEK(O (0))) : WEND

The Blue Book About GW-BASIC and QuickBASIC - 268 -

VXREF =

Usage:

Rul es:

Vari abl es Cross Ref erence

Runs through a program top to bottom and finds

all of the variable nanmes that are used in each line.
Prints each different nane found, in al phabetica
order. Each name is followed by a |ist of each of
the |ine nunbers that that name was found in.

LOAD " progr ant' "the object programto be anal yzed
VERCGE " VXREF" "nmust be | ast bl ock of code

RUN 9000 "printer on? on-|ine? paper?

(0 "ends with an END

DELETE 9000- "if no | onger needed

Load size is 1563 bytes; needs about 3500 nore to run,
plus 3 bytes for each nanmed variable; ERR=7 if not
enough free space to conplete. Maxi num nunber of

uni que variables is 255; crashes (ERR=9) if too many.
Reports "B" and "BF", as used in LINE, as variables.
Can be RUN repeatedly, once in residence.

The Blue Book About GW-BASIC and QuickBASIC - 269 -

9000 PRI NT "Vxref":DEF SEG DEFI NT |-J: B=PEEK(47) *256+PEEK(46)
9010 H=VARPTR(#1) +51: POKE H, 6: FOR | =H+1 TO H+252: PCKE |, 1: NEXT
9020 PCKE 1, 0: PCKE | +1, 0: POKE 1 +2, 0: POKE H+209, 9
9030 FOR | =H+11 TO H+14: PCKE |, 2: NEXT: PCKE |, 0
9040 FOR J=H+65 TO H+90: POKE J, 3: NEXT: POKE H+132, 6: POKE H+143, 6
9050 PCKE H+28, 2: POKE H+29, 4: POCKE H+31, 8: POKE H+34, 5: J=255
9060 DEFSTR X- Z: Z=SPACES$(255) : Y=Z: K=VARPTR(Y) +1
9070 K=PEEK(K+1) * 256+PEEK(K) - 4: D=B: B=PEEK(49) * 256+PEEK(48) : C=B
9080 DI M X(J), H(J), A(J) : EEVARPTR(A(J)) : E=E- (E<0) *65536! +8: A(0) =D
9090 J=0: H(0) =PEEK(B+1) * 256+PEEK(B) : B=B+3: C=PEEK(B) * 256+PEEK(B- 1)
9100 I'F C<A(0) THEN PRI NT C;:LOCATE , 1: C=B: G=E ELSE 9320
9110 B=B+1
9120 ON PEEK(H+PEEK(B)) GOTO
9110, 9160, 9180, 9160, 9140, 9150, , 9160, 9170
9130 B=B+2: GOTO 9120
9140 B=B+1:1F PEEK(B)=34 THEN 9110 ELSE I F PEEK(B) THEN 9140
9150 B=H(0): GOTO 9090
9160 B=B+PEEK(H+PEEK(B)) +1: GOTO 9120
9170 LSET Z="FN': B=B+1:1=3: GOTO 9190
9180 LSET Z=CHR$(PEEK(B)): B=B+1: | =2
9190 WHI LE
| NSTR(" ABCDEFGHI JKLMNOPQRSTUVWKYZ0123456789%! #% ", CHR$(PEEK(B)))
9200 M D$(Z, 1) =CHRS(PEEK(B)) : | =I +1: B=B+1: \END
9210 | F PEEK(B)=40 THEN M D$(Z, 1)="(": 1=l +1: B=B+1: GOTO 9230
9220 I F I NSTR("AS ALL APPEND BASE QUTPUT SEG "
LEFT$(Z, 7)) THEN 9120
9230 | F X(J)=LEFT$(Z, 1) THEN 9120
9240 J=I NSTR(Y, LEFT$(Z,1)):1F J=0 THEN 9290
9250 | F X(J)=LEFT$(Z, 1) THEN D=E-3 ELSE 9280
9260 | F PEEK(D)=J THEN 9120
9270 I|F D>G THEN D=D- 3: GOTO 9260 ELSE 9300
9280 J=I NSTR(J+1, Y, LEFT$(Z, 1)): I F J THEN 9250
9290 J=INSTR(Y," "):X(J)=LEFT$(Z, 1): H(J) =E: M D$(Y, J, 1) =Z
9300 A(J)=E: PCKE E, J: POKE E+1, PEEK(C-1): 1 F E=K THEN ERROR 7
9310 POKE E+2, PEEK(C) : E=E+3: GOTO 9120
9320 D=INSTR(Y," ")-1:FOR I=1 TO
D: M DS(X(1), LEN(X(1)))=CHRS() : NEXT
9330 I=D)2: WHILE | : FOR H=1 TO |:B=1: VWH LE B: B=0
9340 FOR J=H TO DI STEP I:IF X(J)<=X(J+l) THEN 9360
9350 B=J+l: SWAP X(J), X(B): SWAP H(J), H(B): SWAP A(J), A(B)
9360 NEXT: VEEND: NEXT: | =I'\ 2: \END
9370 FOR H=1l TO D: LPRINT LEFT$(X(H), LEN(X(H))-1):" ";
9380 | =ASC(RI GHT$(X(H), 1)) : FOR B=H(H) TO A(H) STEP 3
9390 | F PEEK(B)=I THEN LPRI NT PEEK(B+2)*256+PEEK(B+1):
9400 NEXT: LPRI NT: NEXT: LPRI NT D, DATES, TI ME$: END
---=== THE END ===---

The Blue Book About GW-BASIC and QuickBASIC - 270 -

	Titelseite
	TABLE OF CONTENTS
	FOREWORD
	1. INTRODUCTION - our mutual aims
	2. PROGRAMS - parsing, key words, and tokens
	3. VARIABLES - where, how stored and searched for
	4. STRINGS - free space use and (mis-) management
	5. NUMBERS - arithmetic accuracy, or nearly so
	6. DEVICES - avoiding I/O headaches
	7. GRAPHICS - bits, pixels, and pretty pictures
	8. FILES - bridging the gaps between DOS and BASIC
	9. STRANGE - BASIC bugs, maybe
	10. STYLE - pretty programs vs. dense code
	11. DESIGN - deciding where to put the pieces
	12. METHODS - coding faster, and coding better
	13. TECHNIQUES - ISAM, MRI, file integrity, menus
	14. TRICKS - ready to use canned code
	15. TOOLS - Lxref, Lhits, Vfind, Vlist, Vxref

